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Electrokinetic effects in Auid-saturated poroelastic media
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The Biot theory of Quid-saturated poroelastic media is extended to include the electrokinetic
effects of streaming potential and electro-osmosis in the low-frequency or "resistive" domain. The
equations presented are shown to reduce to the familiar equations under steady-state conditions,
where they also satisfy the Onsager reciprocity conditions. Plane-wave solutions to the linearized
equations show that significant electric potentials accompany the passage of compressional waves
for a broad range of material properties and frequencies. Mechanical motion is shown to be essen-
tially unaffected by the electrorn. echanical coupling as it is in second order in the electrokinetic
effects.

INTRODUCTION

Whenever a Auid Aows along the surface of a solid, an
electric field may develop in the direction of the flow, the
strength of the field depending on the properties of the
two materials and the rate of flow. This phenomenon and
its complement, the production of relative Auid Aow by
an applied electric field, are referred to as electrokinetic
effects. In different physical situations, this effect is re-
ferred to by different names such as streaming potential,
electro-osmosis, electrophoresis, and the Dorn effect. Ex-
perimental observation of these effects was recorded as
early as 1808 by Reuss and has been studied intensely
both experimentally and theoretically ever since. Many
good reviews exist. ' In recent years investigation has
been directed toward the phenomenon of streaming po-
tential associated with the Aow of Auid in porous media.
At the same time, comprehensive treatment of the
mechanical behavior of porous media have been
developed, and new understanding of their elastodynamic
properties has been achieved. ' In the laboratory, for ex-
ample, experiments demonstrated the effect for water
Aow in permeable rock samples, while in the field the
effect was associated with the seepage of water through
earthen dams, and with the diffusion of Auids into dila-
tant regions prior to earthquakes. '

In this paper we extend Biot's theory of Auid-saturated,
poroelastic media to include the effects of streaming po-
tential and electro-osmotic pressure. Our equations
reduce to the accepted form in the steady state, wherein
they also satisfy the Onsager reciprocity conditions. In
this regard our equations differ from other published
ones.

Finally we consider plane-wave solutions to linearized
versions of our field equations. Here we show that there
are three characteristic frequencies which play important
roles in determining the properties of the system; one of
the frequencies involves the viscosity of the Auid, another
the electrical resistivity of the Auid, and the third the
electrokinetic coefficient (the g potential). The amplitude
of the electric potential is calculated relative to the

m.echanical displacement of the solid and is found to be
significant over broad ranges of frequency and material
properties.

On the other hand, we demonstrate that the feedback
effect of this electrical potential on the mechanical behav-
ior of the medium is negligible. This is not surprising
since such an effect is second order in the electrokinetic
coup1ing. The elastic behavior of the medium can, there-
fore, continue to be treated by Biot's theory, as long as no
significant external electric field is present.

I. ELECTROKINETIC EFFECTS

The nature of the electrokinetic phenomena can be un-
derstood in terms of an electric double layer existing at
the solid-Auid interface. A surface charge density devel-
ops on the solid due to the adsorption of ions from the
Auid or other mechanism; by Coulombic attraction, ions
of the opposite sign, called counterions, wil1 concentrate
near the solid surface thus forming a double layer.
Thermal agitation within the Auid, however, prevents the
counterions from forming a distinct, immobile layer on
the surface, but rather produces a diffuse distribution of
them near the surface. With Aow of the Auid relative to
the surface, at least part of the diffuse layer can be trans-
ported with the Auid, allowing for the possibility of
charge separation.

When a constant electric field is applied to a Auid-
saturated porous media, the mobile portion of the diffuse
layer will flow because of the excess charge it carries. A
steady flow rate will be achieved when the electrical force
is balanced by the viscous force within the Auid. Without
consideration of the structure of the diffuse layer, it has
been shown that the average rate of ffow (per unit area of
composite) in the absence of applied ffuid pressure p is

Jf=(Pez/p)Q „p;=0,
where e is the electric permittivity, p is the Auid viscosi-
ty, and z is a quantity proportional to the g potential,
which is defined as the difference in potential between the
effective shear plane of mobility near the surface of the
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solid and the body of the Quid. The subscript; denotes a
partial derivative with respect to the Cartesian coordi-
nate x, ,i = 1,2, 3. The constant of proportionality is
dependent on the pore geometry (for a capillary tube, the
porosity p=1 and the electrokinetic coefficient of the
composite z =g/2). The electric potential P must be un-
derstood as the mean potential at a point in the compos-
ite. Equation (1) describes electro-osmotic Aow. (Please
note that the Einstein summation convention is used
throughout. )

