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Ising-like interaction parameters are calculated for alloys of Al with the 3d and 4d transition met-
als. The interactions are obtained by matching to calculated total energies for supercell compounds
on an underlying fcc lattice. The dependence of the parameters on the transition-metal d-band
filling displays pronounced oscillations, which are interpreted in terms of the width and shape of the
electronic density of states. The interactions are used to provide the first unified ab initio descrip-
tion of a wide variety of phenomena in these alloys. Results for heats of solid solution in transition-
metal-rich alloys are in good agreement with experimental values for fcc and hcp phases. Observed
chemical trends in solid solubilities, including the values in Al-Mn, are confirmed an.d explained.
Effective pair interactions for describing short-range order are in fairly good agreement with empiri-
cal values obtained from short-range-order data and other observations.

I. INTRODUCTION

Alloys of Al with transition metals have for decades re-
ceived considerable attention in the materials-science
community. The primary motivation for this has been
the desirable technological properties' of many of these
alloys, including a combination of light weight and high
strength if the alloy is appropriately treated. The Al-Cu,
Al-Ti, and Al-Ni systems are prime examples of these
properties. More recently, the discovery of quasicrystal-
line phases of Al —transition-metal alloys has attracted in-
terest from an even broader audience. To explain the re-
markable properties of these alloys, it is necessary to per-
form calculations at an atomistic level, which often re-
quire a description of the bonding energetics in terms of
interatomic potentials, or Ising-like interaction parame-
ters. The purpose of this paper is to present the values of
such interaction parameters, to explain the origin of their
variation with the number of transition-metal d electrons,
and to apply them to physical properties of
Al —transition-metal alloys.

It is difficult to develop simple, accurate descriptions of
bonding energetics in Al —transition-metal alloys, because
Al is free-electron-like, but the d orbitals which dominate
transition-metal bonding are fairly localized. Thus, nei-
ther free-electron perturbation theory nor tight-binding
analysis can by itself treat these systems. Hybrid pertur-
bative approaches have been developed for incorporat-
ing d shells in nearly-free-electron systems, but these have
not, to our knowledge, been applied to alloys. However,
structural stability in Al-rich Al —transition-metal alloys
has been studied with the effective-medium theory
(EMT). This approach begins with the energy associ-
ated with embedding a single transition-metal atom in a
uniform electron gas. Radial corrections are then ob-
tained which take into acc'ount the discrete nature of the
Al lattice. This method has produced structural energy
differences which are consistent with some of the ob-
served structures. The results were explained essentially

on the basis of environmentally dependent atomic-size
effects. Unfortunately, the EMT provides no way for us
to probe the electronic origins of the various energy
differences, and does not in its present form include angu-
lar forces, which are very important in transition-metal-
rich alloys.

Several quantitative band-theoretic total-energy calcu-
lations have also been performed for ordered
Al —transition-metal compounds and closely related sys-
tems. A study of the ordered compounds in the Al-Ni
system has been made with the augmented-spherical-
wave (ASW) method, supplementing an earlier calcula-
tion for NiAI. It was found that the d-band energy ac-
counts for most of the heat of formation of the Ni3Al and
NiA1 compounds, but that the conduction electrons con-
tribute significantly in A13Ni. A subsequent systematic
study of the bonding interactions between first-row s-p
elements and transition metals led to a model emphasiz-
ing two effects. The first is the "expansion energy" asso-
ciated with inserting the s-p atom into the metal lattice,
which is always positive and has a maximum as a func-
tion of the number of d electrons at close to a half-filled d
band. The second is the covalent-bonding energy, which
has its largest (negative) magnitude when the sp-d com-
plex is close to half-filled and the energy separation be-
tween the s-p valence levels and the d levels is relatively
small. Because Al is considerably larger than the first-
row atoms, this model cannot be directly applied to the
Al —transition-metal systems, although we shall see that a
modified version of it explains our results quite well. A
few calculations' '" have treated more subtle problems,
such as the relative stabilities of the L 12 and Dozz struc-
tures in Ni3A1 and A13Ti. In addition, cluster interac-
tions have been obtained' ' for the Al-Ni system via in-
put from quantum-mechanical supercell total-energy cal-
culations, and mean-field methods based on multiple-
scattering theory have been used" to calculate pair and
triplet Ising-type interactions in the Al-Ni and Al-Ti sys-
tems. In all cases, strong ordering tendencies were ob-
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served, with the Al-Ni interactions very short ranged and
the Al-Ti interactions somewhat longer ranged.

However, no global picture of the bonding properties
of Al —transition-metal alloys has yet emerged. We at-
tempt to supply such a picture by performing a systemat-
ic series of calculations of nearest-neighbor Ising-type
cluster interactions for ordering properties of these alloys
on a parent fcc lattice. We treat alloys of Al with all of
the 3d and 4d transition metals; we do not treat the Sd
row because of the complications of relativistic effects.
The interactions, which are calculated through the
tetrahedron level, are obtained by matching to the results
of supercell-compound total-energy calculations on a
parent fcc lattice, as in Ref. 12. Our results extend the
previous calculations on ordered compounds both in
their scope and in our emphasis on interaction parame-
ters, which can describe a variety of physical properties.
They differ from the muffin-tin-based multiple-scattering
theory results in the method of obtaining the interactions;
our reasons for using the matching method are discussed
in Sec. II. The use of the fcc underlying lattice is, of
course, somewhat restrictive, since many of the alloys
have only a restricted range of fcc solubility. However,
the use of a single underlying lattice shows in the clearest
fashion the dependence of the values of the interaction
parameters on the transition-metal d-electron count.
Furthermore, we find that the dominant factors deter-
mining the interaction parameters are simple enough to
be independent of the lattice. In fact, results' for the
Ni-Al system have revealed little difference between fcc
and bcc interaction parameters, except for the expected
variation with bond length. Thus, a considerable amount
of insight can be gained from the fcc calculations. Furth-
ermore, there is always a small but finite region of fcc
solid solution at the Al end of the phase diagram, and our
results are essential for in determi'ning the extent of this
region.

We find that the dependence of the pair interactions on
the transition-meta1 d count can be understood in a sim-
ple fashion in terms of the width and shape of the density
of states induced by the transition-metal d orbitals. The
contribution from the d-band width leads to values of the
pair interaction that favor ordering in all cases. The con-
tribution from the d-band shape enhances the ordering
tendency for early and late transition metals, but inhibits
it for transition metals close to the center of the row.
This picture is quite similar to that developed in Ref. 9
for boron —transition-metal compounds except that the
"expansion energy" of Ref. 9 is replaced by one contribu-
tion to our bandwidth term. We associate the bandwidth
and band-shape contributions to the pair interactions
with the second and fourth moments, respectively, of a
model density of states, and find that the resulting densi-
ties of states are quite similar to those that emerge from
our calculations.

