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A recently proposed band model to describe metallic ferromagnetism is studied at finite tempera-
tures within the mean-field approximation. -We discuss in particular the behavior of critical temper-
ature, specific heat, magnetic susceptibility above T, and magnetization below T, assuming a con-
stant density of states. The model overcomes in a simple way the major difficulties of Stoner theory
and yields properties that are consistent with a variety of observations in ferromagnetic metals and

alloys.

I. INTRODUCTION

A great deal about the physics of a phenomenon can be
learned by~ identifying the simplest possible model that
contains its essential features. In a recent paper' (hereaf-
ter referred to as I) we have proposed what we believe to
be such a model to describe metallic ferromagnetism.
The Hamiltonian is given by
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describing tight-binding electrons in a single band. The
parameter J is an off-diagonal matrix element of the
Coulomb interaction between electrons in Wannier states
¢; at nearest-neighbor sites:
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and is positive, and U is the usual Hubbard on-site repul-
sion.? Although U is much larger than J we have pro-
posed that the term containing J is the relevant operator
for metallic ferromagnetism and thus cannot be omitted.
It was shown in I that the Hamiltonian Eq. (1) naturally
describes situations with full-spin polarization (strong fer-
romagnets) and partial-spin polarization (weak ferromag-
nets), independent of details of the density of states. In
this paper we examine the properties of the Hamiltonian
Eq. (1) at finite temperatures.

The field of metallic ferromagnetism has a long history
(see, for example, Refs. 3 and 4 and references therein)
that is characterized by a “dichotomy” between band and
localized pictures.® In particular, it is often stated that
the band model naturally describes certain features of the
problem (nonintegral number of Bohr magnetons, trans-
port properties, etc.) and the localized model others
(Curie-like susceptibility, temperature dependence of
magnetization, magnitude of T, etc.). One way out of
this dilemma has been to talk about coexisting localized
and itinerant electrons,® which may provide a useful
qualitative picture but is difficult to translate into a con-
sistent mathematical theory. A second way out has been
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to incorporate spin-fluctuation corrections into the band
model,” which leads to complicated theories that need to
rely on uncontrolled approximations.

As metallic ferromagnets are metals, it is naturally
preferable to describe them using band theory. This has
been done within what is usually called Stoner theory,®°
where a featureless exchange energy is added to band
electrons in a solid. The main drawback of Stoner theory
in our opinion is that the properties of the model are
determined by the detailed behavior of the density of
states. For example, the theory predicts only zero- or
full-spin polarization if the density of states is constant
throughout the band,!® and a narrow range of partial-
spin polarization for a free-electron density of states.!!
Similarly, the magnitude of 7, and of the susceptibility
above T, are largely determined by the magnitude of the
first and second derivatives of the density of states at the
Fermi energy, and certain shapes of the density of states
can drive the transition first order.'? This situation is not
very satisfying, as we do not know of any fundamental
reasons that determine the fine structure of the density of
states in a metal. In addition, the Stoner model has
difficulty in describing weak ferromagnetism, Curie-
Weiss susceptibility, shape of magnetization curves, and
magnitude of specific-heat jumps even if the density of
states is arbitrarily chosen.

In this paper we explore some features of the model
Eq. (1) at finite temperatures within mean-field theory
and show that our model overcomes several difficulties of
the Stoner model. The results do not crucially depend on
fine details of the density of states, and thus for most of
the discussion we use a constant density of states
throughout the band. Weak ferromagnetism, Curie-
Weiss law above T, large specific-heat jumps, and some
of the observed systematics of T, and shape of magneti-
zation curve versus band filling follow naturally from our
simple treatment. Furthermore, the observed anomalous
drop of resistivity below 7, in ferromagnetic metals'® is a
necessary consequence of our model.

In addition, our theory provides a new and intuitively
appealing picture of metallic ferromagnetism. As the
temperature is lowered, the electron-electron interaction
described by the last term in Eq. (1) causes the bands to
become increasingly narrow, thus raising the electronic
energy and increasing the internal pressure. At the criti-
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cal temperature it starts to become advantageous to spin
polarize because this causes the split bands to widen
again with increasing magnetization. It is as if the solid
is “breathing in” below T, which also causes the anoma-
lously large lattice constants and magnetoelastic effects
observed in ferromagnetic metals.