Fluid Aow is also produced by pressure gradients. If
Darcy's law holds, the Bow rate in the absence of electric
fields is given by

absolute temperature T remained constant; under these
conditions the entropy production rate is given by

dS Idt = (J—(p;+J ((1;)/T, (7)

where S is the entropy density and the quantity in the
parentheses is the rate of energy production per unit
volume. Substituting for the current densities from Eqs.
(3b) and ( 5'), we see that dS /dt is a quadratic function of
the affinities p; and P;; to be positive for all values of the
affinities the determinant of the coefficients of the quadra-
tic form must be positive, namely L»L, 22

—L, ,2 & 0. This
results in the condition that

JI= —(PK/p)p;, P; =0, (2)
pGK/(ez) & 1,

where pK=~, Darcy's coefficient of permeability. We
write the permeability as pK to emphasize that, in the
resistive regime, permeability is proportional to porosity,
pore geometry being held constant. (For a capillary of
radius r,K=r IS. )

In general, for a linear process, the Aow rate should
have the form

J; =L»p, +L124', (3a)

where L,b are the kinetic coefficients. Thus, from Eqs.
(1) and (2), we can write for the net Row,

JI= (PK/p)p—, +(Pez Iiu, )$; . (3b)

Assuming that the Quid is electrically conductive (and
that the solid is nonconducting), we can write Ohm's law
for the current density (per unit area of composite) in the
absence of Quid Aow as

J,'= —Peg/ „Jf=0,
where g is the electrical conductivity of the Quid and c is
a dimensionless coefficient that depends on pore
geometry (in a capillary tube, c = 1).

Electrical current also results from the transport of
counterions. To see how to incorporate this contribution,
we appeal to the fact that we are dealing with linear resis-
tive processes; the current density then has the form,

J =L22$; +L21p

where, from the Onsager reciprocity principle, '

L2, = L12pe /zp. To identify L22, we note from (3a)
that p, = (L12/L» )p; when J—(=0; thus

which will be useful to us later.
In the following, we shall assume that the kinetic equa-

tions (3) and (5) hold for slowly varying fields as well as
for the steady state.

II. EQUATIONS OF MOTION

%'e propose that Biot's equations for fiuid saturated
poroelastic media [Eqs. (6) and (7) of Ref. 8] be extended
to include the electrokinetic effects by simply adding to
those equations terms accounting for the electric forces
on the charge densities q, and qI bound to the solid and
Quid phases, respectively. Thus,

pi 1 u;+ p, 2 U; Nu; ——( 2 +N )u J;
—QUi ~.;

+b(u; —U, )+q,P; =0,
p22U, +p12u; —(RUJ q+Quq J ), b(u; —U;)—+qIQ; =0,

(10)

where the overdot signifies a partial time derivative, u, is
the i component of the average solid displacement vector,
p, b is Biot's mass density coefficients, b =p p/K, Biot's
dissipation coefficient, N and A are Biot s elastic con-
stants (the second and first Lame coefficient, respective-
ly), Q is Biot's coupling constant, and R is Biot's elastic
coefficient for a Quid.

To see that these equations reduce correctly in the
steady state, it is sufficient to consider the case where
U,. =0 and ii; =i; =0, i.e., the Quid How is steady and the
solid is at rest. In this case, Eq. (9) can be written

Nu; "+(A +N)u ;=QU, bU;+q, iti—.;,
Ji (L22 L12L21 IL11 )0,i & Ji

which, when compared with (4), requires that we set

L22= —P[cg+(ez) I@K]=—PG . (6)

where j=1,2,3, which is the static Navier equation with
body forces due to Quid (pore) pressure gradients, Auid-
fiow resistance, and electric forces as given by the three
terms on the right-hand side of (11),respectively.

Equation (10) reduces to
The term pG now can be interpreted as the effective con-
ductivity of the composite in the absence of pressure gra-
dients, 6 being the effective electrical conductivity.

