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Raman intensities near second-order transitions: RP5O14 ferroelastics (where R is a lanthanide)
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This paper provides a theory of Raman intensities for soft optic modes at second-order structural
phase transitions. It combines the general theory of Fleury [Comments Solid State Phys. 4, 167
(1972)], which gave expressions for the total light scattering cross section {including Raman, Bril-
louin, and central-mode components) with the theory of Errandonea [Phys. Rev. B 21, 5221 (1980)],
which described a specific form of coupling between the optic-mode order parameter Q and certain
elastic strain components ej for the RP50l4 family of ferroelastics. The result of combining these
two theories is a set of explicit expressions for the Raman intensities of the soft optic mode alone as
a function of temperature, in both phases, and for all Raman tensor components. The predictions
are compared with experimental data for both ZZ, YY, XX, and ZX polarizability components
above and below T, for both LaP&Ol4 and TbP50l4, good agreement between theory and experiment
is obtained.

I. INTRODUCTION

In 1972 Fleury provided' an analysis of light scattering
near second-order structural phase transitions that relat-
ed the total cross section to specific critical exponents.
These cross-sectional dependences depend explicitly upon
the form of coupling between the light and the order pa-
rameter. Unfortunately, however, the cross section in
Fleury's theories are for total light scattered, including
Ram an, Brillouin, and "central-mode" intensities. It
would be a significant advantage for experimentalists
wishing to apply or test such theoretical formalism on
their light scattering data to have an extension of these
theories to predict the intensity dependence upon temper-
ature for the Raman scattering alone, which in most
cases is dominated by the T-dependent cross section of a
single "soft" mode. In this paper we have combined
Fleury's general results with a specific-mode coupling
given by the free-energy description of Errandonea for
the lanthanide pentaphosphates RP50i4, which exhibit
C2t,

—D2t, (P2, Ic-Pcrrtn ) displacive ferroelastic phase
transitions for R =La, Ce, Pr, Nd, Sm, Eu, Gd, and
Tb. ' The input parameters in applying this theory to
our own data on LaP50, 4 and TbP50, 4 are optical pho-
non frequencies to(T) as functions of temperature; these
frequency measurements are, of course, completely in-
dependent of the measured intensities I( T) and serve to
guarantee that the theory is fully self-consistent.

We believe that this present work is therefore the first
successful application of Fleury's theory to Raman inten-
sities near second-order phase transitions, although for
completeness we point out an earlier attempt by Vforlock
and Olson for the case of SrTi03.

II. THEORY

It is already well established by dilatometric measure-
ments, Brillouin ' and Raman studies, ' ' and other
techniques, that the eight lanthanide pentaphosphates

that crystallize at room temperature in the C2& point-
group symmetry structure all undergo continuous transi-
tions to a D2I, form at temperature between 120—180'C
and that these transitions can be described as mean field.
The experimental light scattering studies of this system
have been reviewed by Scott. ' In the earlier studies
some authors have noticed an obvious change in Raman
intensities upon heating through the transition tempera-
ture, ' ' but no quantitative analyses were given.

In a fixed scattering-experiment arrangement, the cross
section of light scattering is determined by the Fourier
component of the fluctuation in dielectric tensor:

In the case of a structural phase transition, the Auctua-
tion of dielectric constant h8 arises from the fluctuation
of the order parameter hi). The coupling of g to 8 can
be generally written as

6=6o+ari+bg +col + . .

If the linear term dominates the coupling, then

However, if the quadratic or cubic term becomes dom-
inant, then

(4)

or

is the Fourier transformation of the space-time
correlation function of the order parameter. ( ~hiiq
is generally called the dynamic structure factor. Based
upon the fluctuation-dissipation theorem and the
Kramers-Kronig relation and with the high-temperature
approximation, Fleury expressed the dynamic structure
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factor S(q, co) as

J S(q, cu')dc'' O-y(q, F2=0),

where y(q, O) is the generalized susceptibility. According
to the critical behaviors of g and y predicted by theory
and to Eqs. (3)—(5), in the vicinity of transition point the
light scattering intensity of the soft optic mode plus its
coupled Brillouin and central modes is for linear coupling