The paper is organized as follows. In Sec. II we derive
the relevant equations at finite temperatures and discuss
qualitatively their properties. In the limit of T, much
less than the bandwidth most results can be obtained
analytically within the Sommerfeld expansion, but it rap-
idly becomes inaccurate for higher temperatures. In Sec.
III we discuss numerical results of the self-consistent
equations for a variety of cases to illustrate the principal
trends. We conclude in Sec. IV with a summary of re-
sults and a discussion.

II. THEORY

We obtain the mean-field equations describing fer-
romagnetism for the Hamiltonian Eq. (1) by allowing for
a finite-expectation value of {¢/ c;,) which is different
for o =up, down, and performing a mean-field decou-
pling of the interactions. The procedure is standard and
is discussed in I for our case. The resulting self-
consistent equations are
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We have assumed that the band extends from —D /2 to
D /2 and is symmetric around the origin, i.e.,
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for simplicity, z is the number of nearest neighbors to a
site, g () the density of states per site per spin, u the
chemical potential, n =n; +n the total site occupation
and m =n; —n | the magnetization per site. We have in-
cluded an external magnetic field H and use units such
that the magnetic moment per electron is unity.

Much of the physics of our model follows from the be-
havior of I, Eq. (5), which is a function of T and m. At
infinite temperature, I,=0 [from Eq. (6)]. As T is
lowered I, increases because the states of negative energy
(bonding states) become increasingly occupied compared
to the ones with positive energy (antibonding states).
This causes the prefactor of € in Eq. (4) to decrease;
equivalently, the band narrows, and the density of states
and the effective mass increase. When the system starts
developing spin polarization I, decreases again as more
high-energy states become occupied. For full-spin polar-
ization and a half-filled band I, =0 again for T—0 [from
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Eq. (6)]. By spin polarizing, the system can eliminate the
band narrowing effect and achieve as wide a band at
T =0 as it possessed at T'=o0. In Fig. 1 we illustrate the
behavior of I, for one case, with a half-filled band and
full spin polarization at T =0. The dashed line indicates
the values of I, below T, if the system had not spin po-
larized; for this case, the band would have narrowed to
zero width at 7'=0, where I, reaches the value 0.5. In
general, I, does not reach 0.5 nor does the full line in Fig.
1 reach zero at T =0, but the qualitative behavior
displayed in Fig. 1 is generic.

The condition that determines the critical temperature
is obtained by expanding Eq. (3a) to lowest order in m:

_ u—{—_] faD/Z
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where g, is the density of states at the Fermi energy,
u=Ug,, (8a)
Jj=2Jgy , (8b)

and a =1—2jI, together with Egs. (3b) and (5) evaluated
at m =0.

Within Stoner theory (j =0), the value of T, depends
crucially on the form of the density of states. For non-
constant density of states and T, <<D one can use the
Sommerfield expansion to obtain

6(u—1)
mul(g'/g)—g" /g]

with g',g"’ the first and second derivatives of the density
of states at the Fermi energy. If g is constant throughout
the band this obviously fails and T, is determined by the
values of the Fermi function at the bottom and top of the
band. For a half-filled band the relation is simply
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FIG. 1. Behavior of I, [Eq. (5)] vs temperature. As T is de-
creased, I; increases until 7" reaches T,. Below T,, I, decreases
as the system develops spin polarization (solid line). The dashed
line shows the behavior of I, below T, if the magnetization is
set to zero rather than its self-consistent value.
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This strong dependence of T, on the particular form of
the density of states within Stoner theory is disturbing.
Since g (€) is usually not constant, as sufficiently low tem-
peratures Eq. (9) should be more appropriate. This
would imply then that in an alloy system, where the Fer-
mi level can be varied continuously by changing the com-
position, T, could undergo wild fluctuations as the Fermi
level sweeps through the fine structure in the density of
states. Admittedly, some smearing of the fine structure
in the density of states will occur in an alloy, but for
small compositional disorder one would still except that
large changes in T, would occur from small shifts in the
position of the Fermi level. This is not observed, and un-
derscores the serious inadequacy of Eq. (9) to determine
the critical temperature.