Finally, we write,

(R U +Quj i );—qI((); =b U; . (12)

From Biot's theory, the first term on the left is simply
related to the Auid pressure,

J = —(PG )P;+ (Pez Ip )p, . —pp =RU~ J. +Quj (13)

In the above analysis we have implicitly assumed that the Also, since Qow is referred to a unit area of composite,
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Substituting the above results into (12), we can write that

U, = U; exp[i( k;x; c—ot )],
P=P exp[i(k, x; co—t)], (27)

—/3p; —q&P; = ( b /P )Jf,
which is the same as (3b) provided that b =p/K and

q&= —Pez/K .

(15)

A seventh equation is needed in addition to the six
represented by (9) and (10) to solve for the seven fields
u, , U, , and P. To this end we appeal to (a) the continuity
of charge,

J,'; +q=0, (17)

where q =q&+ q, is the net charge density, and (b)
Coulomb's law,

—eP;;=q . (18)

Taking the divergence of the kinetic equation (5') for
current Aow, we have that

J;= —GP;;+(/3'/pp „) . (19)

Iz(R U +Qu), )+p[P+(/36/e)P] [;;=0 . (20)

Note that the charge density on the solid is readily re-
lated to that on the Quid by (16) and Coulomb's law (18),

q, = (/3' /K ) —eP;; . (21)

Thus, the equations of motion (9) and (10) are linear to
the degree that q, = —

q&.

III. PLANE-WAVE SOLUTIONS

Our equations of motion are linear provided that all
the material coefficients are constant (and that q, = —

q&),
conditions that might well be satisfied in homogeneous
media under infinitesimal strain. For convenience, we
rewrite our equations of motion (9), (10), and (20) in
linearized form:

p„ii; +p, 2U, —N; . . —( 2 +N )u; —QU

+b(u; —U;) —q/P; =0, (22)

p22U, +p, ~ii; (RU, +Qu) );——b(u; —U;)+q/P; =0,

The left-hand side of (19) can be replaced by —
q from

(17) which, in turn, can be replaced by eP „ from the time
derivative of (18)—we are assuming that all time rates of
change are sufficiently slow that electromagnetic efFects
are negligible. Finally, pressure can be eliminated in
favor of the displacements by (13). Thus we have for our
final field equation,

[Qk;k. (co p—~2 i cob—)5; ]u

+[Rk;k/ —(co p22+icub)5, ]U +"(iq/Rk; )P =0,
(29)

( iqJQkJ )u—j +( iq/RkJ )UJ—+[eh(/36/E ice)]p—=0 .

(30)

where co is the angular frequency. For nontrivial solu-
tions (nonzero amplitudes) the determinant of the
coefficient of the amplitudes must vanish. This condition
enables us to compute the wave number k (the eigenval-
ue) given the direction of propagation, i.e., the direction
cosines k;/k, i = 1.,2,3. Knowing k, we can determine the
ratios of the amplitudes (the eigenvectors).

Since the physical system is isotropic, we can simplify
our analysis in two ways. First, we can choose the x,
axis to define the direction of propagation, then ki =k
and k2=k3=0; second, we can treat longitudinal and
transverse waves separately.

First, we consider transverse waves. With x
&

the direc-
tion of propagation, let us choose x2 as the direction of
polarization, i.e., the direction of particle motion for both
solid and Quid phases. Equations (28)—(30) reduce to

[Nk2 —(co p»+iamb)]u z (ro p, 2 i nb) Uz—=0, —

(co p, ~ i nb)u 2+(co p—~~+icob) U~ =0,
[eb(/36/E ice)]P =0—.

(31)

(33)

The first two equations are exactly Biot's equations for
transverse waves. The third requires that P =0, which
suggests that there is no charge separation under shear.
Thus, there is nothing new for us to consider.

The case of longitudinal waves is of greater interest.
Here, the polarization will be parallel to the xi axis, the
direction of propagation. Equations (28)—(30) reduce to

where the components of the propagation vector k, and
the plane-wave amplitudes u, , U;, and P (for the solid,
fluid, and electric potential, respectively) can be complex.
Substituting the solutions into the equations of motion
and factoring out the common exponential term, we ob-
tain a set of seven linear, homogeneous equations in the
seven amplitudes:

[(A+N)k, .k —(co p»+icob Nk —)5;J]u,

+ [Qk; k (co p—,q i cob —)5,"]U~ + ( iq/—Qk, )P =0,

[q/(RU +Qu, ) eh[a+(/36/e)]PI —„=0 .