In addition to providing insight into the basic physics
of the bonding processes, the cluster interactions can be
used to calculate several directly observable properties.
We present results for heats of solution, solid solubilities,
and short-range order. For most of the systems treated,
these are the first such results that have been presented.

Heats of solution for the Ni-Al system have previously
been obtained' using essentially the method we use here.
A strong asymmetry was found between the Al and Ni
ends of the phase diagram, consistent with the present re-
sults for several other systems. In addition, heats of solu-
tion, phase diagrams, and short-range-order parameters
have been obtained" ' via the mean-field multiple-
scattering techniques mentioned above, for a few systems
having small atomic-size mismatches. The results
presented here constitute the first systematic study for
Al —transition-metal alloys. The heat of solution for
small concentrations is obtained as a linear combination
of the cluster interactions, with corrections for long-
ranged interactions, and atomic-size and lattice-
relaxation effects. For all of the systems for which data
are available, except for Al-Ag, we find rapid conver-
gence of the cluster expansion and good agreement with
experiment; for Al-Ag the d-band effects and thus the
heat of solution are small, and the nearest-neighbor ap-
proximation is a poor starting point. We evaluate a sim-

ple expression for the solid solubility (in low-solubility
systems) in terms of the calculated heat of solution and
the heat of formation of the competing ordered com-
pound. Our results confirm the very sma11 solubilities
universally observed at the Al end of the phase diagram,
as well as the higher solubilities at the transition-metal
end. The effective pair interactions we obtain for short-
range-order properties are strongly concentration depen-
dent and, in several cases, change sign with varying con-
centration. Instead of calculating short-range-order
properties directly, we compare our results to values of
effective pair interactions obtained from measured short-
range-order parameters via the "inverse Monte Carlo"
method' and from analysis of phase diagrams. The mag-
nitude and concentration dependence of our calculated
interaction parameters are consistent with the "mea-
sured" interactions, and with the structures of some
metastable fcc solid-solution phases.

The organization of the paper is as follows. In Sec. II,
we briefly outline the methods used to obtain the cluster
interactions and the input supercell total energies. In
Sec. III we present the calculated cluster interactions and
analyze their independence on the transition-metal d elec-
tron count. In Sec. IV, we present results for heats of
solution, solubilities, and short-range order, and a com-
parison with available experimental results. In Sec. V we
summarize our conclusions and investigate possibilities
for improvement on our model.

II. METHOD

To obtain the cluster interactions, we employ the
matching method described in Ref. 17. Only the case of
an underlying fcc lattice is treated. One assumes that the
zero-temperature bonding energy (per atom) of an or-
dered or disordered collection of A and B atoms can be
approximated by an expression of the form

Eb = V+ V& ( o; ) + Vz ( o;o ~
)

+ V3 (crjcrjcrk ) + V4(crjcr ' cr/k)cT
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Here, cr; is a spinlike variable which is 1 ( —1) for an A

(8) atom, and the averages are taken over all sites,
nearest-neighbor pairs, nearest-neighbor triangles, and
nearest-neighbor tetrahedra. We have no a priori reason
for the neglect of other coupling terms; the primary
justification is the rapid convergence obtained already at
this level, which will be demonstrated in Sec. III. The V;
are the cluster-interaction parameters. These are defined
explicitly in Ref. 18 in terms of an inner product involv-
ing the alloy configurational energy and orthogonal poly-
nomials containing the spin variables on various alloy
sites. Since the exact evaluation of such expressions is
computationally prohibitive, we instead choose a simpler
approach in which the V„are obtained approximately
from a relatively small number of quantum-mechanical
total-energy calculations.

One first calculates the band-theoretic total energies
per atom, E~ (1 ~ m ~ 5), of five ordered structures hav-
ing the fcc parent structure: pure A and pure B, A3B
and AB3 in the Cu3Au structure, and AB in the CuAu
structure (with ideal c/a ratio). By forcing the total ener-
gies obtained from the V„ to agree with the band-
theoretic total energies, one obtains the V„uniquely as
functions of the E

5

V„(a)= g g„' E (a) .
m=1

where g„ is a coefficient matrix given in Ref. 17.
We employ two treatments of lattice-relaxation effects.
(1) "Frozen lattice. " The properties of an alloy at a

concentration determined by (cr ) are calculated for a
perfect fcc lattice having the lattice constant correspond-
ing to this concentration. The input total energies E
are evaluated at this lattice constant. No local relaxation
effects are included.

(2) "Locally relaxed. " It is now assumed that small
clusters of atoms in the alloy can have their preferred lat-
tice constant. Thus the input total energies E are evalu-
ated at their zero-pressure lattice constants, rather than
the average alloy lattice constant. This procedure tends
to reduce the ordering tendency (cf. Sec. IV C), since the
energy penalty paid for separating the alloy into its con-
stituents is reduced by allowing these constituents to have
their preferred lattice constants.

The "locally relaxed" treatment is probably more accu-
rate than the "frozen-lattice" treatment; the latter gives
too high an energy for a random alloy, since the neglect-
ed local lattice relaxations provide a stabilizing contribu-
tion to this energy. Thus our results for the heats of solu-
tion, solid solubilities, and short-range order include the
local relaxation effects. However, in analyzing the elec-
tronic contributions we will find it convenient to tem-
porarily ignore these effects, using the "frozen-lattice"
treatment. In addition, in calculating the heats of solu-
tion we isolate the relaxation effects by first performing
frozen-lattice calculations and subsequently evaluating
the relaxation energy as the difference between the locally
relaxed estimate and the frozen-lattice estimate.