In our model T, is determined largely by the behavior
of I,(T,m). Thus we will treat for simplicity the case of
constant density of states and assume the temperature is
low enough that exponential contributions can be
neglected [these effects can easily be included and correc-
tion terms of the form (9) and (10) result]. Within these
assumptions Eq. (7) is valid also for nonzero m and yields
simply

u-+j
= 11
! 1—2j1,(T,m) (1

which determines the critical temperature from

u-+j

and the saturation magnetization at zero temperature m;
from

= uvrJ (13
! 1—2j1,(0,my) ’ )

as well as the magnetization versus T for T <T,. We re-
call also that within Stoner theory with constant density
of states only a state of full spin polarization is obtained,
while Eq. (13) leads naturally to partial spin polarization.
We obtain T,(T,m) from Eq. (5) by using the Sommer-
feld expansion and neglecting exponential contributions
as
kT |

D

1
[1—2jI,(T,m)]* ~

(14)

I(T,m)=I,(0,m)— 27>

The condition on j to have partial spin polarization is
obtained from Eq. (11) setting T =m =0:
1—u

= (15)
1+219

Jj>Je

with 79=1,(0,0). Similarly, to obtain full polarization
we need -

1—u
> LT 16
I > 121,00, 19

The critical temperature is obtained from Egs. (12), (14),
and (15) as

9063

kT, [ 3 172
D 47

(u+j) ;

172
29 +1— 1;“ ] (17a)

or equivalently
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For nonconstant density of states Eq. (17) generalizes to
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which reduces to Eq. (9) for j =0. Note that j#0 will
substantially smoothen the strong dependence of 7. on
density of states predicted by Eq. (9).

For constant density of states I,(0,m) is easily ob-
tained from Egs. (3b) and (5):

1—(n—1P*—m? _ o m?
5 I3 > (18)

and the saturation magnetization follows from Egs. (13),

(15), and (18) as
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J

if the right-hand side is less than n, and m; =n otherwise.

Note that for m; <n critical temperature and saturation
magnetization are related by

kBTc . 3 o .
D ‘4:73 [1—=2I (T )]m, . (20)

II(O,m)=

1/2
(J—j)"? (19)
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The magnetization versus temperature is obtained from
Egs. (11) and (14) as

2
V3(u +j)
if the right-hand side is less than n, and m (T)=n other-
wise. Thus we obtain the usual mean-field behavior
(T, —T)"? close to T,. Within our approximation this
behavior persists away from T, until the magnetization
reaches saturation, and below that temperature m =n.
This is a somewhat unusual feature, and when exponen-
tial corrections are included it is found that m (T) is al-
ways smaller than n at finite temperatures. Nevertheless,
the qualitative feature of Eq. (21) that the magnetization
curve is steeper for a case of full spin polarization com-
pared to one of partial spin polarization is usually
correct, as will be seen in the numerical solution in the
next section.

The exchange splitting of the bands in our theory is
given by

AE (u +j)
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For m; =n we have simply Yol T)= 2o , (28)

AE 1—251,(T,0)

=, (23)

D and Eq. (26) becomes, using Eq. (12),
and for full polarization 2o
. T)=
AE_  u+j XD = T T 0—1,1,00 ° @9)

————n. ' 24
D 1—2j1,(0,n) " @4
Equations (23) and (20) then yield, for the case of partial
polarization, the simple relation
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which in particular is independent of band filling n.

The magnetic susceptibility is obtained from Eq. (3a)
by taking the derivative with respect to the magnetic field
H and yields

(1)= — XD 26)
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Equation (26) has the usual Stoner form, but once again
for our case the principal temperature dependence is
determined by I,. For constant g(g), and neglecting ex-
ponential corrections,

3(u +j)*D

which close to T, gives rise to the Curie-Weiss behavior

3(u +j)?
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x(T)= (30)

In contrast, for the Stoner case once again the behavior is
determined by the density of states. Close to T, one has
(for nonconstant g)

6g
(T)= , (31
X mul(g'/g)—g" /glka T (T —T,)

and the effective moment is determined by the fine struc-
ture in the density of states, an unphysical result. Both
our model and the Stoner model give rise to a Curie-
Weiss law close to T, but as we will show in the next sec-
tion, in our case this law is approximately obeyed over a
wide temperature range. The physical reason is that even
at high temperatures in our model the variation of y with
temperature is enhanced due to the progressive band nar-
rowing. The generalization of Eq. (30) for nonconstant
density of states yields

x(T)

which shows that the effective moment is only weakly
dependent on variations in the density of states for j#0.

