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Hole dynamics in the t-J model: An exact diagonalization study
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Exact many-body states of square clusters up to 18 sites (with periodic boundary conditions) are
investigated in order to study the dynamics of one or two holes in the t-3 model. Our method takes
full advantage of the translation, rotation, and reAection symmetries of the cluster. Using a
modified Lanczos algorithm, we calculate the lowest state of all the different space-group represen-
tations and its total spin as well as its spin and hole correlations. For a single hole, at intermediate
J/t values, the magnetic, kinetic energies, and staggered magnetization follow 3/t power-law be-
haviors with size-dependent exponents. A binding energy of order J between two holes appears for
sufficiently large J/t ( +0.25). One-hole and two-hole calculations give different results regarding
the stability of the Nagaoka state (against the singlet state) when J/t~0. Energy expectation
values of variational resonating-valence-bond states are calculated exactly and optimized.
Significant overlaps with the exact states are found for any symmetry.

I. INTRODUCTION

The recent discovery of the high-T, copper oxide su-
perconductors' has caused renewed interest in the prop-
erties of strongly correlated electrons. The two-band
Hubbard model is the simplest model to describe the
Cu02 planes with d states on the Cu atoms and p states
on the 0 atoms. However it can be reduced in certain
limits to a simpler effective two-dimensional one-band
Hamiltonian H of the t-J form,

+ g J(S;.S~
—

—,'n, .n ),
&i j &

where a; =(1—n; )c; and n; = g c; c; . c; creates
an electron of spin o. on site i. The constraint of no dou-
bly occupied site is ensured by the definition of the a;
fermion operators. The parameters t and J which de-
scribe the hopping matrix element for the charged singlet
and the Heisenberg coupling between nearest neighbors
(NN's) are to be determined from experiment. Even the
large-U limit of the single-band Hubbard model can be
written in the form (1) when the hole density is small; in
this case J =4t IU and terms of higher order in tlU are
neglected as well as the three-sites term of order JnI, .

In the past year there has been a lot of work on mean-
field approximations to H. The problem of handling the
local constraint on H, which limits the occupation on any
site to at most one electron, is dificult and can only be
approximately treated for an infinite system. The other
alternative is to solve exactly this problem but on a
finite-size cluster. For the undoped system (Heisenberg),
it is well established that the ground state is a singlet
state which becomes degenerate with the lowest triplet
state in the thermodynamic limit. This leads to a finite
staggered magnetization of the order of 60%%uo of the clas-
sical Neel state. Monte Carlo simulations have led to

similar conclusions. In the doped case, except in the
Nagaoka limit (J =0, infinitely small doping), the situa-
tion is far from clear. A disordered spin liquid state was
proposed to be stabilized by doping versus the antiferro-
magnetic (AF) long-range order. Exact calculations are
then expected to give useful information on both the
ground state (GS) and the spin liquid properties. '

We report here exact diagonalizations of (1) on
I. =10-, 16-, and 18-site clusters for one hole and I. =10-
and 16-site clusters for two holes. We have recovered
many of the results of Ref. 6 but we still have some
discrepancies on a few points. This may come from the
fact that a different method has been used in Ref. 6 where
the Hilbert space of the 4X4 Hamiltonian is generated by
tensorial product of the Hilbert space of the 2 X 2 Hamil-
tonian. Therefor it is not clear to us to which extent the
Q vector of the GS can be controlled in Ref. 6. In this
sense, we think our method can give more accurate infor-
mations on the physics of Hamiltonian (1).

II. EXACT DIAGONALIZATIONS

A. Lanczos, algorithm

The Hamiltonian (1) is invariant under spin rotation,
so we have restricted ourselves to the sub space of
minimum total S„ i.e., S,=1/2 for one hole and S,=0
for two holes. Indeed the 2S + 1 multiplet of a given spin
S state can be obtained easily from the single state of
minimum S, by rotation in spin space. Furthermore, on
a finite-size cluster with periodic boundary conditions
one can use the translation symmetries to reduce the di-
mension of the Hilbert space. The way the states trans-
form under translation is characterized by a wave vector
in reciprocal space. The maximum size of the Hilbert
space we have considered was then reduced to 25740
(L =16, two holes). Finally we have used the rotations
around one lattice point and (except for the 10-sites clus-
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ter) the reflections. For each k point in the Brillouin
zone we have considered the irreducible representations
of the point group operations which keep this k point in-
variant. Depending on the k point considered, this group
may contain only the identity or possibly also the well
known C4, C4„Cz„and C, point groups which have 3,
5, 4, and 2 irreducible representations, respectively, la-
beled by A„A2, etc.