The supercell total energies are calculated using the
augumented-spherical-wave (ASW) method. We employ

an exchange-correlation functional of the Hedin-
Lundqvist form. ' We neglect magnetic and relativistic
effects. For Al we use a basis set of 3s, 3p, and 3d ASW's,
for the 3d transition metals the 4s, 4p, and 3d ASW's, and
for the 4d transition metals the 5s, 5p, and 4d ASW's.
Equal ASW sphere radii are used for each of the constitu-
ents in the compound calculations. This choice of sphere
radii is based on the optimal partitioning of space into
overlapping spheres. The smallness of the overlap
volume of the spheres is a measure of the quality of the
partitioning. The choice of equal sphere radii gives an
overlap volume of only 7.9% of the total volume, which
is a local minimum as a function of the sphere radii. One
could envisage choosing the sphere radii to minimize the
calculated total energy. Provided that the energy func-
tional were correct, this would provide an optimal charge
density and energy. However, the energy functional itself
is approximate, since it is based on a sphericalized charge
density. The error in the functional then also depends on
the sphere radii. Therefore there is no guarantee that the
sphere radii which minimize the calculated total energy
result is an optimal charge density or total energy. We
consider the geometric criterion of minimizing the over-
lap volume to be more reliable.

Our main reason for using the matching approach
rather than the mean-field multiple-scattering
methods"' is that many of the Al —transition-metal al-
loys have large atomic-size mismatches, which renders
the mean-field methods difficult to apply. While the
multiple-scattering methods can, in principle, treat arbi-
trary atomic-size ratios, their implementations have used
muffin-tin potentials with equal sphere radii. In systems
with large atomic-size mismatches, this leads to substan-
tial charges inside the spheres. The effects of the interac-
tion of these charges are naturally included in band-
structure calculations for periodic systems, but have not
yet been included in their entirety in calculations for ran-
dom systems. Additional justification for the use of the
matching method comes from the expectation that the in-
teractions in Al —transition-metal alloys should be short
ranged, because of the large electron density in Al and
the damping effects due to the large difference in scatter-
ing strengths between the two constituents. This expecta-
tion is confirmed by our estimates of long-ranged contri-
butions to the heats of solution (cf. Sec. IV A).

III. CHEMICAL TRENDS IN VALUES
OF INTERACTION PARAMETERS

Our intent in this section is to analyze in a simple
fashion the dependence of the interaction parameters on
the transition-metal d-electron count and the alloy lattice
constant. Figure 1 shows the calculated values of V2 for
alloys of Al with 3d and 4d transition metals; positive
values of Vz correspond to ordering tendencies, and, in
most cases, to exothermic heats of formation. Results for
both the frozen-lattice and locally relaxed treatments are
shown. Although several of the 3d transition metals have
large magnetization energies, we include the paramagnet-
ic results here in order to make the dependence on the
transition-metal d count as transparent as possible. We
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CuAu structure for simplicity, and evaluate AH per
Al —transition-metal pair. If the amount of electron
transfer from the Al sites to the transition-metal (T) sites
is denoted by Aq the part of AH that is linear in Aq is

gH( 1 i —gq(&T «)

Here, EI; and cz" are the Fermi levels for the transition
metal and Al, in the absence of surface dipole efFects.
There are two terms in AH * that are quadratic in Aq.
The first results from the constraint of single occupancy
of the one-electron states. If Aq) 0, then the electrons
that move to the transition-metal sites must be p1aced at
progressively higher energies, and are taken from lower
energies on the Al sites. The contribution from this e6'ect
is readily seen to be

hH' "=—'bq (p '+p, '),

Y Nb Tc Rh
Zr Mo Ru

Ag
PcI

where pz- and p~& are the transition-metal and Al Fermi-
level densities of states per atom. The second quadratic
term results from the increase in electrostatic energy due
to charge transfer. It is given by

FIG. 1. Pair interactions for alloys of Al with {a) 3d and {b)
4d transition metals. Curves labeled a~ and aA& are obtained us-

ing the frozen-lattice treatment, at transition-metal and Al lat-
tice constants, respectively. Dashed curves are obtained by use

of the loca11y relaxed treatment.

note that for all the transition metals with partly filled d
shells, Vz is large and positive. The sign of Vz implies
that, if forced to reside on a hypothetical fcc lattice, all of
these alloys would display compound formation in same
temperature and concentration range, since compound
formation reduces (o., o ) [cf. Eq. (1)]. The magnitude,
in turn, implies that many of these compounds would
remain ordered up to the melting temperature. For ex-
ample, neglecting the higher-order interactions, the
order-disorder temperature for the CuAu phase is ap-
proximately 0.3 Vz/kz, which ranges from 600 to 2400 K
for the systems considered here; by comparison, the melt-
ing temperature of Al is 933 K and those of the partly-
fiHed-shell 3d and 4d transition metals range ' from 1795
to 2890 K. Since many Al —transition-metal-compounds
form on parent lattices other than the fcc lattice, the
above conclusions cannot be rigorously applied to these
compounds; nevertheless, the conclusions are suggestive
and are consistent with the observed phase diagrams, '

all of which display ordered compounds up to the melting
temperature (except for the Al-Tc and Al-Rh systems, for
which, to our knowledge, no reliable phase diagram has
been measured).

The large positive values of Vz suggest that changes in
the one-electron density of states are the dominant exo-
thermic contribution to Vz. The other likely major exo-
thermic contribution would result from ionic charge-
transfer effects. We have shown that the charge-transfer
(CT) contribution b,H is smaller than the one-electron
band contribution, using a crude quadratic model which
neglects changes in the density of states due to interac-
tions between the alloy constituents. We consider the

&H' ' =bq (Uz. +U«) a(bq) e—/R,
where Uz and U~& are the interatomic Coulomb integrals
for states at the Fermi level, a is the Madelung constant,
and R is the Al —transition-metal spacing. Minimizing
the total hH with respect to Aq, one obtains

bq' '"'=(E~' —ez)(pz '+p~L+2Uz +2U~, 2ae /It! )—

gHcT gH(1)+ gH(&), ~+ gH(&), b

] g min( T &Al)
2

A rough upper bound on lb, H l
is obtained as follows.

Typical transition-metal bandwidths are 5 eV or greater,
so that we choose p~=2 eV '; larger bandwidths will re-
sult in a smaller value of lhH l. For p«, we take the
free-electron value of 0.4 eV '. The Coulomb integrals
are approximately obtained from charge densities

p =0 ' uniformly distributed over the atomic spheres, so
that

Uz. = U«= d r d r'lr —r'I1

=—,'e'/&ws

where 0 is the volume of the atomic sphere, R ws is the
radius of the atomic sphere (or the Wigner-Seitz radius),
and the integrals are carried out only over the atomic
sphere. The use of realistically localized d charge densi-
ties for the transition-metal sites would likely increase Uz
and thus reduce

l
b,H l. The Madelung constant for the

CuAu structure, which we obtain as a specia1 case of the
ASW structure constants, is 1.59. At the Al lattice con-
stant of 4.05 A, we have R =2.86 A and R~s =1.58 A,
so that
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(pT '+p~&'+2UT+2U~& —2ae /R )=(0.5 eV+2. 5 eV+10.9 eV+10.9 eV —16.0 eV)=8. 8 eV .