We assume plane-wave solutions of the form:

u, =u; exp[i(k, x; cot )], —

(23)

(25)

[Pk (co p, ~+iamb)] +—u[Qk —(co p~2
—icob)]U)

—(iq/k)P =0,

[Qk —(co p, 2
—i cob)]u ~

+ [Rk (co p22+i cob)]U, —

+(iq/k)P =0,

(34)

(35)
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(iqf gk)u ] +(iqfRk) U, —[eb (13G/e i—co)]p =0, (36)

[o ]2
—(y, 2 ice—b/co) V ]u,

where P = 3 +2N. To expedite the analysis, let us cast
the above equations in nondimensional form. To this
end, we first divide the equations by k to introduce the
plane-wave velocity U ( =co/k); then we divide by
pv, ( =H) where U, is Biot's characteristic velocity; finally
we introduce. the velocity parameter V =(U/v, ) and the
viscous, electric, and resistive characteristic frequencies
cob, co„and cog are equal to, respectively, b /p,
(13z/K)(e/p)', and /3G/e. Thus Eqs. (34)—(36) become

[o.„—(y„+]cob/co) V ]u,

+ [o ]~
—( y ]2 i c—ob /co ) V ]U, + (i Vcr, /cu )u =0,

(37)

A V[~ ] —tV[co ] +C=0, (42)

the roots of which give the velocities of Biot's types-1 and
-2 waves, i.e., U]];,„=U, V[ ~ ]. As co~0, the equation as-
sumes the simple form,

V[0] —V[0] =0 . (43)

the roots of which are V =1,0; thus U =U„O for the
types-1 and -2 waves, respectively. A more careful
analysis of the limits show that, in the first case,
V = V[~] +O(1/co) as co~~; in the second case,
V = V[0] +O(co) as co —+0.

Figure 1 shows how normalized plane-wave velocity
Re( V) and normalized attenuation L =A, V, /co, [the at-

We can learn some things about the nature of our solu-
tions by examining the limiting forms of the equation
with frequency. As co~ ~, Eq. (40) assumes the form

+ [a22 (y»—+i cob/co) V ]U, (i Vn), /co)u—=0,
(38)

(«y]2)u, +(«y»)U, —[(~b/~, )(] —m /co)V ]u =0,
(39)

where u =P ']/e/H has the dimensions of length, like
and where o.

] i P/H o zz =R /H, and
o ]&=Q/H; y, b =p, b /p. For nontrivial solutions, the
determinant of the coefficient matrix must vanish; this
leads to the characteristic polynomial in V, which we
write in condensed form,

[(A —Wb Ws/W )+(A Wb+ W )/W]V
—[(B—Wb Wg/W )+(B+Wg D/W~)/W]V—

+C[1+(Wb Ws
—1)/WWg]V =0 . (40)

I—3 3

The parameters A (y„y22 —y, 2), B(y„cr»+y»o. „2

—2y]po ]p), C(o ]]o2p
—]7]2), »d D [o'22(y]]+ y]2)—o.]z(y]z+y»)] are dimensionless coefficients which de-

pend only on the mechanical properties of the system.
Second, since we are interested in the electrokinetic
eA'ects, it is convenient to normalize all frequencies to ~„
thus Wb = cob /co„Wg =

co& /co„and W =co/co, . Third,
for a given porous solid, and fluids of a given density, the
parameters 8'b and 8' determine the electrokinetic be-
havior. Finally, the thermodynamic stability condition
given in Eq. (8) can be written

8'b8' )1, (41)

which enters directly in the last term of (40) and will play
an important role later.

Returning to Eq. (40), we see that one root is simply
V=O. Although trivial, it tells us that there is no "third"
type of wave (in addition to Biot's type one and type two)
involved in the motion. Solving for the other two roots
by means of the quadratic formula is straightforward, but
the analytical expressions we obtain are complicated and
not particularly revealing. Numerical calculations are
readily carried out giving V for any particular case; re-
sults of such a study are discussed below.

