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We study nucleation and growth in systems with two distinct stable phases for both homogeneous
and heterogeneous nucleation. Mean-field theories are developed that predict the fraction of ma-

terial in each of the two stable phases as a function of time in any dimension d. Exact solutions for
homogeneous and heterogeneous nucleation for d = 1 are obtained and compared with the mean-
field results. In the case of homogeneous nucleation in one dimension, we find an anomalous
power-law correction to the leading-order asymptotic behavior for large times. The power-law ex-

ponent is a continuously varying function of the nucleation rates. Finally, Monte Carlo simulations
show that the mean-field theories are surprisingly accurate for d =2.

I. INTRODUCTION

The Kolmogorov or Johnson-Mehl-Avrami model has
been widely employed as a model of the kinetics of grain
growth during the crystallization of amorphous
solids. ' ' It has also been applied to the kinetics of
reconstructive first-order phase transitions" ' and to
domain switching in ferroelectrics. ' ' In the model,
vanishingly small spherical grains nucleate at a constant
rate per unit volume I in the metastable phase and grow
isotropically at constant velocity U once formed. As first
shown by Kolmogorov, ' the volume fraction of untran-
formed material at time t is

Qd
N(t) =exp — I u "t"+'

d+1
where d is the dimension of space and Qd is the volume
of a d-dimensional unit sphere. A very thorough discus-
sion of the circumstances in which the Kolmogorov mod-
el can be applied may be found in Ref. 9.

The nucleation process in the Kolmogorov model is re-
ferred to as homogeneous because it occurs uniformly
throughout the metastable phase. In many cases, howev-
er, the nucleation is heterogeneous: Nuclei form almost
exclusively at impurities or defects which were present
before the phase transformation began. A simple but
often-studied model of heterogeneous nucleation is ob-
tained by randomly placing nuclei with density y
throughout the solid. When the phase transformation is
initiated at t=O, spherical grains form at each nucleus
and grow isotropically with velocity U. The volume frac-
tion of untransformed material at time t is

@(t)=exp( Qsyu "t ) . —
There is a single stable phase in both these models.

However, it is possible for a system to have two qualita-
tively different stable (or nearly stable) phases. In this pa-
per we will study the kinetics of both homogeneous and

heterogeneous nucleation in a system with two distinct
stable phases A and 8. In the case of homogeneous nu-
cleation, the A and 8 phases will be taken to nucleate at
rates I z and I z per unit volume of metastable phase.
For heterogeneous nucleation, the densities of A and 8
nuclei will be denoted by yz and yz, respectively. An
interface between the metastable and the A (B) phase
will be taken to propagate with constant velocity uz (u~)
once formed. An A-8 interface, on the other hand, will
Auctuate if both phases are stable and drift slowly if the
free energy di6'erence between the two phases is small.
Here we will neglect interface fluctuations and the slow
drift of A Binterfaces -(if present) and treat these inter-
faces as stationary. In general, I z&l s, y„Ays, and
u„Putt. ' We may assume that uz ~ v~ without loss of
generality.

Figure 1 shows the free energy density f as a function
of the order parameter M for a model system in which
there are two distinct stable phases A and 8. If the sys-
tem is initially in the metastable state M=O, grains of A
and 8 phase will nucleate and grow. The nucleation rates

FICr. 1. Free energy density f as a function of the order pa-
rameter M for a model system with two distinct stable phases.
M=O is a metastable state, while M =M& and M =M& are
stable. The barrier heights e& and ez may differ.
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I ~ and I z for homogeneous nucleation difFer if the bar-
rier heights e~ and e~ are not the same. Similarly, in the
case of heterogeneous nucleation, yz and y~ need not be
equal since difFerent types of defects may nucleate one
phase more readily than the other. Finally, the normal
velocity of an interface between the rnetastable and A

phases is

vg =I ~ [&+[f (o) f (M~—)]/~~ I . (1.3)

X—=Z, '+ +Rd, ,

where R,. is the ith principal curvature of the interface,
o-~ is the surface free energy, and I.~ is a kinetic
coe%cient. For grains much larger than a critical nu-
cleus, the reduction of the interface velocity by the sur-
face tension is negligible, and U

&
is to a good approxima-

tion just the constant

Lg[f (o)—f (~~ )]/~~ .