The Fermi levels cz and cz' cannot be measured directly,
since measured work functions include surface dipole
effects. However, the Fermi levels are closely related to
the electronegativity X, and a relation
ez= —2.27X+(const) has been obtained, for ez given
in eV. The electronegativity differences between Al and
the transition metals considered here do not exceed 0.7,
so that we expect ~s~ —e~'~ ~ 1.6 eV. We then have
~b, q~ ~0. 18 and ~b,H

~

~0. 14 eV. This results in a con-
tribution of magnitude 0.05 eV to V2, which is much
smaller than the values shown in Fig. 1. Thus it is likely
that electronic band effects are the major exothermic con-
tribution to V2.

The values of Vz for Ag and, to a lesser extent, Cu, are
significantly smaller than for the partly-filled-shell sys-
tems. This difference is reAected in the experimental
heats of formation, to be described in Sec. IV. We be-
lieve that the smaller magnitude of Vz is due to the al-
most complete filling of the d shell, which renders it to
some extent inert (although s-d —hybridization effects
contribute significantly to the cohesive energies of both of
these metals). Since the d bands in Ag lie farther below
the Fermi energy c+ than those in Cu, this contention is
supported by the smaller value of V2 in Ag relative to
that in Cu.

In the systems with the largest atomic-size mismatches,
the lattice-constant effects on V2 can also be quite large.
V2 increases with decreasing lattice constant. In Al-Co
and Al-Ni, the frozen-lattice values at the Al lattice con-
stant are nearly 50% smaller than at the shorter
transition-metal lattice constant. The early 4d transition
metals have larger lattice constants than Al (when forced
to reside on a fcc lattice); in these cases Vz is larger at the
Al end. Phase-diagram calculations' for Al-Ni, using
frozen-lattice interactions, show that large asymmetries
in the phase diagram can result from the lattice-constant
dependence of the interactions. The locally relaxed
values in Fig. 1 are typically lower than the frozen lattice
values for the shorter lattice constant; in some of the Al
3d transition-metal alloys they are significantly lower
than the frozen-lattice values at both the Al and
transition-metal lattice constants.

A great deal about the nature of the bonding in this
class of alloys can be learned by examination of the
dependence of V2 on the number of d electrons, X&, of
the transition-metal component. To focus attention on
the systematic trends in the electronic band energy, we
consider only the values at the Al lattice constant. The
calculated values of V2 for both the 3d and 4d rows
display a minimum at a roughly half-filled d band, and, as
mentioned above, drop off when the d band becomes
nearly filled or nearly empty. Two maxima are seen, be-
tween the half-filled-band case and the filled- and empty-
band cases. An interpretation of these effects emphasiz-
ing the width and shape of the d-band density of states
(DOS) is suggested both by the large energy scale of Vz

and its strong sensitivity to the d-band count, particularly
its reduced magnitude for nearly filled or nearly empty
bands. The width and shape of the density of states are
conveniently discussed using model densities of states
which are nonzero only over a finite energy interval. The
gross properties of a model density of states p& are de-
scribed by its low-order moments:

p, = E'p~ EdE.
(These cannot be calculated directly from the full band-
theoretic densities of states. The latter decay too slowly
at large energies for the moment integrals to be finite. )

The second moment p2 is associated with the bandwidth.
An increase in pz is expected to lower the bonding energy
EI, (increase the stability) of the d-band electrons because
the energies of the occupied bonding states are lowered.
The form of the dependence of this energy change
BE&/Bp2 on the d-band filling has been evaluated in
several model calculations, which obtain a nearly
parabolic shape. In Fig. 2(a) we show typical results ob-
tained using a model DOS of the "maximum-entropy"
form. ' The maximum occurs for a half-filled band and
BE& /Bpz vanishes for empty or filled bands.

Once p2 is specified, the higher-order moments de-
scribe the shape of the band. Of particular interest to us
is p4, the small asymmetry in V2 versus band filling sug-
gests that p3 is less important. For a given value of p2, a
small value of p4 typically corresponds to a density of
states having two well-defined bonding and antibonding
peaks, separated by a dip or quasigap (cf. Fig. 3). Very
little of the weight in the band resides outside the bond-
ing and antibonding peaks. On the other hand, a density
of states with a large p4 is dominated by a central peak
with large contributions to p4 from the tails. Thus a
band which is nearly empty will prefer a large p4, since
all of the electrons can be accommodated in the tails of
the density of states; a nearly filled band will also prefer a
large p& for similar reasons. On the other hand, a half-
filled band will prefer a small p& since then the Fermi lev-
el cF can reside in the quasigap, which, in general, has a
stabilizing effect. As with p2, a number of model calcula-
tions have suggested a shape for BE&/Bp4, similar to that
shown in Fig. 2(b), which is again obtained from the
"maximum-entropy" model. ' While the exact shape
of BE&/Bp4 depends on the type of mode1 density of
states used, the presence of two zeros in this function is
rigorously necessary for any density of states.

Using these observations, it is possible to "Fourier ana-
lyze" the Xz dependence of Vz (cf. Fig. 1) by separating it
into contributions from the various moments of p&. The
uniformly positive values of V2 (recall that positive V2
corresponds to a negative heat of mixing) would suggest
an increase in p2 upon mixing, while the peaks above and
below the half-filled band correspond to an increase in p4.
As shown in Fig. 2(c), the Xz dependence observed in
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Fig. 1 can, in fact, be reasonably well reproduced by a
sum of contributions from pz and p4. (There is a sign
difference between these figures because positive values of
Vz correspond to negative heats of formation. ) These ob-
servations would suggest that p& is broadened in the Al
environment relative to the pure transition metals, and
that more of its weight should be contained in its tails.
This contention is supported by comparison of the model
DOS with the calculated ones for the Al-Ni system
shown in Fig. 3. In Fig. 3(b) we have subtracted off the
free-electron background DOS in order to focus on the
DOS pz induced by the d orbitals. We see that the p&
plots for A13Ni and Ni compare favorably with the solid
and dashed curves in Fig. 3(a), respectively. The DOS
shown by the solid curve has a value of p2 larger by 40%
than that of the dashed curve, and a value of p4 50%
larger [when scaled by (p2) ]. These values are sufficient
to roughly account for the values of V2 seen in Fig. 1.