The lowest state in every subspace is found by using a
modified Lanczos method. Let us sketch brieAy the algo-
rithm. ' One starts with a trial state ~%o& on which one
applies the Hamiltonian (1),

(2)

where +, is a state orthogonal to Oo. One cen then mini-
mize the energy expectation value by linearly combining
~%o& and ~4, &. This is simply achieved by diagonalizing
the 2X2 matrix

where e&= (0'~~H~%, &. It is understood that no Hamil-
tonian symmetry breaking can appear in a finite system,
so that the initial state ~Vo& can be chosen with all the
symmetries previously mentioned. The Lanczos step is
then iterated until convergence is obtained. At each step
the Hamiltonian is applied twice and the symmetries of
the initial state are preserved.

B. One-hole GS properties

We have studied one hole on 10-, 16-, and 18-site clus-
ters for 0~ J/t ~ ~. The region J/t (&1 corresponds to
the strong correlation limit of the Hubbard model al-
though large J/t would describe a nearly static hole (or
impurity) with a large effective mass. The energy values
for J/t =0.25 for all space-group symmetries are shown
in Tables I—III. The exact symmetries of the ground
state have some common features in these data; indeed

the GS has a total spin —,
' (its smallest value) and its wave

vector lies in the pseudo-Fermi surface (FS) or is one of
the closest wave vectors to the FS allowed by the periodi-
city of the cluster. Furthermore, in all cases, the GS be-
longs to the A

&
representation, i.e., they are completely

symmetric with respect to all the point group operations
which leave the Q vector invariant.

It should be noted that for I.=16 the GS are sixfold
degenerate at wave vectors (+m/2, +~/2), (~,0) and
(O, m. ). This is related to an additional symmetry appear-
ing only in the 4 X4 cluster; the latter can be mapped
onto the 2X2XZX2 hypercube where the exchange of
any pair of coordinates is a symmetry of the Hamiltonian
(1) (i.e., it conserves the NN distances). This extra sym-
metry is also responsible for the degeneracy of the
(Q=O, B, ) and the (Q=(m, O), B&) excited states, where

B& corresponds to antisymmetric states under m. /2 rota-
tion (m rotation) for Q=O [Q=(m, O)]. The I. =10 clus-
ter has also a similar specific symmetry which we shall
discuss later in analyzing the two-hole results.

These GS characteristics are still valid on a wide range
of the parameter J/r down to a critical value
(J/t)

&

-0.15, 0.075, and 0—0. 1 for I.= 10, 16, and 18, re-
spectively. Below this critical value there is an abrupt
transition, due to the Nagaoka effect, to a uniform
(Q=O) ferromagnetic state (S =S,„) of the same A,
symmetry. The energy dependence versus J/t is plotted
on Fig. 1 (for I. = 16).

Above (J/t)„ if the periodic boundary conditions do
not allow any k point on the FS (L =10,18), the GS
wave vector depends on J/t (although it is always close
to the FS). Let us consider I.=10; above (J/t)2=0 27 it.
is inside the FS as in the noninteracting Fermi sea and
n»«ide for lower values in agreement with recent work by
Ogata and Shiba. " When (J/t), ~ J/t 5 (J/t)2, the eight
wave vectors close to the FS are nearly degenerate, the
energy difference being smaller than J/15, much smaller
than the total bandwidth (of order J). This indicates that
the strong correlations lead to nontrivial effects corn-

TABLE I; Energies and spins of the one-hole exact states classified according to their symmetries for
L =10and J/t =0.25.

Q = (0,0)

Q=(m, m)

Q = (2m /5, 4~/5)

Q=(3n/5, m/5)

spin

kinetic

El —Eo
Sp1Q

kinetic

Ei —Eo
spin

kinetic

E
spin

kinetic

—1.423

2

—3.065
—1.518

—3.206
—1.658

1
2

—2.803
—1.654

1

2

—2.720

—1.457
3
2

—3.051
—1.474

3
2

—2.958

—1.310
1

2

—2.945
—1.321

2

—2.769
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TABLE II. Total energies, spins, and kinetic energies of the one-hole lowest states on a 16-site clus-
ter (J/t =0.25). The classification is done according to the momentum Q and the different irreducible
representations of the little groups of Q, C~„Cz„and C, . The related orbital symmetries are indicated
between parenthesis [only valid for Q=0 and Q= (a, n )]. A question mark (?) means that there are ex-
cited states of di6'erent spin with the small energy di6'erences.