In the same way,

vtl =I.il [f (0) —f (Mtl )]/—o ~

for su%ciently large B-phase grains. The kinetic
coeScients I.„and I.tl (and hence v„and vil) will be
difFerent if the A and B phases are not related by a sym-
metry operation. Our models of two-phase nucleation
and growth are therefore expected to apply to systems of
this kind, and in the most general case the parameters
characterizing the A and B phases will difFer.

A variety of other applications of the models can be en-
visioned. For example, the growth of a colony of seden-
tary organisms on a nutrient surface often starts from a
"seed" or nucleus. A disk-shaped colony then spreads
over ihe surface at constant velocity as ihe organisms
reproduce. The colony expands isotropically until a
point on its perimeter reaches a place which has already
been occupied by a second colony. If the nutrient is ran-
domly seeded at I;=0, we have a realization of the model
of heterogeneous one-phase nucleation described above.
Homogeneous nucleation can be obtained by randomly
scattering seeds over the surface at a constant rate while
colonization proceeds, since a seed which lands on a pre-
viously occupied site does not produce a new colony.
Two-phase nucleation and growth occurs if colonies of
two difFerent species of organisms compete for the same
nutrien. Note that in general the growth rates of the
two difFerent ki~ds of colony will difFer.

The paper is organized as follows. In Sec. II we devel-
op a mean-field theory (MFT) for both homogeneous and
heterogeneous two-phase nucleation and growth in d di-
mensions. The models are solved exactly in one dimen-
sion (1D) in Sec. III. For the homogeneous case in d= 1,
we find that the fraction of untrarisformed material 4(t)
has an anomalous power-law correct~on to the leading or-
der long-time behavior

4(t)-exp[ —(I „+Ill)vllt ] .

are compared with the mean-field predictions. We give
our conclusions in Sec. V.

II. MEAN-I IKI.D THE&)RIES

n(t)=yQdv td

Otl—=0 dyv tt
d d —1

dt
(2.1)

I

This is of course an overestimate of n: Material which
has already been transformed cannot be transformed
again. If we neglect spatial correlations, this may be tak-
en into account by reducing dn/dt by a factor of (1 n)—
Equation (2.1) then becomes

dn
=Oddyv t '(1 n),—

d+
A dgU dkd 1C

dt d

This has the solution

N(t) =exp( Qd yv
"t") . —

Comparing this with Eq. (1.2), we see that we have in fact
obtained the exact result for heterogeneous one-phase nu-
cleation.

This approach is readily generalized to heterogeneous
two-phase nucleation. Arguing in the same way as above,
we obtain the following mean-field equations for the frac-
tion of material in the 3 phase, nz, and in the B phase,

Ply
'.

dna
=Oddy„v~t (1 n„ntl—)—dt

(2.2)

dfl g d d —1

dt
—Addi llvtlt (1 ng nil ) (2.3)

To solve this system, let N = I —n „—n~ be the un-
transformed fraction. Addition of Eqs. (2.2) and (2.3)
then yields

d@
+dd ('V a vw +'Ya vs )td d d —1

dt

This has the solution

A. Heterogeneous nucleation

Before deriving the MFT for heterogeneous two-phase
nucleation, it is helpful to first develop a MFT for hetero-
geneous one-phase nucleation. Accordingly, let
n (t) = 1 N—(t) be the fraction of material which has been
transformed at time t. If we ignore overlap of the grow-
ing spheres, then

In Sec. IV, Monte Carlo results in two dimensions (2D) N(t)=exp[ —Qd(y„v„"+yllvtl )t"] . (2.4)
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Inserting this in Eq. (2.2) and integrating, we have

ng (t)— d d I 1 exp[ Qd(p g ug +7'tiuii )t ]j
VA VA d d

g A VA +ggUB

(2.5)

In particular, the fraction in the 3 phase when the phase
transformation is complete is given by

d

(2.6)
PA UA +fgVg

n~(oo)=

B. Homogeneous nucleation

The mean-field equations for homogeneous two-phase
nucleation are obtained in a manner which is completely
analogous to that employed in the preceding section.
They are

wliele }=1 ii /1' A and cx = uti /ug.
As will be discussed in detail below, the MFT for

heterogeneous two-phase nucleation is not exact unless
UA and Uz happen to coincide. It does provide a good ap-
proximation in dimensions d 2, however.