Our observations regarding the width of the DOS are
consistent with the fact that Al reduces magnetic mo-
ments on transition-metal ions, which suggests a larger

d-band width in the Al matrix. Both free-electron and
tight-binding analysis would also suggest larger values of
p4 in the Al environment, corresponding to significant
tailing of the band. If a d-electron impurity is embedded
in a free-electron gas, one obtains (at least in the weak-
coupling limit) a Lorentzian shape for pz. This has a
much larger fraction of its weight in the tails than in pure
transition metals, in which the d-band density of states is
closer to rectangular in shape. On the other hand, in
tight-binding analyses pure transition metals have fairly
small values of p4 [when scaled by (p2) ] because of phase
cancellation effects resulting from the rapid angular
dependence of the d orbitals. For example, typical
values of the dimensionless fourth moment
y&=p4up/(p2) for d-band models of transition metals
are roughly 2, while corresponding s-band models (which
do not exhibit phase-cancellation effects) have 3 ~ y4 ~ 4.
We would expect p orbitals to display a behavior inter-
mediate between s and d orbitals. Thus, since the elec-
tronic structure of Al is dominated by s and p orbitals, y4
for a d orbital embedded in Al should be larger than in a
pure transition metal.

(a)

Al&Ni

I

)I
J )I
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I

( I
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I I I
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FIG. 2. Dependence of bonding energy on (a) second and (b)
fourth moments of electronic density of states, in a maximum-
entropy reconstruction (Ref. 27). Panel (c) shows a linear com-
bination with coefticients chosen to simulate behavior of V2 in
Fig. 1.

FIG. 3. (a) Model densities of states generated by maximum-
entropy method (Ref. 27). Solid curve has larger values of p2
(by 40%) and p~o/(p2) (by 50%%uo) than dashed curve. (b) Den-
sity of states induced by d orbitals, per Ni atom, in (fcc) Al, Ni.
Dashed curves indicates induced d density of states in pure Ni;
cz' is Fermi level for pure Ni.
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The present description of the bonding energetics, in
its focus on the d band and its interaction with the Al s-p
complex, is similar to that of Ref. 9. However, because
we consider substitutional alloys, in which the
transition-metal —transition-metal bond number, rather
than bond length, changes, we cannot directly transfer
the "expansion-energy" contribution from that analysis.
Nevertheless, the present model may be thought of in
terms of two steps, in which transition-metal —transition-
metal bonds are first broken and subsequently replaced
by transition-metal —Al bonds. The bond-breaking part
of this process is a repulsive term closely analogous to the
"expansion energy" of Ref. 9 in the sense that the latter
comes from weakened, rather than broken, bonds. In
fact, their Xd dependences are both roughly parabolic.

Figure 4 shows the calculated values of V3 versus d-
band filling. The overall energy scale of V3 is roughly 5

times smaller than that of V2, indicating fairly rapid con-
vergence of the cluster expansion. However, the values
of V3 seen here are sufficient to significantly perturb the
phase diagram. '

V3 oscillates quite rapidly with the d-
band filling, having three zeros inside the d band. By em-
ploying arguments similar to those applied above to V2,
one can show that this behavior is consistent with a large
contribution from p~. The sign of this contribution is
such that systems having large values of (o;o.~ok ) have
low values of p5. The dependence of V3 on the lattice
constant is even stronger than that of V2,' for several of

the transition metals the frozen-lattice values of V3

change by more than a factor of 2 between the Al and
transition-metal lattice constants. The locally relaxed
values have roughly the same band-filling dependence as
the frozen-lattice values.

For comparison, we include in Fig. 4 estimates of V3
obtained from the asymmetry of the calculated heats of
solution in the "Miedema" model. The Miedema
values are too small and do not display the oscillations
that we find. We believe that this is because the heat-of-
formation asymmetry in the Miedema model includes
only atomic-size effects. The present results indicate that
the electronic band contribution can significantly exceed
the atomic-size effects.

The values of the tetrahedron interaction V4 are, in
general, several times smaller than those of V3. The be-
havior of V4 exhibits quite rapid variations as a function
of Xd, but these are much less regular than those of Vz
and V3. We do not have a simple interpretation of this
behavior in terms of the moments of pd, such as that for
V, and V, .

IV. APPLICATIONS OF CLUSTER INTERACTIONS

In this section we use the values of the cluster interac-
tion calculated in the preceding section to calculate
several types of thermodynamic properties of
Al —transition-metal alloys. To our knowledge, these are
the first nonempirical calculations of these properties ex-
cept for the heat of solution, ' and the pair interactions"
for describing short-range order, in the Ni-Al system.

A. Heats of solution

0

—O. I—

We treat the limit of small concentration. Although
our final results include the local relaxation effects, we
find it convenient to isolate these effects by starting with
a term evaluated in the frozen-lattice approximation.
The following model for the heat of solution per solute
atom 60 is used:

Sc
NiFeCr

V Mn Co Cu
g~SS BRIINN+ g~LR+ gael+ g~rel (2)

0

O —O. l—

—0.2 —.

0 ~ O

Y Nb Tc Rh Ag
Zr Mo Ru Pd

The first two terms on the right-hand side of (2) are eval-
uated at the host lattice constant and denote contribu-
tions from the nearest-neighbor interactions Vo —V4 and
longer-ranged terms, respectively. The third term
denotes the elastic strain energy associated with
compressing the solute atom to the host lattice constant.
The last term contains an estimate of the contribution
due to local lattice relaxations. Since the correlation
functions in (1) are +1 in the pure-metal phases and
powers of ( o. ) in the random solid solution, we have

b.H = —4( V2+ ( cr ) V, +2 V4),

FIG. 4. Triplet interactions for alloys of Al with (a) 3d and
(b) 4d transition metals. Curves labeled a& and aA& are obtained
using the frozen-lattice treatment, at transition-metal and Al
lattice constants, respectively. Dashed curves are obtained by
use of the locally relaxed treatment. Squares in (b) denote
values from "Miedema" method (Ref. 30).