0-
tg0

I—3
log„(w)

FIG. 1. (a) Normalized plane-wave velocities ( V=u/u, ) and
(b) normalized attenuation coefficients (L =A.u, /co, ) vs normal-
ized frequency ( 8' =co/co, ). The solid curve is for type-1
waves; the dashed, type 2.
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Properties of the solid (quartz):
density 2.65 g/cm incompressibility 37.9X10' dyn/cm

Properties of the Quid (slightly saline water):
density 1.00 g/cm incompressibility 2.25 X 10' dyn/crn
@=1.0X10 g/cms g =1.0X 10 (Om)
e=80Xe0=7. 1X10 '0 F/m

Properties of unsaturated skeleton:
rigidity 9.0 X 10' dyn/cm incompressibility 12.0X 10' dyn/cm=0.10 x =2.0X 10 cm

Properties of saturated skeleton (composite):
p&z= —0.2 g/cm
p=2.5 g/cm
Q =0.29X 10' dyn/cm
H =4.75 X 10' dyn/cm
G =1.0X 10 (Qm)

Properties associated with plane-wave motion:
U, =1.4X 10 cm/s (H/e)' =8.2 X 10 V/cm
cob =2.0X 10 s co, =5.0X 10 s
a), =80 s cog =1.4X 10 s
8 b =250 Rg =1750
Z, [a& ]=3.0X 10 Z, [oo]=13.4X10

W,*=800

p» =2.6 g/cm'
p»=0. 3 g/cm
P =4. 10X 10' dyn/cm
R =0.05 X 10' dyn/cm
z=3.0X10 ' V

TABLE I. Values of the physical properties used in the water-saturated quartz-sandstone example.

tenuation coefficient X= —uiIm(U)/~U~ ] vary with fre-
quency for a medium-grained quartz sandstone saturated
with slightly saline water. Numerical values of the ma-
terial properties used are given in Table I; limiting values
of v, A., and other derived quantities are given in Table II.
Values for the various mechanical properties of the
skeleton and Quid-saturated composite were calculated
from the basic properties of the solid and fluid com-
ponents using the formulas of Biot and Willis. " A value
for the electrical parameter z was estimated from
Chandler's paper (Ref. 4) wherein a ffuid pressure gra-
dient of 1 atom per 10 cm produced a streaming potential
of roughly 20 mV. From Eq. (5') with J =0 we find that
z= 3 mV. For this model, the electrokinetic effect has lit-
tle effect on the velocities and minor effect on the at-
tenuation.

The results presented in Fig. 1 (and subsequent figures)
are plotted over a broad frequency range to show the
possibilities. It is not presumed that these results are
valid beyond Biot's "characteristic frequency" for
low-frequency behavior ~, =0/p(yi2+y22) (where
p=p»+p22+2p, 2, the mass density of the composite),
which for our model sandstone, has the value of
5.0 X 10 /s. For other cases, with higher values of co„ the
latter parts of the curves would be of interest.

—(~ i i+~ i2)+(1'i i+)'t2) V'
0 2
1 (~12+~22) (3 12+3 22)~

Then, from (36),

(44)

Z 0 u',

(~»+ ~22~)
(1+iW~/W) Wb V

(45)

where H =P +R +2Q. As with the velocities, expand-
ing out the above expressions provides us with little but
complication, we rely on numerical solutions and limiting
cases for analysis.

Consider P first. In both the high- and low-frequency
limits, V approaches non-negative real values; the quan-
tity Y, in turn, approaches positive real values for type-1

It is not only the wave velocities which interest us, but
the amplitudes of the waves. Because only two of the
three amplitudes are independent, we consider ratios of
the fluid-displacement amplitude UI and the electrical
amplitude P to the solid displacement amplitude u, . Be-
ing complex, these ratios give us both the relative magni-
tudes and the phase differences relative to the solid dis-
placement. Subtracting Eq. (35) from (34) to eliminate
P, then dividing by u, we find that

TABLE II. Limiting values of some important quantities associated with plane-wave motion, evalu-
ated from the values of Table I.