The magnetic energy, including corrections for double
counting, is obtained as

Utlz ,_Jz
4 2

E=E,+ I3(T,m) (33)

with
Eo= [deg(e){[E (e)+ulf (E))+E (e)+ulf (E))} ,
(34)

and the specific heat is obtained by differentiation. We
will discuss its different contributions in limiting cases
elsewhere, and here we merely present some numerical
results in the next section.

III. NUMERICAL RESULTS

In this section we discuss results obtained by solving
the self-consistent equations (3)—(5) for constant density
of states. While the analytic results of the previous sec-
tion are useful to yield qualitative insight, at finite tem-
peratures exponential corrections do play a varying role
that depends on the temperature, and it is preferable to

T 4n?(j 1w +))/81(D /g)l(g /g —g" /g kAT AT —T,)

(32)

include them by solving the equations numerically to
avoid altering the systematics. The correction terms are
proportional to exponentials of (—nD/kgT) and
(n —2)D /kgT and are negligible in the weak ferromag-
netic regime. We will use units of D /kp for the tempera-
ture.

We will not attempt a microscopic determination of
our interaction parameters U and J for any particular
case. As discussed in I, the role of U in our equations is
surely grossly overestimated by the mean-field decoupling
procedure. Instead, we regard » and j as phenomenologi-
cal parameters, with (1 +j) giving rise to the exchange
splitting and j giving rise to the band narrowing. It is
even possible that u should be taken close to zero when
the effect of correlations is taken into account. We recall
from I that the values of the parameters to give rise to
magnetization varying from weak to strong is

1o J o

(35
2 1—u )

which even for u =0 is not an unreasonable range for the
two-center exchange integral J =j /zg,, Eq. (2).

Figure 2 shows the behavior of the saturation magneti-
zation m; as a function of band occupation. As discussed
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FIG. 2. Saturation magnetization m, [Eq. (19)] vs band filling
for various values of j /(1—u) (numbers next to curves).

in I, the curves for j /(1—u)~0.7 or 0.8 resemble the be-
havior found in the 3d transition-metals series encom-
passing Fe, Co, and Ni. Weak ferromagnetism (small sat-
uration magnetization) is most easily obtained close to
the half-filled band, with j/(1—u) approaching 0.5. For
other fillings weak ferromagnetism is also possible but the
parameter range narrows rapidly as one moves away
from 1 filling, as shown in Fig. 3 of I.

Figure 3 shows the behavior of the critical temperature
versus occupation. It follows approximately the behavior
of the saturation magnetization, as expected from Eq.
(20). The ratio of T, /m, is accurately given by Eq. (20)
for the case j =0.51 (T, /m;=0.141) and approximately
for the other cases, the ratio being somewhat smaller
than predicted by Eq. (20): for j =0.6, T./m,~0.14 to
0.15 while Eq. (20) gives 0.165, and for j=0.8,
T,/mg~0.18 to 0.21, while Eq. (20) gives 0.221.

While the saturation magnetization depends only on
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FIG. 3. Critical temperature (in units of D /kg) vs occupa-
tion for three values of j (numbers next to the curves) for u =0.
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the ratio j/(1—u), T, has a weak additional dependence
on u. From Eq. (17) we obtain, for fixed j=j/(1—u):

Tc(u =u1) _ 1+u1(1/‘7~1)
T(u=uy) 1+uy(1/7—1)

(36)

so that T, should increase with increasing u if j/(1—u)
is kept constant, the effect being larger the smaller j. We
find the relation (36) to be accurately satisfied for
Jj =0.51, for the larger j’s the deviations are towards
smaller T_’s for increasing u than predicted by Eq. (36).
In fact, T, can also decrease for increasing u. Figure 4
shows the behavior for n =1. The behavior for other
values of n is similar, with the decreasing behavior of T,
with u setting in at smaller ¥ as n moves away from
n=1.