TQ TQ Tc TQ

I1

~y(q, O) ~ e (7)

quadratic coupling

I2
~21 g(q, O) ~e ~

and cubic coupling

I2
T

(9)

where e=( T To )/To—. Simulations of Raman shift and
intensity of soft optic mode versus temperature are
shown in Fig. 1(a), where the mean-field exponents
P=0.5, y =y'=1.0. It is obvious that for different cou-
pling forms of 21 to 8 the intensity behaviors are difFerent.
For linear coupling the intensity decreases above and
below T, . For quadratic coupling the intensity is a step
function, while in the case of cubic coupling the intensity
decreases monotonically. In the two later cases the inten-
sity expressions Eqs. (8) and (9) include factors of the or-
der parameter g, therefore the light scattering intensity
vanishes above T, . From Eqs. (7)—(9) there are two possi-
bilities of testing the validity of the theory: Firstly, to fit
the exponential relation of Eqs. (7)—(9) and determine the
critical exponents; secondly, to calculate the generalized
susceptibility g(q, O), which is an inverse second deriva-
tive of the free energy, and then to compare the explicit
intensity expression with experiments. In the following
we will deduce concrete expressions of y(q, O) and light
scattering intensity for R P50,4 and carry out these two
options.

The most remarkable spectroscopic features of the
transition C2&-Dzh in RP50&4 are the total softening of
elastic constant c55 and the limited softening of the
lowest oPtic Phonon Ag-Bzs ( As in monoclinic Czk, Bzg
in orthorhombic Dzk ). The phase-transition coupling is
well revealed by the opto-acoustic coupling:

(10)

Tp

(a)
Tc

(b)

mode's contribution to the phase transition is not
significant, it is always ignored in the first step of con-
sideration.

To describe the ferroelastic phase transition in R P50,4,
Errandonea has suggested a phenomenological model of
the free-energy expansion

FICx. 1. (a) Mean-field-theory prediction of frequency square
and light scattering intensity vs temperature for a uncoupled
soft optic mode under different coupling forms of g to
Mean-field exponents are P=0.5 and y =y' = 1.0, and are
shawn as solid curves; non-mean-field results using P= —' and

3
are shown as dashed curves for I2 . (b) Frequency square

vs temperature curve and theoretically predicted intensity vs

temperature curves for soft optic mode in RP50&4 according to
Table I. A linear coupling of form eQ and different coupling
forms of q to 6 are assumed. Note that for I&, non-mean-field
exponents result in a nonmonotonic intensity dependence vs T
as T, is approached from below (dashed curve).

where D is an opto-acoustic coupling constant. This rela-
tion indicates that a lattice instability can take place (i.e.,
cs5=0), even if the optic phonon retains a finite value.
coT (T, ) is found to be 19—20 crn ' for all monoclinic I
crystals from LaP50, 4 to TbP50&4.

Besides the Ag -B2 soft mode, another soft mode of
+g +3g symmetry has also been reported. ' ' It is
thought to couple with elastic strain e4. Because this soft

with

and

+I', +F, ,

g2+ g4
q

e 2 X I J l~j 2 2 kk k
l,J =1,3 k =4, 6
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with A =-a(T —To).
Us1ng tQc prlnclplc of fI'cc-cncI'gy mlnlII11zatlon RIld

dctcImlnlng thc corrcspoIldlng second dcI'1vat1vc, EITan-
donca obiairlcd thc temperature dcpcndcncc of all pRI'Rm-

eters in this free energy. From Eqs. (7)—(9) and the free-
energy expansion expressions in Eq. (11), the integral
light scattering intensity of ihe soft optic mode is present-
ed in the second column of Table I. The soft-mode fre-
quency is R.'iso listed. The temperature variables noted
here are t=T T„—t'=T, --T, g=1/(T, —To), and
g'=1/(To —T, ) with T,,

—To=6 /aCs;, To —To
=(B'/28)G /aC»), and

2OGO—

lOOO—
3

—IOG -50 0
(T- Tc) (K)

50 l00

a'=a —2 g (c,', ) '&, &, .
i,j == I, 3

An explicit 6t to the experiment data requires a
knowledge of the temperature parameters: g, g', 'E„and
ratio 2B/8' in Eq. (11). Figure l(b) illustrates the inten-
sity versus ielllperaturc according to the formulas given
in Table I with the temperature parameters obtained
from frequency mcasurcmcnt. It 1s scen fronl thc com-
parison of Fig. 1(b) with Fig. 1(a) that the bilinear op-
toacoustic coupling of eQ not only aP'ects the optic soft
mode's frequency behavior (it does not soften to zero) and
shifts transition temperature bui also changes the soft
Dlodc s 1ntcns1ty bchavlo1.