Type-1 waves Type-2 waves

Quantity
U (X10 cm/s)
A, (cm ')
U}/ul
P /u, {V/cm)

cc)~0
1.4
0
1

0. 17(i 'co)

1.4
0.006
1.29

2.5X10

co—+0
0
0

—12.8
—434(i 'co) '

0.3
2.8

—12.6
—1.1X10
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waves and negative real values for type 2. The Quid is
thus in phase with the solid for type-1 waves and 180' out
of phase with the solid in type 2. For our model water-
saturated sandstone we find that Y varies little with fre-
quency, thus it is in approximate agreement with Biot s
theory in the absence of electrokinetic efFects.

Consider next the electrical amplitude Z. In the high-
frequency limit, for both types-1 and -2 waves,

(46)

As all terms are real and positive except for Yz[ao]
which is real and negative; the electrical signal is in phase
with solid displacement for type-1 waves and 180' out of
phase for type 2.

In the low-frequency limit, we must consider the
types-1 and -2 waves separately. First, noting that
Y, [0]=1,

Zi[0]= &—W(rr, z+crzz)/Wb W (47)

which shows that in the low-frequency regime, Z, is pro-
portional to frequency ~. The type-2 wave, on the other
hand, looks like

(i 'W)' (cr,z+crzz Yz[0])
Z2 0

[2CWs( Wi, Wg
—l )]'

(4&)

which shows that Zz[0] is proportional to co' in the
low-frequency regime. Notice also that the stability con-
dition 8'b8'~ & 1 guarantees that the denominator does
not vanish, producing singular results. Figure 2 shows
the variation of Z with frequency for our model sand-
stone; limiting values are given in Table II.

Normalized "corner" frequencies between high- and
low-frequency behavior can be defined by the intersection
of the asymptotic lines (on log-log graphs) as is evident
upon inspection of Fig. 2. Analytically, these frequencies
for type-1 and type-2 waves, respectively, are given by,

( cr iz+ o zz Yi [ ao ]) W~

(~12+~22Y1[0])~i[~] ' (49)

2C(o iz+crzz Yz[ac]) Wq(Wb W~ ')
p7 Q +

( cr,z+ cr 22 Yz [0]) Wb Vz [ ]
(50)

Numerical value of these frequencies for our model sand-
stone are given in Table I.

DISCUSSION AND CONCLUSION

1 3
iog„(w)

5

1 3
log» (w)

5

FIG. 2. {a)Amplitude and {b)phase {degree) of the normlized
electrokinetic potential [Z =&e/H (P /u

~ )] vs normalized fre-
quency (8'=co/co, ). The solid curve is for type-1 waves; the
dashed, type 2.

The theory we have presented here is an attempt to ex-
tend Biot's theory to include the electrokinetic effects as-
sociated with the Qow of Quid in poroelastic media. We
have restricted the theory to the resistive (low-frequency)
domain in both Quid Qow and electrical conduction
wherein the Onsager reciprocity conditions enable us to
establish thermodynamic consistency. The extension of
the theory into the dynamic (nonstationary) regime must
be considered tentative, awaiting experimental test. Our
"seventh" equation, in particular, is quasistationary and
may need amending to include specific dynamic terms.
Experiments in which Quid-saturated porous rods are
driven by sinusoidal forces, for example, would provide
the sorts of tests we need. Our study of the plane-wave
solutions show that the electrokinetic interaction does
not produce any third type of wave (in addition to Biot's
types l and 2) but does allow for possibly significant
efFects on the motion of the solid and especially on the
Quid. We have discovered that the nature of the electric
field accompanying the (relative) motion of the solid and
Quid is determined to a great extent by three characteris-
tic frequencies which involve, separately, the viscosity of
the Quid, its electrical conductivity, and its electrokinetic
coefficient (the g potential).

Depending on the size of the g potential, our limited
numerical study suggests that the streaming potential ac-
companying mechanical (seismic) vibrations in fiuid-
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saturated porous media might well indeed be measurable
and that the simultaneous measurement of a seismic wave
signal and the accompanying streaming potential would
provide important information about both the Quid and
its reservoir. It is, of course, very important to discrim-
inate between the streaming potential and other possible
"seismoelectric" effects such as the J eff'ect (the variation
in resistance due to porosity changes) and piezoelectric
effects. The necessary discrimination should be possible

on the basis of the phase difference between the mechani-
cal and electrical signals.
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