Figures 3 and 4 illustrate that the values of T, are
strongly determined in our model and cannot be changed
without also changing the saturation magnetization or
the filling. With nonconstant density of states we believe
it would be possible to alter the behavior somewhat, in
particular allowing T, to increase when » is moving away
from 1 in Fig. 3. This would be necessary to explain the
larger critical temperature in Co as compared to Fe. The
bandwidth of the e, states in the 3d ferromagnetic transi-
tion metals is approximately 2 eV. For j =0.8 our theory
then would predict (assuming » =1) a T, between 2000
and 3700 K depending on the value of u, which is larger
than the experimental value for Fe but a factor of 2
smaller than what has been obtained from the local spin-
density functional formalism.'* Incorporating the de-
tailed band structure in our model may result in accurate
values for T,.

We consider next the behavior of the magnetic suscep-
tibility above T,.. Approximate Curie-Weiss behavior is
found for a wide range of parameters. We parametrize
the susceptibility as

0.2

"o

n=1

08

FIG. 4. Critical temperature (in units of D /kg) vs u for band
filling n =1 and various value of j (numbers next to the curves).



9066 J. E. HIRSCH 40
2
Pi(D) 2:50
N=———77—, 37 r
XD=37 =T, G7 g ]
2.25 n=4,u=0 -]
and study the behavior of the effective moment p . Fig- Peff c ]
ure 5 shows its temperature dependence for j=0.8, 2.00 ]
u =0, and four values of the density. We show a temper- ]
ature range up to eight times the critical temperature, the ]
. . . 1.75 —
same smooth behavior persists at higher temperatures. ]
The nearly temperature independence of the effective mo- ]
ment is striking, particularly at the higher densities. The 1.50 & ]
effective moment at infinite temperature is given by ]
" 172 1.25 F 08 :
DT =)= (3n 1—7 (38) ]
00 L b v

2 4 6 8

At T =T, the effective moment in Fig. 5 is larger than at
T =o by only 3.2%, 3.4%, 4.8%, and 13% for n =1,
0.75, 0.5, and 0.25, respectively.

Figure 6 shows the variation in the temperature depen-
dence as j is lowered, for fixed n (n =1). The effective
moment becomes slowly more temperature dependent as
J decreases, but it is only for very weak ferromagnetism
that the temperature dependence becomes appreciable.
Surprisingly, the effective moment becomes larger as j de-
creases, opposite to what a localized picture of magne-
tism would predict. This can be understood from Eq.
(30), as the dominant change as j decreases is the reduc-
tion in T,. The same trend is observed for other values of
n.

Figures 7 to 9 show the effect of u on the behavior of
the effective moment. We chose the values of  and j so
as to keep the critical temperature constant in each case.
The temperature dependence of p. increases as u in-
creases but is still small for ¥ ~0.5. In the Stoner limit
j =0, the temperature dependence becomes substantial,
particularly for smaller critical temperatures. The same
qualitative trends are found for other cases, both for pa-
rameters giving rise to full and partial spin polarization.
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1.0 -
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FIG. 5. Effective Curie-Weiss moment p. defined by Eq. (35)
vs temperature for various values of the density. 7T,.=0.158,
0.145, 0.107, and 0.044 for n =1, 0.75, 0.5, and 0.25, respective-
ly. The saturation magnetization is m;=0.866 for n =1 and
mg=n for the other n values.

T/7¢
FIG. 6. Effective moment vs temperature for various values
of j (numbers next to the curves) for n =1, ¥ =0. T,=0.158,
0.0863, 0.0612, and 0.0278, and m;=0.866, 0.577, 0.426, and
0.198 for j =0.8, 0.6, 0.55, and 0.51, respectively.

1.8 —

- n=1, T,=0.158
Pesf C

IR SR P B B

/T
FIG. 7. Effective moment vs temperature for band filling
n =1 and various values of j and u chosen so that the critical
temperature remains fixed at 7,=0.158. The values of j are
given next to the curves, and » =0, 0.5, 0.9, and 1.088 for
j=0.8,0.4,0.12, and O, respectively.
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3.0 n=075, T,=0.076
Peft
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A R B
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FIG. 8. Same as Fig. 7 for n =0.75, T,=0.076. u =0, 0.5,
and 1.007 for j =0.6, 0.3, and O, respectively.
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FIG. 9. Same as Fig. 7 for n =0.25, T,=0.0045. u =0, 0.5,
and 1.064 for j =0.8, 0.4, and O, respectively.