Q = (0,0)

Q=(~, ~)

Q= (m., O)

Q = (~/2, rr/2)

Q=(m/2, 0)

Q = (n, vr/2).

E1 —Eo
spin

kinetic

E1 —Eo
spin

-kinetic

E1 —Eo
spin

kinetic

spin

kinetic
—E

spin

kinetic

E1 —Eo
spin

kinetic

A1(s)

—1.557

3.002
—1.518

3
2

—3.039
—1.894

1

—2.896
—1.894

1

2
—2.896
—1.776

1

2

—2.844
—1.700

—2.875

A2(s')

—1.295
1

2

—2.970
—1.227

3
2

2.980
—1.190

1

2

—2.985
—1.452

1

2

—2.922
—1.491

1

2

—2.970
—1.490

3
2

—2.982

&1(d.2,2)

—1.473

—3.009
—1.434

2

—3.045
—1.473

1
2

—3.009

B2(d, )

—1.525
3
2

—3.035
'—1.534

2

—3.004
—1.434

2

—3.045

E(p,p, )

—1.452
1

2

—2.908
—1.453

1

2

—2.937

TABLE III. Total energies, spins, and kinetic energies of the one-hole lowest states on a 18-site clus-
ter (J/t =0.25). The classification is done according to the momentum Q. Depending on Q the point
groups involved are C4„and C, .

Q = (0,0)

=(m., m)

Q=(2m/3, 2m/3)

Q= (m /3, m /3)

Q = (21T/3, 0)

Q=(~, m/3)

E1 —Eo
spin

kinetic

E1 —Eo
spin

kinetic

Eo
spin

kinetic

spin

kinetic

E1-Eo
spin

kinetic
—E

spin

kinetic

A, (s)

—1.683
1

2

—3.150
—1.573

3
2

—3.091
—1.846

3
2

—3.052
—1.988

2

—3.074
—2.004

1
2

—3.035
—1.954

1

2

—3.036

A, (s')

—1.309
1

2

—3.181
—1.284

1

2

—3.091
—1.640

2

—3.028
—1.553

2

—2.997
—1.585

—3.119
—1.606

1

2

—3.158

~, (d 2 2)

—1.378

—2.985
—1.420

1

2

—3.016

82(d )

—1.644
3
2

—3.081
—1.734

3
2

—3.149

E(p,p, )

—1.537
3
2

—3.073
—1.534

3
2

—3.157
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TABLE IV. Total energies, spins, and kinetic energies of the two-hole lowest states on a 10-site clus-
ter (J/t =0.25).

Q = (0,0)

Q=(m. , m)

Q=(2n /5, 4m /5)

Q=(3m/5, m/5)

Ez —Eo
spin

kinetic
E

spin
kinetic
Ez —Eo

spin
kinetic

spin
kinetic

—3.566
0

—5.966
—2.902

1
—5.050
—3.652

0
—5.606
—3.451

1
—5.812

Bj
—3.652

0
—5.606
—3.346

1
—5.291

—3.504
1

—5.603
—3.150

2
—5.242

agonalizing the 18-site cluster with two holes but we do
not have the result up to now.

Let us discuss now the GS properties under point
group operations. For a uniform state (Q=0) the
different irreducible representations can be classified in
terms of orbital symmetries s, s', d z z, d „and the dou-

blet [p,p~] (L =16). However one should notice that
for ten sites the reAexions do not exist so that there is
only one kind of s or d symmetry. For both sizes we
found a crossover between s-type, at small J/t to d-type
symmetry at larger J/t. For L =16, it is more precisely
s~d 2 2. The critical value lies around J/t=0. 1 —0.25x —y
and 0—0. 1 for 10 and 16 sites, respectively. As already
mentioned above, this crossover is simultaneous with the
momentum transition from a nondegenerate to a degen-
erate GS.

Hole-hole correlations defined as

1C(r)= —g rrr (r;)rr„(r;+r)), (7)

b, =(E2 —E() ) —2(E) —Eo ),
where E2 E] and Eo refer to the two holes, one hole,
and Heisenberg GS energies on the same cluster. A nega-
tive value of b, is an indication of an eft'ective attraction
although it is not yet clear how 6 will scale with the size.
We have plotted b, versus J/t on Fig. 7. This clearly

where ni, (r, ) = 1 n; ha—ve been computed and are report-
ed on Fig. 6. Actually we have performed an average
over all possible degenerate GS so that C(r) depends only
on the modulus r = ~r~.