where (cr ) =1 ( —1) for a transition-metal (Al) host, and
the V„are evaluated at the host lattice constant with no
local relaxation effects included. The primary purpose of
the AH" term is to evaluate the error resulting from the
nearest-neighbor approximation. We approximate it by
calculating in two ways the heat of formation for an or-
dered supercell structure having solute atoms at one-
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eight of its sites, obtained by doubling the primitive fcc
unit cell in all directions. (This structure is not included
in the input database for the V„). We first obtain the heat
of formation per solute atom via a full quantum-
mechanical calculation using the same techniques that
were used to generate the E (cf. Sec. II). This quantity
is denoted AH8 . We define AH as the difference
bH8 —AH8, where bH8 is the estimate of the heat
of formation obtained by the nearest-neighbor parame-
ters. The elastic energy hH" is approximated as the en-
ergy difference per atom between a fcc lattice of solute
atoms at the host lattice parameter and the same lattice
at the solute lattice parameter; these energies are again
obtained by the quantum-mechanical techniques de-
scribed in Sec. II. To obtain the relaxation energy AH"',
we first estimate the nearest-neighbor contribution to the
heat of formation using the locally relaxed V„. AH"' is
then defined as the difference between this estimate and
that given by

Figure 5 shows results for the subset of the alloys for
which reliable heats of solution are available. Although
many transition metals dissolve considerable amounts of
Al, most have very low solubilities in Al; only for Ag is
heat-of-solution data available for the Al-rich phases.
The AH"' contribution is not shown explicitly because it
is too small to be seen on the scale of the figure
( ~hH"'~ ~ 0.05 eV in all cases shown). Ni and Pd display
the most exothermic values of AH at the transition-
metal-rich end, with the values for Ti and Cu being
roughly half as large. The values for Ag-Al solutions at
both ends of the phase diagram are considerably smaller
in magnitude, as expected from the small values of the in-
teraction parameters. The endothermic value of AH
at the Al-rich end, in particular, indicates that this sys-

I
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FIG. 5. Contribution to heat of solution b,II [cf. Eq. (2)],
for Al dissolved in Ti, Ni, Cu, Pd, Ag, and Ag dissolved in Al.
Arrows denote experimental values (Ref. 24).

tern is dominated by physical mechanisms considerably
different from those in the partly-filled-d-shell systems.
With the exception of the Ag-Al system, we have
~!b,H (( ~b,H !, which speaks favorably for the con-
vergence of the cluster expansion. In fact, the nearest-
neighbor results, without AH, agree as well with the
experimental results as those with hH" . The elastic en-
ergy AH" is also considerably smaller than AH for
most of the systems; the largest contribution is in Cu, in
which it is almost half of hH

The sum AH of these contributions matches the
chemical trends in the measured values very well, and
even fits the numerical values quite closely. This is some-
what surprising in the Ag-Al case, because the large mag-
nitude of AH" relative to AH N would suggest that the
cluster expansion converges slowly. There are a large
number of possible contributions to the discrepancy with
experiment, most of which we are not in a position to
evaluate. The local-density approximation (LDA) for ex-
change and correlation is well known to give significant
errors in cohesive energies, although the magnitude of
the error in the energy differences of interest here is not
clear. In the Ni-A1 solid-solution results, the neglect of
magnetic effects contributes to the overestimate of the
heat of solution. Approximate inclusion of the magnetic
effects, by using ferromagnetic pure Ni in the input su-
percell total energies, reduces the discrepancy by roughly
50%. Other possible reasons for discrepancies include
lattice-vibrational energies and temperature-dependent
lattice relaxations.

B. Solid solubilities

Since the numerical values of solid solubilities are ex-
tremely sensitive to small errors in the calculated thermo-
dynamic quantities, we express the results for this quanti-
ty in terms of an energy difference AE, defined by

AE =AH —AH" (4)

Here AH is the heat of solution per solute atom of the
low-concentration solid solution; b H"" is the heat of for-
mation (per solute atom) of the ordered phase which
competes with the solid solution to determine the solubil-
ity. In the limit of small solubility, one easily shows from
regular-solution theory that

—EE/k~ T
Cmax =e

where C „is the solid solubility. In obtaining this result
we have neglected the temperature dependence of AE and
the entropy of the ordered phase. The latter is very small
because of the large magnitude of the ordering energies.
However, since solubilities are typically evaluated at
around 700 K, the temperature dependence of hE is not
negligible. Our results can therefore be used only to ob-
tain chemical trends and rough magnitudes, rather than
precise predictions.

To evaluate 5E we have used the values of AH given
by Eq. {2). We can evaluate b,H" from our model only
for cases in which the competing ordered phase has the
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(a)
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(b)

Sc Ni
Cu
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Cu3AU structure. Of the systems we discuss here, this in-
cludes only A13Sc and Ni3A1. For other cases we have
taken AH" from experimental data, where available.

The results for the Al-rich and transition-metal-rich
ends of the phase diagrams are shown in Figs. 6(a) and
6(b), respectively. The experimental points in panel (a)
are obtained from the measured solubilities using Eq. (5).
We show data for all systems (1) for which b,H" has
been measured or which form the Cu3Au structure at
both ends of the phase diagram, (2) in which the transi-
tion metal has the fcc or hcp structure, and (3) in which
the magnetization energy is small ( (0.1 eV). The most
striking feature of the results for this case is the large
magnitude of AE when compared with typical tempera-
tures at which solubilities are measured (T=700 K); for
the systems shown in Fig. 6(a), we have
4Kb.E/ks T513, suggesting very small solubilities for
transition metals in Al. This expectation is confirmed by
the experimentally determined values of AE, which have
the same overall magnitude as the theoretical estimates.
Although the agreement between the theoretical and ex-
perimental points is not quantitative, the chemical trends
are well reproduced, with Ni having the largest value.
The observed discrepancies are undoubtedly caused in
part by the neglect of the temperature dependence of hE,
in addition to the various approximations made in calcu-
lating hH, and the experimental uncertainties in
AH" . For comparison we show in Fig. 6 the values that
are obtained by the frozen-lattice treatment, neglecting
local lattice relaxations. This raises the energy of the
solid solution and thus increases AE. Only in the case of

Ni in Al, in which AE increases by 0.4 eV, does neglect of
the local relaxations have a large effect.

