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Finite-size scaling study of the three-dimensional classical XYmodel

Ying-Hong Li and S. Teitel
Department ofPhysics and Astronomy, University of Rochester, Rochester, ¹tvYork 14627

(Received 5 June 1989)

The three-dimensional classical XY model on a cubic lattice has been studied using Monte Carlo
simulations. The finite-size scaling method of the phenomenological renormalization group has
been used to calculate the critical exponents v, v, and P of the correlation length, helicity modulus,
and order parameter. Good agreement with series-expansion results is obtained.

I. INTRODUCTION

The three-dimensional classical XY model is of great
interest, both as the simplest statistical model with a con-
tinuous degree of freedom, and as a model for the phase
transition of superAuid He and granular superconduc-
tors. Critical exponents and T, have been obtained by
using various methods such as high-temperature expan-
sion. ' e expansion, and Monte Carlo renormalization
group. Monte Carlo (MC) simulation has also been used
in study of the three-dimensional XY model. However,
previous MC simulation has been limited to the deter-
mination of T, alone. MC simulation has not been used
to calculate the critical exponents.

The Monte Carlo finite-size scaling approach of the
phenomenological renormalization group (PRG) (Refs. 6
and 7) has been very successful in analyzing the critical
exponents of lower-dimensional models. Great advances
in computational power have now made calculations for
three-dimensional systems with continuous symmetries
feasible, and it is important to see how well the finite-size
scaling method works in these cases.

Here, we report the first results of MC finite-size scal-
ing and PRG analysis as applied to the three-dimensional
XY model. We have carried out MC simulations on cu-
bic lattices of size ranging from 4 to 16 . An over-
relaxation scheme is implemented to reduce critical
slowdown near T, . Data are analyzed to obtain the criti-
cal temperature T, and the critical exponents for the or-
der parameter M —t~, helicity modulus f-t, and corre-
lation length g-t . We obtain results which are in
good agreement with those determined by previous
methods. ' '

II. MONTE CARLO CALCULATIONS

The three-dimensional classical XY model is given by
the Hamiltonian

scribed later. 9 The average energy per site (u ), the heli-
city modulus r, the "order parameter"

~
M ~, and the

specific heat C were calculated as functions of tempera-
ture T and size L,. The "order parameter" we take to be
the magnetization squared, and it is given by

The helicity modulus in direction p, is determined by the
relation'

where p, =x, y and z are the bond directions, and e;. is
the unit vector connecting nearest-neighboring sites i and
j. The Boltzmann's constant k~ has been set to unity.
The specific heat is calculated using the usual
fluctuation-dissipation relation.

As critical slowing down is a major factor affecting the
accuracy of MC data near T„we have used in our simu-
lations the standard Metropolis scheme supplemented by
the over-relaxation method. " The over-relaxation
method, which has been used in simulations of gauge
theories" and spin systems, ' has been demonstrated to
be quite efficient in reducing critical slowing down. Its
implementation for the XYmodel is very simple. At each
over-relaxation step, one simply performs the following
transformation:

(4)

where N is defined as

where 0, is the angle of the planar spin at site i of a cubic
lattice, and the summation is restricted to all pairs of
nearest-neighbor sites. We have simulated the Hamil-
tonian (1) with periodic boundary conditions on
L, XI.XI. cubic lattices using a MC scheme to be de-

and the summation is over all nearest-neighbors of the
site i. This transformation maps the system from one
point in its phase space to another point with exactly the
same energy. As these points are separated by a finite
distance in phase space, this over-relaxation can prevent
the system from getting stuck in a particular local
minimum. In our test runs, the particular combination of
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over-relaxation and Metropolis schemes reduced the
decorrelation time by a factor of 4 for small lattice sizes.
It is expected to be more effective for large lattice sizes.

We have simulated the Hamiltonian (l) on lattices of
size 1.=4, 6, 8, 10, 12, 14, and 16. Results for helicity
modulus Y, order parameter ~M~, and specific heat C,
are shown in Figs. 1 —3, respectively. For temperatures
between 2.15J and 2.25J the data shown in Figs. 1 —3 are
results averaged over three to four independent runs,
while only one run is used in the calculations for temper-
atures below 2.15J. Within each independent run, the
update of spins is done in combination of eight over-
relaxation passes followed by two Metropolis passes.
This particular combination of ten passes we refer to as
one combined MC pass. The first 500 combined MC
passes in each independent run at every temperature were
dropped to equilibrate the system. The next 2000 to 3500
combined MC passes were used in the calculations of r,
~M~, and C. Since the system is isotropic, the helicity
modulus r, along the x, y, and z directions should be
equal. The helicity moduli along these three directions
have been averaged to achieve better statistics. Statistical
errors for data (shown as error bars in Figs. 5 and 6) are
estimated by standard block averaging. Simulations were
carried out on an Alliant FX/8. A typical run at a fixed
temperature for I. = 10 took 0.9 CPU hours.

III. ANALYSIS OF DATA

We first use PRG analysis to analyze our MC data.
The critical exponent u is defined as Y- ~T T, ~" as T—
approaches T, from below. P and v are the critical ex-
ponents for magnetization and correlation length as usu-
al. From the finite-size scaling theory, one can show that
Y and

~
M

~
scale for large L as
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FIG. 2. The temperature dependence of the order parameter
~M~ for different lattice sizes L. The inset shows the data near
T, on a finer scale.

Y(L, T)=L ' 'H(L' 5)

iM(L, T)i =L P '4(L' "b,),
where

and H and N are scaling functions. Let us take the helici-
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FIG. 1. The temperature dependence of helicity modulus r
for different lattice sizes L. The inset shows the data near T, on
a finer scale.