One can study the tendency of the two holes to bind to-
gether by defining the quantity

TABLE V. Total energies, spins, and kinetic energies of the two-hole lowest states on a 16-site clus-
ter (J/t =0.25). See Table II for symmetry classification.

Q= (0,0)

Q= (m, m. )

Q=(m, 0)

Q=(~/2, n/2)

Q= (m. /2, 0)

Q=(m, vr/2)

E —E
spin

kinetic
E —E

spin
kinetic
Ez —Eo

spin
kinetic
Ez —Eo

spin
kinetic
E —E

spin
kinetic
Ez —Eo

spin
kinetic

W, (s)

—3.72
0

—6.04
—3.31

1
—5.81
—3.66

1
—5.91
—3.79

1
—5.71
—3.73

0
—5.67

3077

1
—5.74

Az(s')

—3.55
0

—5.68
—3.66

0
—5.87
—3.80

1
—5.70
—3.81

0
—5.62
—3.77

1
—5.74

3r73
0

—5.67

Bl(d.z, z)

—4.000
0

—5.78
—3.81

1
—5.73
—4.000

0
—5.78

B(d )

—3.42
0

—5.84
—3.52

0
—5.94
—3.81

1
—5.73

E(p,p, )

—3.76
1

—5.76
—3.81

0
—5.61
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shows a net binding roughly proportional to J above a
critical value of 0.25 in agreement with Ref. 6.

III. VARIATIONAL RVB STATES

A. General construction

I.O '

Linear superposition of valence-bond configurations
can be simply constructed for infinite systems as well as
for finite clusters. Although the RVB wave function
gives extremely good results for the Heisenberg model, its
validity is still controversial for the doped system. How-
ever, since the ground states of the two holes clusters are
singlets (even for J =0) the RVB is a priori a good candi-
date to describe the GS properties. Besides mean-field
theories' ' different classes of such wave functions were
studied by variational Monte Carlo simulations' '
(VMC) or, for the Heisenberg model, by exact diagonali-
zation studies ' or moment calculations. ' Let us first
consider the following complex form of RVB:

where c; creates an electron of spin o. at site i, n; is the
particle number operator, ~0& the vacuum state, and Pd is
the projector on the subspace of no doubly occupied site
so that (7) is defined on the same Hilbert space as Hamil-
tonian (1). N is the actual number of electrons and we
will consider the two hole case, N =L —2 (L=10 and
16).

The factorized form (9) can be expanded and gives a
superposition of valence-bond configurations. These are
defined by N/2 singlet bonds over L 2=N—sites in a
way that each site (which does not have a hole) belongs to
exactly one bond. The a(r, , r ) describe the probability
to find a singlet bond between the lattice sites i and j.
They have the variational form a (r;,r )

=a; exp[iQ (r;+rj)/2]. We do not set aside a priori the
possibility of a Q=(n, O) RVB for the L =16 cluster
where the GS (for sufficiently large values of J/t) is at
least threefold degenerate of wave vectors Q =0 or
Q=(m, O)(O, m) However, as we shall show later, energy
calculations will rule out this finite Q RVB against the
zero momentum RVB. The singlet pairing amplitudes
a;j =a (r, —rj) are N/2 complex variational parameters
which are chosen so as to minimize the energy expecta-
tion value. In order to get a singlet state (total spin
S =0), it is necessary that they are even functions of the
position, a (r)=a ( —r). For a given configuration

I i 1,j$ J characterized by the positions of the up and
down spins on the cluster, the corresponding amplitude
of (9) is simply given by the determinant of the
N/2XN/2 matrix Ia(r;t, rid) I. The correct calculation
of the phase factors of the amplitudes arising from the
permutations of the fermion operators after expanding (9)
is a tedious problem.

First, let us assume that the singlet distribution is
chosen to be translational invariant leading to a RVB
wave function of Q =0 wave vector (and total spin S =0).
The remaining symmetries of the trial wave function (un-
der rotation and reflexion) are closely related to the sym-
metries of the a;. under the same operations. Under m/2
rotation, rj~Fj, and reflections (along x or y), r;j~rj,
the latter tranform as

0 ij + ij + ( ij )
(10)

—I.O—

respectively. We have assumed "s +id" symmetry under
rotation but no special constraint under reAexion. That
means that ~+RvB & breaks both symmetries and expands
over several space-group representations,

0 0.5 I.O

FIG. 7. Two-hole binding energy vs Jjt.