The values of AE for the transition-metal-rich case
have a smaller magnitude than those for the Al-rich case,
suggesting much larger solubilities at the Al-rich end.
This is consistent with the experimental data, which for
all the systems considered yield solubilities greater than
10% even at temperatures far below the transition-metal
melting point. In fact, for all the Al —transition-metal al-
loys the solubility at the transition-metal end significantly
exceeds that at the Al end. This certainly cannot be ex-
plained by atomic-size effects, since the atomic size of Al
is neither universally larger nor smaller than those of the
transition metals. One would expect the solubility to be
strongly correlated with the heat of solution ' hH, al-
though the connection is not rigorous because of the
competition from phases not having the fcc structure.
Table I displays the asymmetries in AH, AH", and
AE. For Ni, Cu, Pd, and Ag, we do find that the asym-
metry in the solubility (or, equivalently, AE) is dominated
by the asymmetry in AH . The latter is primarily due to
the three-body interaction V3, and to the lattice-constant
dependence of the V„. However, the correlation between
the asymmetry in the solubility and that in AH breaks
down for the Al-Ti and Al-Sc cases. In Al-Ti, AHss is
most exothermic at the Al-rich end, which would suggest
a greater solubility at that end as well. However, the
asymmetry in of AH" more than cancels that in EHss
In Al-Sc we do not have measured values for bH"".
Nevertheless, hH is most exothermic at the Al-rich end
of the phase diagram, but the solubility is greatest at the
transition-metal-rich end. Therefore, the asymmetric
contributions from hH" must again dominate those
from hH . Thus, the overall correlation between the
asymmetries of the solid solubility and those of the heat
of solution is not very strong.

Because of the recent interest in the complex phases of
Al-Mn alloys, we have also performed a calculation for
this system. This is by necessity more approximate, since
the reference state for the measured heats of formation is
considerably different from the hypothetical paramagnet-
ic fcc crystal we have used to generate the interaction pa-
rameters. We add two correction terms to AH as given
by Eq. (2).

(a) The magnetization energy of the solid solution,
denoted AH 'g. We have performed a spin-polarized fer-
romagnetic ASW calculation for A13Mn in the Cu3Au

O
0CD

LLI+ -o.z—
TABLE I. Asymmetries in contributions to solid-solubility

energy barrier b,E.
Ni

Cu Ag
AH (Al)—bH (T)

—AH" (Al)
+AH" (T)

EE(A1)
—AE(T)

FICx. 6. Solid-solubility energy difference bE [cf. Eq. {4)],for
(a) Al-rich and (b) transition-metal-rich solid solutions. Circles
denote calculated values; squares denote experimental values
(Ref. 1); triangles denote calculated frozen-lattice values; bar
and arrow for Pd in (a) denote lower limit for solubility of Pd in
Al.

Sc
T1
Ni
CU

Pd
Ag

—0.51
—0.21
+ 1.20
+0.68
+1~ 19
+0.42

+0.40
—0.46
—0.27
—0.35
—0.09

(&0)
0.19
0.74
0.42
0.84
0.33
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structure at the lattice constant which minimizes its total
energy. We obtain hH ' = —0.21 eV.

(b) The difference in energy between paramagnetic fcc
Mn (the "y" phase) and the correct reference system a-
Mn, denoted bHr"" (preparation). This we approximate
as the sum of the latent heats of the a~@ and P—+y
transitions, which is 0.05 eV.

The first term on the right-hand side of Eq. (4), b,H
is —0.39 eV. From the measured heat of formation of
A16Mn, —1.10 eV/Mn-atom, we obtain b,E= —0.39
eV —( —1.10 eV)+b, H ' +b,H " =0.55 eV. On the
other hand, at T=700 K, —k~T inc~„=0.38 eV. Thus
our theoretical estimate of b,E is roughly 50%%uo too high.
To our knowledge, the only other theoretical calculation
relevant to AE has been obtained by the "efFective-
medium theory" (EMT), mentioned in Sec. I. A solid
solution with a 6:1 ratio of Al to Mn was found to have
an energy 0.1 eV higher per Mn atom than the A16Mn
compound. This value is 4 times smaller than the ob-
served AE, but it is not clear that the value will be the
same in the limit of small. Mn concentration.

C. Short-range order

The observed short-range (SRO) in an alloy is very
directly related to the signs and magnitudes of the under-
lying cluster interactions. In fact, the inverse Monte Car-
lo (IMC) method' has recently made it practical to ob-
tain accurate values of concentration-dependent effective
pair interactions from measured SRO data. For this
reason we present our results in the form of such pair in-
teractions, rather than calculating the SRO directly. Un-
fortunately, the measured pair interactions are at present
available only for Al-rich Al-Cu and Al-Ni alloys. How-
ever, we present results for all of the fcc transition met-
als, in the hope of comparing them with future experi-
mental results.

The nearest-neighbor effective pair interactions for
describing SRO are given' in terms of the
concentration-independent cluster interactions as follows:

V~ (&cr &)= ~V+3&cr & V3+6&o & V4 . (6)

[We remind the reader that & o &
= 1 (

—1) corresponds to
the transition-metal (Al) end of the phase diagram. ] In
the high-temperature limit this type of interaction
rigorously reproduces the correct SRO; the SRO parame-
ters are, in fact, directly proportional' to V2 . The
pair interactions V2 are closely related to the types of
interactions obtained by the "generalized perturbation
theory" (GPT), although the latter do not use for their
definition a high-temperature expansion. Our calculated
interaction values are given in Table II. In calculating
these we have treated lattice-relaxation efFects within the
locally relaxed approximation, as in the heat-of-solution
and solubility calculations. The values in parentheses are
the frozen-lattice values, included for comparison. The
values of V2 are strongly concentration dependent,
changing sign between the Al and transition-metal ends
of the phase diagram in four of the five cases considered.
The effects of lattice relaxations are fairly large for Al-Cu
and Al-Ni, particularly at the Al end. The remaining

TABLE II. Effective-pair interactions Vz (in eV) [cf. Eq.
(6)] for alloys of Al with fcc transition metals. Values in
parentheses were obtained by use of the frozen-lattice approxi-
mation.