FIG. 3. The temperature dependence of specific heat C for
different sizes L. It shows the existence of peak in the specific
heat, with weak dependence on size L,.
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ty modulus as an example to see how to obtain T, and
U/v using PRG analysis. Following Barber, we use data
from two di6'erent sizes, L, and I.', to construct the quan-
tities
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FIG. 4. Plot of the PRG ratio function Y(L, T)/Y(L', T) vs

temperature T for L'/L= —,, —,2, and —,6. The intersection of
curves falls at the point {T„(L/L')" / ) and enable estimation of
T, =2.197 and U/v=1. 0.

P~(L, L', T) =Y(L, T)/Y(L', T) .

From the finite-size scaling form Eq. (6), we know that
P~=(L/L') " when T=T, . So, two curves of
Pr(L, L', T) versus T for different L and L', but fixed ra-
tio of L/L', should intersect at [T„(L/L') '~ j.

In Fig. 4, the temperature dependences of Pz(L, L', T)
for I./I. '=

—,', —", , and —", are shown. These three curves
intersect at a single point indeed. From Fig. 4, we can es-
timate T, =2. 197 and U/v=1. 00. This result for T, is in
reasonable agreement with that obtained by other
methods and the previous MC simulation. The result of
U /v=1. 00 is nothing else but confirmation of the Joseph-
son scaling law U/v=d —2 for the three-dimensional
case. '

Since this phenomenological renormalization method
can yield only the ratio of critical exponents to the corre-
lation length exponent v, we need another method to
determine v. We follow the analysis of Nightingale and
Blote and fit our MC data to the first-order expansion
form of the scaling function to determine v. Since v =v,
we have

YL =Ho+H, L' (K —K, )+O(L '(K K) )—
where K—= 1/T. This is a four-parameter fitting. We
have used the Levenberg-Marquart method' to perform
the g fit. Our results are T, =2.201+0.003, and
v=0. 68+0.02. The result of this fitting of the helicity
modulus to the MC data is shown in Fig. 5.
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FIG. 5. The finite-size scaling behavior of the helicity
modulus Y. Symbols with error bars represent the MC simula-
tion results. The solid lines represent the results of fitting to Eq.
(9) using data from size L =10—16. v=0. 68 is used in making
horizontal axis of the plot.

IM(L, K)l'=L 'i"[e +e I-""(K—K )

+O(L ~ (K —K, ) )] . (10)

To check that we have reached the asymptotic large I.
limit required by scaling, fits were carried out using data
for only I- =L,m;„—16. The lower value I.m;„was in-
creased until no changes in the fitted parameters were ob-
served with further increases in I. ;„. The curves shown
in Fig. 5, and the results already cited, come from a fit to
the data for L, =10—16. We have also performed fits to
the scaling function expanded to quadratic order (requir-
ing one additional fitting parameter), and have observed
no change in our results. The errors we cite are estimat-
ed as follows. First, many sets of "fictitious" data are
generated by adding Gaussian distributed noise to the
original MC data. The width of each Gaussian distribu-
tion is set to be the standard deviation of the correspond-
ing original MC data point. These fictitious data are then
fitted to Eq. (9). The fluctuation in the results of each
fitting parameter is chosen to be the estimated error.

The value of T, found with this method is in agree-
ment with the one we obtained from the PRG analysis of
Fig. 4. It is also in good agreement with the high-
temperature series expansion' result T, =2.203+0.006
and the previous MC simulation result T, =2.208
+0.005. The value of v is also in good agreement with
that determined by series expansions, v=0. 675+0.015
(Ref. 1) and v=0. 669+0.022.

We performed a similar y fitting of our MC data for
the order parameter ~M~ to the first-order expansion
form of its scaling function. Expanding the scaling func-
tion N on the right-hand side of Eq. (7), we have
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o T = 8.15
helicity modulus data. Our result for P agrees well with
those found in the series expansions, P=0.367+0.02
(Ref. 1) and P=0.3455+0.0020.

While in the middle of this work, we learned of similar
calculations for the three-dimensional (3D) XI'model be-
ing carried out by Nightingale and Blote, ' using the
transfer matrix method. Their resu1ts are consistent with
ours, but they report greater accuracy in T, .

IV. CONCLUSIONS
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FIG. 6. The finize-size scaling behavior of the order parame-
ter ~M~ . Symbols with error bars represent the MC simulation
results. The solid lines represent the results of fitting to Eq. (10)
using data from size L =10—16. v=0. 67 and P=0.36 are used
in making the axes of the plot.

We have carried out Monte Carlo simulations for the
three-dimensional XY model on cubic lattices. The
finite-size scaling and phenomenological renormalization
group approaches have been used to analyze the data and
extract values for critical temperature T, and critical ex-
ponents v, f3, and U. Good agreement with series-
expansion results have been obtained. Our simulations
demonstrate that it is feasible to apply these methods to
three-dimensional systems with a continuous symmetry,
and get reliable results for the critical behavior, using lat-
tice sizes within current computational capability.

Note added in proof: In a recent work, ' the combina-
tion P/(1+v) has been computed by a scaling analysis of
Monte Carlo simulations of a model with a spatially vary-
ing coupling.

This is a five-parameter fitting. The ratio 2P/v, instead
of P itself, is chosen as an independent fitting parameter.
With the same fitting procedure as used for Y, we ob-
tained P=0.36+0.01, v= 0.67+0.02, and T, =2.206
+0.003. The result of this fitting for the order parameter
to the MC data is shown in Fig. 6. The values of v and
T, agree very well with those obtained in the fitting of
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