The index R corresponds (for a 16-site cluster) to the s, s',
d, „and d„representations. (s' states are antisym-

X P
metric with respect to reflections. ) The doubly degen-
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crate representation (E) is not involved since the a (r)
are even functions of r. It should be noted that these ir-
reducible representations correspond to the symmetries
of the wave functions, not of the pairing correlation func-
tions. By transforming the set of a,. under each point
group operation (see Eq. 10) it then becomes possible to
define four degenerate RVB states (two pairs of complex
conjugate states) which have nonzero off-diagonal Hamil-
tonian matrix elements,

a(r;, rj )~a(r;, r. )*,
a(r;, rj )~a;.exp[iQ (r;+ri)/2],

(14)

Let us now briefly describe how to construct the
Q = (m, 0) RVB state (L = 16). The symmetries that leave
the Q vector invariant are the vr rotation and the x
reAection leading to the following transformations of the
singlet amplitudes:

Ie (ja,', j)&, I+„',(ja, j)&,

Ie„„(ja,, j)), I+,*„(ja,, j)) .

(12)

where we have assumed the a; to have real s +d symme-
try. It is then straightforward to see that the symmetry
of the exact GS of finite momentum (for J~ Jc) can be
achieved by

A linear superposition of those restores the square lattice
symmetries and can lead to a lowering of the energy ex-
pectation value. This is performed as follows (L =16):

Ie(Q=(~, 0),a, ) &

=1m[IV (ja;, j)&+I+ (ja, j)&] . (15)

, & =Re[I+&»( j a, j ) &+ I+&»( j a;, j ) &],

le„)=Re[le~»(ja, ', j))—I+~»(ja,, j))],
(13)

I +, &
= Im[ I +~vH( j a,~j j ) & +

I +~vH( j a J j ) & ]

I+, )=1m[I pRVB(ja(j j) &
—I+RVB(j 'j j))] .

One should notice that the 10-site cluster is not invariant
under reOections. Consequently there is only one s-type
and d-type space-group representation (for Q=O). The
corresponding RVB are simply obtained by taking the
real and imaginary part of (9).

The assumption (10) is a generalization in the doped
system of the "fIux phase" RVB for the Heisenberg mod-
el defined by NN singlet amplitudes equal to 1 or i along
x and y, respectively. However, one should mention first
that the Aux phase on the Heisenberg lattice does not
break the rotational symmetry since the number of verti-
cal bonds is even leading to a real wave function (on a
4n+4 sites cluster). This is no longer true if one adds
two holes on the lattice so that the correct symmetry has
to be restored by taking the real or the imaginary part.
Secondly, we would like to point out that, in order to in-
crease the kinetic energy, longer bonds are to be now in-
cluded. Indeed, the kinetic term of (1) connects A —A to
A —8 bonds (where A and 8 refer to the two sublattices).
A wave function (9) containing only one kinds of bond is
doomed to have zero kinetic expectation value. This is
not inconsistent with the moments calculation of Lederer
and Takahashi' of the hole kinetic energy in a "NN
RVB": they compute the density of states in a limit
where all states are incoherent and eigenstates of the
momentum operator are spread evenly over the hole
band. Thirdly, it should be stressed that the above sym-
metry requirements are necessary only for a finite system.
However, in the thermodynamic limit, the possibility of
rotational symmetry breaking cannot be ruled out a priori
and a flux phase state of the class (9) with s +id ampli-
tudes may become the best variational candidate. This
requires that no nonzero Hamiltonian matrix elements
are connecting the four degenerate states (12). This
necessary condition is unfortunately violated on finite
clusters.

B. Results

The variational form (9) includes the so-called project-
ed BCS wave function, ' ' simply obtained by the follow-
ing Fourier transform of the a;.:

g (g2+ g2)1/2
(16)

where gk= —2(cosk +cosk )
—p, and b,z=h(cosk„

—cosk ) (d wave), hz =b, (cosk„+cosk~) —p (s wave) p, .
and b are taken as variational parameters. The motiva-
tion for studying more complicated wave functions than
(16) is due to the fact that (16) is improper to describe
properly our finite-size systems; the overlap of the d wave
(0'Hcsl%', „„,(d, &)) drops from 0.903 for L =10 to
0.04 for L =16 (J/t =0.25). This may be related to the
high degeneracy of the Fermi sea for two holes. However
let us mention the results obtained for I. = 10 and
J/t =0.25; for the d wave (s wave) the kinetic energy per
hole and the expectation value of the magnetic term of (2)
are 2.4t (

—2.215t) an—d 6.7J (7.8J), respectively. The
overlap of the projected BCS with the exact state of cor-
responding symmetry is 0.903 (0.865).