In order to obtain thc critical exponents, the alterna-
tive representations for intensity are givejl in the third
column of Table 1. The temperature variables are
Tc, To, Rnd To. Thc cI'1t1cal cxpGIlcnts g RIld g can bc
easily obtained from the I, /T representation in double
logarithmic scale, while /3 can be obtained from I2/T
with a given value of y'.

I ight scattering experiments were carried out in R nor-
mal 90' scattering geometry with an Ar laser as excita-
tion source. Thc or1cntcd crystals Qf thc two cJld's com-
pounds 1Il monocl1Mc I 8 Pg014 JLRPg014, Rnd TbPgGig,
wcI'c used Rs sRIDples. Tllc temperature-CGntrol accuracy
was +1 C. Figurc 2 is thc temperature dependence of

FIG. 2. A~-82~(ZX) soft-mode frequency square vs tempera-
ture in R P,O]4. Both LaP50]4 (A ) and TbP5al4( 0 }data are in-
cluded. The least-squares 6t give the parameters.
28/8'=- —4.8; 1/g =109'C; 1/g'=23 C.

the As-Bz~ soft-mode frequency observed in X(ZX)Y
and Z(XZ)F geometries. The intersection of two m —T
straight lines corresponding to temperature ranges above
and below T, determines T;, which is found to be 122'C
for LRP50&4 and 173 C for TbP50&4. The intersections of
these two high- and low-temperature branches with the
emperaiure axis determine To and To, respectively. To

and To are found to be T, —To = 1/g = 109 'C and

To —T, = 1/g ' =23 C; the ratio of the two slopes is
2B/8'= —4.8. Figure 3 is the temperature dependence
of the A soft-mode frequency observed in X(ZZ)F and
Z( 1'F )X geometries of LaP, O,4 and Z(XX) P of TbP50, 4.
The solid line is drawn identical to the low-temperature-
branch solid line in Fig. 2.

The full width at half maximum (FWHM) of soft
modes is in the range of -7—10 cm ' in the whole tem-
perature region and the instrumental function is a Gauss-
ian with a FWHM of 2.5 cm '. The integral soft-mode
intensity is obtained after a deconvolution of instrumen-
tal function. It is apparent thai the linear coupling mech-
anism is suitable for the case in which soft modes are Ra-
man active both above and below T„while higher-order

TABLE ~. Temperature dependences of the frequency and Rarnan-scattering intensities for the soft-optic mode under coupling
forms of q to P~. C is intensity scale factor, descriptions of other parameters are given in the text.

Temperature 1eglon

Frequency Im~

Il
Linear coupling lntenslty

T
I2

Quadratic coupling intensity —,
T

Cubic coupling lntenslty T

8' g'
]

1

a(28/8'i [t'+(1/g')]
1

'28 t+(1/g )

a
28B' t'+(1/g )

1
a t+-

g
1 1

a [t+(1/g)]

0

28 (T' —T)2

--( T' —T)C, (To T)

C -(T —T)'-~(T' —V )-'"
c 0

"-(T —T)'~(T' —T}-'
288'

a(T —To)"

C—(T—To)
1
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FIG. 3. Ag(ZZ, FF,XX) soft-mode frequency square vs tem-
perature in LaP5O&4.. ZZ(D), FY( ) and in TbP5O, 4: XX(o) .
The solid straight line is identical to the straight line of the
low-temperature branch in Fig. 2.

—
I 50 —IOO

couplings are appropriate for the soft modes (or polariza-
bility components) which are Raman inactive above T, .
Figure 4 is the intensity for ZX spectra, corresponding to
the As-82' soft mode for bilinear coupling of g to 6,
I&/T, in Table I. Figure 5 is the intensity fit for the
ZZ, YY spectra of the Ag mode for the quadratic I2/T
expression in Table I. The fit parameters T„g,g', and
28/8' are those obtained from frequency data. The
dispersion of intensity data is mainly because of the insta-
bility of the experimental setup. We emphasize that the
theoretical curves in Figs. 3 and 4 have no adjustable pa-
rameters, other than an overall vertical scale factor.