The factors that determine the temperature dependence
of p .4 are principally the magnitudes of u and of the criti-
cal temperature. ‘

We next consider the behavior of the magnetization
versus temperature below T,. Figure 10 shows m (T) for
j=0.8 and three values of the density. The magnetiza-
tion curve becomes steeper as n decreases because the
system is more strongly ferromagnetic; this is in accor-
dance with our finding in the previous section, and con-
sistent with the behavior found in transition metals. The
effect of a nonzero u, adjusting j to yield the same critical
temperature, is to make the magnetization curve some-
what less steep, as shown in Fig. 11. It is well known that
Stoner theory tends to yield magnetization curves that
are not steep enough compared to experimental findings.

A good indicator of the steepness of the magnetization
curve is the value of m (T) at T=T, /2. In Figs. 12 and
13 we plot

.Tvlvvnnlv-v- T,

1ok j=0.8 .

0.8
m/mg
0.6

0.4

0.2

rv;|I|YvrTvvvv!;u||‘|||:
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0.2 0.4 06 08 1
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FIG. 10. Reduced magnetization vs temperature for u =0,
Jj =0.8 and three values of the density. m,=0.866, 0.75, and 0.5
for n =1, 0.75, and 0.5, respectively.

o

/T,

FIG. 11. Reduced magnetization vs temperature for n =0.5
and T.=0.107. The case with ¥ =0 has j =0.8, and the one

. with j =0 has ¥ =1.108. m;=n in both cases.

m,,,=m(T=T,/2)/m (T =0) (39)

versus j for » =1 and n =0.5, together with the satura-
tion magnetization m;. m,,, attains its minimum value
at the value of j where the system becomes fully magnet-
ized, m;=n. This minimum value is smaller the smaller
n is, and the overall variation of m, ,, increases as n de-
creases. As T—0, using Eqgs. (20) and (21) we obtain

10

1
n=1 (a)
09} =
My [
08} -
1
10
10} (b}
mg/n
05} -
1
00.5 1.0 15
j

FIG. 12. (a) Reduced magnetization at T/T,=0.5 [Eq. (37)]
vs j, and (b) saturation magnetization vs j for n =1, u. =0. Note
that the minimum in m,,, coincides with the point where full
saturation magnetization is reached, and that as j is reduced
m,,, approaches the limiting value given by Eq. (40) (dashed
line).
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FIG. 13. Same as Fig. 12 for n =0.5.
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which yields m ,, =0.866, and is indicated by the dashed
lines in Figs. 12 and 13. It will be interesting to correlate
these results with observations in ferromagnetic metals
and alloys.

Finally, we show two examples of specific heat versus
temperature obtained from differentiation of Eq. (33) in
Figs. 14 and 15. As before, we choose parameters to keep
T, fixed and examine the cases u =0 and j =0. The most
striking effect of j is to make the specific-heat jump at T,
larger, by approximately a factor of 2. This occurs be-
cause of the additional contribution resulting from the
change in slope of I, at T, (Fig. 1). Too small specific-
heat jumps have been a serious drawback of Stoner
theory, and the order of magnitude of the increase shown
in Figs. 14 and 15 for j#0 is what is approximately need-
ed to obtain agreement with experimental observations.

T T T

2+ n=1i -
Tc=0158
C/Nkg 15F ¢ . .
u= s

i ///’i:o I
05 e

== 1 1 1

O0 05 10 15
T/Te

FIG. 14. Specific heat vs temperature for n =1 and values of
u and j chosen, so that the critical temperature remains fixed at
T.=0.158. j=0.8 for u =0 (solid line) and u =1.088 for j =0
(dashed line).

FIG. 15. Specific heat vs temperature for n =0.5, T, =0.107.
j=0.8 for u =0 (solid line) and u =1.108 for j=0 (dashed
line).