The variational parameters a;.= Ia;~ I expi p;J have been
optimized for different values of Jft for both 4, and

(or %'d for L =10). Their amplitudes la, I
are

~2 y2

found to be smooth functions of the distance between i
and j and their phases P; are mostly distributed around
m/6 and Svr/6. As an example let us assume L, = 16 and
J/t =0.25; the d 2 2 (s) RVB amplitudes la;Jl and

phases P," corresponding to the distances (1,0), (1,1), (2,0),
(2, 1), and (2,2) are approximately 3.0 (3.4), 0.93 (0.53), S.2
(S.O), 2.3 (1.6), and 1 (1) and vr/6 (m /5), m /2 (rr/2), n /5
(rr/5), ~/4 (m/5), and m/2 (m/2), respectively. The be-
havior of the kinetic and magnetic expectation values
with J/t is similar to their behaviors in the actual CsS (see
Fig. 5) although the magnitudes of the changes in the
range 0~ J/t ~1 are significantly smaller. While the
hole in the s-RVB gains more kinetic energy than in the
d-RVB, it costs more magnetic energy. Therefore there
is a smooth crossover between s type to d type with in-
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L= Io
o S

1.0— (+Rva I OExAGT) Nh= 2
L=I6

~ S
~ dx2-y2 — 0.6

—0.5

0.9— —0.4

0.8— —0.2

— O. I

0.7—
I I

0 OI 0.25 0.5 0.75
J/t

I
—0

1.0

creasing J/t. This is located around J/t =0.25 and
J/t =0.75 for L = 10 and 16.

Let us now consider the J=0 limit; the two holes in
the 16-site cluster can gain (Hx) = —2.79' and —2.77
per hole in the s- and d-type RVB, respectively, in agree-
ment with results by Lederer and Takahashi. ' Although
this is above the energy gain ( —3.0) in a ferromagnetical-
ly polarized state, we expect the spin liquid state to ac-
count properly for the spin Auctuations as soon as a finite
value of J/r is assumed. Indeed the overlaps of 4, and

with the corresponding lowest states of the same
2 —y2

symmetry show maxima at intermediate values of J/t as
plotted in Fig. 8. For J/t =0.25, L = 16, the relative ki-
netic energy gains (magnetic losses) differ from the exact
states of only —9.5%%uo (+26%%uo) and —8.9%%uo ( —0.8%) for
d & 2 and s-RVB, respectively.

X

FIG. 8. OverlaPs ('P„vs~%',»„) between the RVB state and
the lowest exact state of the same symmetries under rotations
(and reQexions for I.=16). The actual GS has alternatively s
and d symmetry when Jj t increases.

IV. CONCLUSION

We have studied the GS of the t-J model for one hole
on 10, 16, and 18 sites and two holes on 10 and 16 sites.
New physical insights can be obtained by considering
separately the kinetic energy and magnetic energy as a
function of J/t. The number of bonds broken by a single
hole (staggered magnetization) is increasing (decreasing)
with a power-law behavior as J/t~0

The GS in the case of two holes is a singlet for all range
of J!t Th.erefore, contrary to the one-hole case, the fully
polarized ferromagnetic state is unstable against the sing-
let state even in the extreme J=0 limit. The symmetry
of the GS is found to change with J/t; for small J/t the
GS is Q=O and symmetric with respect to point group
operations. For J/r larger than the critical value, the GS
is antisymmetric with respect to ~/2 rotation and be-
comes degenerate to QWO states. This degeneracy is due
to the specific symmetries of L =10 and 16 sites with
periodic boundary conditions. In order to determine
nonambiguously the GS momentum large size calcula-
tions are necessary. The binding energy of two holes is
roughly proportional to J.

We calculated the variational RVB state with two
holes. As the exact GS, the symmetry of the low'est ener-
gy RVB state is also shown to change from s wave to d
wave. The overlap of the RVB and the exact state be-
comes maximum around J/t -0.25 —0.5.

After this work was completed we received various
preprints addresing the question of the stability of the
ferromagnetic state in the one-bond Hubbard model. '
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