Figure 6 is a double logarithmic plot of ZX spectral in-
tensity I/T versus To —T or T—To. The slopes of the

FIG. 5. ZZ (A ), FF ( ) polarizability intensities in
LaP,O&4. The solid curve is a fit to the theoretical I2!T in
Table I for quadratic coupling of g to 8, with parameters given
in the text and in the caption of Fig. 2.

straight, Hnes give y = 1.16 of LaP5Q &4 for T & T„
@=1.18 of TbP5Q)4 for T & T„andy=1.07 of LaP5Q(4
for T)T, . Figure 7 is a plot of

y'ln(TO —T)+ln(I/T)-"ln(T, —T)

for ZZ and YY spectra of LaP5Q&4. The slopes give
P=0.47 and 0.49, which are in good agreement with the
P values of 0.46—0.50 according to frequency measure-
ments.
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FIG. 4. ZX polarizability intensities in LaP&O&4 ( ) and
TbP5O&4(O ). The solid curve is a fit to the theoretical I& /T de-'

scribed in Table I for linear coupling of g to 8, with parameters
given in the text and in the caption of Fig. 2.

FIG. 6. Double logarithmic plot of ZX polarizability intensi-

ty of LaP50&4 (A), TbP5O&4 (o) for T(T„and of LaP&O&4

( )for T)T, .
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FIG. 7. Double logarithmic plot of ZZ (O ) and YP ( ) po-
larizability intensity of LaP&O&4.

IV. DISCUSSION

We have found that a mean-field theory gives a good fit
to our experimental data, utilizing a bilinear coupling
form for the ZX polarizability intensities and quadratic
coupling form for the ZZ, FF data. We have hoped that
it would be possible to fit directly, as a single parameter,
the quantity (2P—y) that appears as a temperature ex-
ponent for intensity in Fleury's theory. Such a direct
measurement would be an extremely sensitive test of
non-mean-field (fluctuation dominated) phenomena, since

it provides a subtle test (2P —yXO). However, when cou-
pling is included, the intensity I2 is given by

(12)

so that 213 and y do not appear in the same exponent.
This means that P and y can be determined only as
separate, correlated parameters in the least-squares fit.

The critical exponent e does not appear in these data
analyses directly. Note, however, that through the Pip-
pard relationship, the same value of o, must describe the
longitudinal-acoustic sound-wave velocity (LA ph) depen-
dence near T, and also the critical part of the specific-
heat (SH) divergence near T, ." ' More precisely, these
two critical exponents are related as'

~sH=~LA i (13)
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where the crossover exponent (t is 1.0 in the mean field,
and cxhe~t

=cxph.

An expression of the Brillouin scattering intensity of
the soft acoustic mode corresponding to c55 can be ob-
tained -under the same consideration for the soft optic
mode. A comparison of theory and experiment is in pro-
gress.

*Permanent address: Department of Physics, Nankai Universi-

ty, Tianjin, China.
P. Fleury, Comments Solid State Phys. 4, 167 (1972); see also,

V. L. Ginzburg, A. A. Sobyanin, and A. P. Levanyuk, in
Light Scattering Rear Phase Transitions (North-Holland, Am-
sterdam, 1983), p. 3.

26. Errandonea, Phys. Rev. B 21, 5221 (1980).
J. F. Scott, Ferroelectrics 2O, 69 (1978).

~Ting Chen and Guangyan Hong, Chin. Phys. 7, 422 (1987).
~J. W. Worlock and D. H. Olson, in Light Scattering in Solids,

edited by M. Balkanski (Flammarion, Paris, 1972), p. 410.
J. C. Toledano, G. Errandonea, and J. P. Jaguin, Solid State

Commun. 20, 905 (1976).
7D. L. Fox, J. F. Scott, P. M. Bridenbaugh, Solid State Com-

mun. 18, 111 (1976).
8G. Errandonea and J. Sapriel, Solid State Commun. 32, 391

(1979).
W. K. Unger, Solid State Commun. 29, 601 (1979).

~oJ. F. Scott, in Light Scattering Rear Phase Transitions (North-
Holland, Amsterdam, 1983), p. 291.

~A. B.Pippard, Philos. Mag. 1, 473 (1956).
2C. W. Garlard, J. Chem. Phys. 41, 1005 (1964).

~ V. Janovec, J. Chem. Phys. 45, 1874 (1966).
4J. F. Scott, Ferroelectrics 47, 33 (1983); see also, B. A.

Strukov, S. A. Taraskin, K. A. Minaeva, and V. A. Fedori-
khin, ibid. 25, 399 (1980).

~5J. O. Fossum, J. Phys. C 18, 5531 (1985).