0

FIG. 3. Grain geometry when the line O'P is tangent to the
A-8 interface at P. The nuclei of the A and 8 phase grains are
at 0' and 0, respectively. The A, 8, and metastable phases
meet at P.

dn„
=QdI „u„t (1 n„nz)— —

dt
(2.7)

AVA
d

n~(t)=
I AUA+I gUg

dna d d

dt
=QdI ttust (1 n„—nil) . —

Adding these, we have

(2.8)

X 1 —exp — (I „u"„+Itiuti)t"+'d+1

The fraction of material in the A phase at t = ~ is

(2.11)

d@ d d d

dt
= —Qd ( I"~ u „+I ti uit )t @ .

The solution to Eq. (2.9) is

Qd
N(t) =exp — (I „u„"+ I ti)uteri

(2.9)

(2.10)

~A VA
d

n~( oo )=
I AUA +I gUg

where I"=I~/I „.

1

1+I e" (2.12)

The time dependence of n„can now be obtained by in-
serting this into Eq. (2.7) and integrating. We find that

rnetas table

rnetastable
phase

A phase

FIG. 2. Collision of an A-phase grain with nucleus at 0' and
a 8-phase grain with nucleus at 0. The A, 8, and metast@ble
phases touch at the point P, which has polar coordinates
{r(8),0).

FIG. 4. Grain geometry for 0) HT. The points 0, 0', and P
are as defined in Fig. 2. The line 0 S is tangent to the A-8 in-
terface at T.
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C. Physical interpretation of the mean-Aeld approximations

Our mean-field results are not exact unless u~ =u~. To
understand why this is so, consider the collision of two
grains, one of A phase and the other of B phase. We will
do this in two dimensions, since the problem is trivial in
10, while the 2D result is easily generalized to higher di-
mensions. We will study the most general case in which
the nucleation of the two grains need not occur at the
same time.

Let the nucleus of the B-phase grain be at the point 0.
The nucleus of the A-phase grain will be taken to be a
distance R away at O'. Finally, introduce polar coordi-
nates with origin at 0 and the line between 0 and 0' on
the ray O=O. We shall find the equation of the interface
between the two phases when the transformation is com-
plete, r = r (8).

Let p(8) = r (8)/R and pa= r (0)/R. Rearranging Eq.
(2.13), we obtain

[a '(p po)+—1 —po] =1+p —2p cos8 (2.14)

or

Consider a time t after the grains first make contact at
time t =t, . Let P be the point in the upper half plane
where the A, 8, and metastable phases touch (see Fig. 2).
Provided that the line O'P lies entirely in the A phase
and the line OP lies in the 8 phase, the distance r (8) be-
tween 0 and P is given by

t t, =—v~ '[r(8) —r(0)]
=uz 'I[R +r (8) 2Rr—(8)cos8]'~ —[R r(0)]I .—

(2.13)

(1—a )p (8)—2(po+apo —o'. —a cos8)p(8)+(po+apo —a) —a =0 . (2.15)

The root of this quadratic satisfying p(0) =po is

p(8)=(1—a ) '(po+apo —a —a cos8)+(1—o. ) 'I(po+apo —u —a cos8) —(1—a )[(po+apo —a) —a ]j'~ (2.16)

for 0~a& I. For the special case u„=uz we have +=1
and

At the point of tangency we must have 8 & 0, so p(8) & po
and

p(8) =2po(po —1)(2po—1 —cos8) (2.17) a '(p po)+1 —po—)0 .

dO sinO
P

dp p
—cosO

(2.18)

where X(x) is the length of x. We now differentiate Eq.
(2.14) with respect to p to obtain

which is a branch of a hyperbola.
The expression (2.15) is valid until the line O'P be-

comes tangent to the A-B interface. For later times the
line O'P will not lie entirely in the A phase and a
diA'erent approach must be used to find the curve
r =r(8). Referring to Fig. 3, we see that the condition
for tangency is

1 dr X(PQ) r —R cos8
r d 8 X(O'Q) R sin8

or

Equation (2.20) now yields the angle 8T at which the line
O'P is tangent to the A-B interface:

8T=cos '(po+apo a) . — (2.21)