&o &= —1 &cr&=l

Al-Ni
Al-CU
Al-Rh
Al-Pd
Al-Ag

—0.18 (0.13)
—0.13 (0.01)

0.34 (0.32)
—0.11 ( —0.05)
—0.20 ( —0.21)

0.66 (0.75)
0.39 (0.50)
0.25 (0.25)
0.78 (0.78)
0.14 (0.13)

three systems have smaller atomic-size mismatches, and
the local relaxation effects change V2 by less than 0.1

eV.
The most reliable experimental data' are for the Al-

Cu system. At 85 at. %%uoCu th e interactio n isver yshort
ranged, with the second-neighbor value 5 times smaller
than the nearest-neighbor value. This provides strong
support for the tetrahedron truncation employed here.
The measured values at the nearest-neighbor distance are
0.29 eV (523 K) and 0.40 eV (423 K); the former value is
more relevant here because V2 is most accurate at high
temperatures and because it is more likely that equilibri-
um has been established in the high-temperature case.
Our theoretical value at 85% Cu (&cr & =0.7) is 0.28 eV,
in excellent agreement with the 523-K experimental
value. IMC data have not been obtained for Al-rich Al-
Cu solid solutions because the system changes crystal
structure already at small Cu concentrations. However,
studies of supersaturated solutions show that at Cu con-
centrations of up to 2%, a solid solution forced by kinetic
constraints to occupy a fcc lattice goes through initial
stages of phase separation, forming so-called "Guinier-
Preston" (GP) zones. This behavior is certainly con-
sistent with the negative sign of the calculated V2 at
the Al end (cf. Table II), although we cannot ascertain
the accuracy of its magnitude. We note that the platelike
form of the GP zones is consistent with the calculated
three-body interactions as well. The three-body potential
for describing short-range order is given by
Vs3Ro = V3+4& cr & V4, which is +0.04 eV at the Al end of
the phase diagram. Thus even though nearest-neighbor
pairs of Cu atoms are preferred, a penalty is paid for
forming triplets. The (100) planes which form the initial
GP zones are a favorable configuration for these interac-
tions because they contain Cu-Cu pairs but no nearest-
neighbor Cu triplets.

IMC data have also been obtained for Nip 9pAlp &p
al-

loys, at several temperatures. The resulting values of
Vs2 are 0.21 eV (673 K), 0.17 eV (823 K), and 0.39 eV
(973 K). The large spread in these values suggests that
the short-range order in the samples does not correspond
to a homogeneous state of thermal equilibrium. Our
theoretical value at 90% Ni, 0.64 eV, is considerably
higher than all of these. However, it is closest to the
973-K measurement, which for reasons discussed above is
the most relevant one. Furthermore, we have crudely es-
timated the effects of the magnetization of the Ni elec-
trons by simply adding the magnetization energy for fcc
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Ni to the pure-Ni total energy used as input. The result-
ing value of V2 is 0.54 eV, in moderately good agree-
ment with the measured 973-K value.

For Ni-Al alloys one can also obtain estimates of the
pair interactions from the temperatures of ordering tran-
sitions in Al-Ni alloys. It is not possible to ascertain
directly the order-disorder temperature for the Ni3A1
(Cu3Au structure) compound, since it has not yet disor-
dered at the melting temperature. However, an estimate
of 1723+10 K has been obtained by extrapolation from
a series of Ni-Al-Fe alloys, which disorder below the
melting temperature. If one associates this transition
with a pair Ising parameter J, one has J=ksT, /1. 8,
and V2=6J=0.48 eV. This is close to our calculated
values of Vz at 75% Ni, which are 0.59 eV without
magnetic effects and 0.49 eV with magnetic effects. In
comparison, mean-field calculations" yield V2 =0.29
eV at 75% Ni, significantly lower than our estimates. We
caution the reader that V2 does not rigorously describe
the order-disorder transition. However, comparison be-
tween phase diagrams calculated using up to four-body
interactions and those calculated with pair interactions of
the type V2 shows discrepancies of less than 10%.
Thus the comparison Vz and the pair interaction ob-
tained from an order-disorder transformation is meaning-
ful.

To our knowledge, IMC data for pair interactions in
Al-Rh, Al-Pd, and Al-Ag alloys are not yet available for
comparison with our theoretical results. However, we
note that Al-rich Al-Ag alloys undergo early stages of
phase expansion analogous to those of Al-Cu alloys. This
is consistent with the negative sign of the calculated V2
at the Al end of the phase diagram.

V. CONCLUSIONS

In this study we have applied a simple Ising-type mod-
el for the first time to a variety of physical properties of
Al —transition-metal alloys. This model reproduces ob-
served heats of solution quite well already at the nearest-
neighbor level, and explains observed chemical trends in
solid solubilities. We have seen that the asymmetries in
the latter are sometimes, but not always, dominated by
the asymmetries in the heat of solution. Furthermore,
the predictions of the model are consistent with existing
data on short-range order and the structure of metastable
solid-solution phases in these alloys. In addition, we have
seen that the dependence of the pair interactions on the
transition-metal d-electron count displays a characteristic
shape, having a minimum at a roughly half-filled band,
which is independent of the transition-metal row. This
observation suggests that the d-orbital density of states in
the Al environment is broader, and more dominated by
its tails, than in the transition-metal environment. These
expectations have been confirmed by comparison of the
calculated density of states with model densities of states
having differing bandwidths and band shapes.

Future work should elaborate on this model, in three
directions.

(a) Inclusion of longer-ranged interactions in the Ising
model. These are necessary for example, to discriminate
between various 338 structures, such as Cu3Au, A13Ti,
and A13Zr, which (on a frozen underlying lattice) are de-
generate in nearest-neighbor Ising models. The primary
difIiculty with such an extension is that the radial separa-
tion between various shells of neighbors is quite small.
This means that if one obtains the interactions by match-
ing to total energies for periodic structures, a truncation
of the energy functional at the second-neighbor separa-
tion, for example could easily place significant contribu-
tions due to the actual third-neighbor Interaction in the
calculated second-neighbor interaction. This effect is, of
course, present to some degree in our calculations as well,
but is smaller because the separation in distance between
the first and second shells is larger, and the second shell
has only half as many atoms as the first shell.

(b) Inclusion of different underlying lattices. This is
clearly necessary in order to obtain heats of solution,
solubilities, and short-range-order parameters in many of
these systems. Extension of the present work to bcc and
face-centered-tetragonal lattices should be fairly straight-
forward. However, treating more complex structures
having several inequivalent sites of low symmetry, such
as the A13Ni2 structure, will be considerably harder.
These are difIicult to treat with muon-tin or atomic-
sphere approximations, and may well require the use of
full-potential band-structure methods. While these are
considerably more time consuming than the methods de-
scribed here, their application to such complex structures
can be expected to occur in the foreseeable future.

(c) Development of interatomic potentials. The in-
teraction parameters obtained here describe only atomic
rearrangements on a fixed underlying lattice. It would be
useful to generalize these to potential-energy functions
which can (approximately) describe energy differences be-
tween competing crystal structures, and defect structures
as well. As was pointed out in Sec. III, the chemical
trends in the interaction parameters suggest that the
dominant contributions to bonding and ordering energies
in these systems come from the gross properties of the
electronic density of states (such as its low-order mo-
ments), rather than its detailed structure. Thus an ap-
proximate description in terms of low-order interatomic
potential functions may be viable.
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