1IV. SUMMARY AND DISCUSSION

We have explored finite-temperature properties of a
new model proposed to describe metallic ferromagne-
tism.! The interaction responsible for ferromagnetism in
this model is a Coulomb matrix element J that lowers the
energy when electrons of opposite spin at the Fermi sur-
face are in states of opposite bonding character. Thus,
the optimal case for ferromagnetism for given parameters
occurs for the half-filled band case and for structures that
can accommodate purely antibonding states without frus-
tration, like bcc. As discussed in Sec. II, the physics that
drives ferromagnetism in our model is the band narrow-
ing caused by the interaction J as the temperature is
lowered, which leads to spin polarization as a way to
suppress the band narrowing effect.

For fixed interaction parameters our model leads to a
dependence of saturation magnetization on band filling
that is consistent with the Slater-Pauling curve.’ In Fig.
2, iron would fall near n =1, Co around n =1.3, and Ni
around 1.7, with j/(1—u) around 0.8. Actually, it is
likely that the parameters do change somewhat with
filling, with j probably becoming larger as the filling in-
creases. This would still lead to full spin polarization in
our model for Co and Ni but possibly account for the
higher critical temperature in Co as compared to Fe,
while still lead to lower T, for Ni as indicated by Fig. 3.
Additionally, variations in the density of states will cause
some variations on top of the ones found in our model for
constant density of states.

The magnetic susceptibility above T, was found to ac-
curately follow Curie-Weiss behavior, consistent with ex-
perimental observations. The Curie-Weiss behavior is
one of the properties that have tended to favor localized
models of magnetism over band models. However, local-
ized models cannot possibly account for the large Curie-
Weiss moment found in ferromagnets with very small sat-
uration magnetization, while our theory naturally pre-
dicts such behavior, as shown in the previous section.
The specific heat jump at T, was found to be considerably
increased in our model and of the right order of magni-
tude to resolve the discrepancy of the Stoner model pre-
diction with experimental observations. !°

The behavior of magnetization versus temperature
below T, was found to be steeper than that obtained from
Stoner theory, and to show trends consistent with obser-
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FIG. 16. Typical behavior for resistivity from our model.
The form Eq. (41) for p is plotted, with = linear in temperature
and m* given by Eq. (42). The vertical scale units are arbitrary.
u =0.

vations. Our model can easily yield magnetization curves
steep enough to account for the observed ones in Ni,
while this is not possible with the Stoner model.!® For
example, for n=0.3 and j=0.9 we find m,,,=0.94,
consistent with the value for Ni. For ‘this case,
T./D =0.078.

The anomalous drop in resistivity below the Curie tem-
perature is naturally explained by our model due to the
band broadening that occurs as spin polarization devel-
ops. Consider the simple Drude formula for electrical
resistivity

*
p=-" (41)

ne’r

and assume a linear dependence of relaxation time 7 on
temperature due to phonon scattering for simplicity
(strictly speaking, only valid well above the Debye tem-
perature). A temperature dependence in the effective
mass m* will arise from the prefactor of € in Eq. (4),
given by
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_ m¥*(») (42)

m*(T)= 1= 2j0,(T,m)

The temperature dependence of I,(T,m) discussed in Sec.
II leads to a typical behavior of the resistivity Eq. (41) as
shown in Fig. 16 for one case. The break displayed at T,
resembles the behavior found in ferromagnetic metals, 13
and its origin becomes transparent in our model. Alter-
native explanations of this effect have invoked reduced
spin-flip scattering as the system orders magnetically. !

Our model naturally leads to except anomalous
thermal expansion behavior below 7T,. As the driving
force for ferromagnetism is occupation of antibonding
states by majority spins and reduced occupation of bond-
ing states by minority spins, this will lead to a tendency
for the lattice to expand as spin polarization develops,
which will counter the normal contraction tendency due
to reduced lattice vibrations as the temperature is
lowered. The competition of these two tendencies can
then lead to the Invar effect, i.e., zero coefficient of
thermal expansion. The fact that the anomalously large
lattice constants in ferromagnetic metals is due to in-
creased occupation of antibonding states was pointed out
by Janak and Williams, '® and fits naturally in our model.
Other thermal properties of this model, as well as de-
tailed comparison with observations in ferromagnetic
metals and alloys, will be reported in forthcoming papers.

An important consequence of our model is that it natu-
rally leads to the prediction that hydrogen in the metallic
state should exhibit weak ferromagnetism.'”! This is
contrary to the commonly held view that metallic hydro-
gen should be a high temperature superconductor, !® and
should have wide astrophysical implications.
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