For the special case a=1 we have cosOT=2po —I.
Equation (2.17) then shows that r (8T ) = ~, so Eq. (2.17)
applies for all finite r and the entire interface is a branch
of a hyperbola. For a(1, however, rT—= r(8T) is finite,
and we must obtain the form of the A-B interface for
O) OT. Once the tangent point T has been reached, the
line OP is still contained in the B phase, but the shortest
path from P to 0' which lies entirely within the A phase
runs along the interface from P to T, and then straight to
O' (Fig. 4). Thus, for 8) 8T we have

v~ '[r(8) —rT)=u„'X(arcPT)

p sin8 =a [a (p —po)+ 1 —po] —p+cos8 . (2.19)
dO dI

dO'
dO' .

Combining Eqs. (2.18) and (2.19), we have

a '(p —cos8)[a '(p —po)+1 —po]=p —2pcos8+1 .

Finally, Eq. (2.14) can be inserted in this to yield

a '(p —cos8) [a '(p —po)+ 1 —po]

(2.20)

Di6'erentiation with respect to O then yields
2 1/2

dl

dO
(2.22)

The required solution to Eq. (2.22) is a logarithmic spiral:

r(8)=rTexp, (8—8T) for 8) 8z- . (2.23)
( 1 2) 1/2
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l 0 08 0
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efFect. The MFT is therefore exact for this case. A simi-
lar discussion applies for homogeneous nucleation.

The retardation of A-phase growth through collisions
with B-phase grains has the effect of reducing the fraction
in the A phase below the mean-field results (2.5) and
(2.11). Equations (2.5) and (2.11) are therefore exact
upper bounds on the A-phase fractions for heterogeneous
and homogeneous nucleation, respectively.

As usual, MFT is expected to become an increasingly
good approximation as the dimension of space d is in-
creased. The retardation effect is very marked in d=1,
since a B-phase grain completely arrests the growth of
one of the two point interfaces of an A-phase grain. As
we have seen, retardation is less pronounced in d=2, so
we expect that the MFT will be a better approximation in
2D than in 1D. This expectation is borne out by the
analytical and Monte Carlo work reported below.

III. EXACT SOLUTIONS IN ONE DIMENSION

It is useful to study two-phase nucleation and growth
in 1D, since exact solutions are possible in this case. Be-
havior which is qualitatively different from the mean-6eld
predictions emerges in one dimension.

A. Heterogeneous nucleation

FIG. 5. (a) Shape of the A-B interface at t = Oo for po=1 and
a ' =2, 3, 5, and ~. (b) Shape of the A-B interface at t = ~ for
cx =0.5 and p0=0.4, 0.6, 0.8, and 1.0. In both (a) and (b), the nu-
clei of the A- and B-phase grains are at 0' and 0, respectively.

Consider first the simpler case of heterogeneous nu-
cleation. As a preliminary step, we study a different
"one-sided" problem in which no nuclei are placed to the
left of the origin. Nuclei are scattered to the right of the
origin just as in the original problem. Let p~(t) be the
probability that the origin is transformed before time t by

Note that at 0=m symmetric segments of logarithmic
spirals meet to form a cusp. The shape of the 3-B inter-
face at t = 00 is shown for several values of e and po in
Fig. 5.

In Fig. 4, the line segment ST has the same length as
the arc PT which runs along the interface. This means
that the growth of the A phase is retarded in the vicinity
of the point P. It is not di%cult to obtain a parametric
equation describing the retarded portion of the interface
between the metastable and 3 phases, i.e., the arc SP.
This enables us to show a sequence of snapshots of the
collision of the A and 8 grains (Fig. 6).

We can now understand the nature of the mean-field
approximations. For simplicity, let us consider the case
of heterogeneous nucleation for o, & 1. The approximate
result (2.4) for the untransformed fraction @ can be inter-
preted as follows: According to Eq. (2.4), an arbitrary
point P& is untransformed at time t if there are no A-
phase nuclei within a distance U~ t of P, and if there are
no B-phase nuclei within a distance U~t of P, . This is not
exact because it does not take into account the retarda-
tion of the A-phase grains through collisions with B-
phase grains. If a=1, on the other hand, the condition
for tangency is never attained and there is no retardation

FICs. 6. A sequence of snapshots of the collision of the A-
and B-phase grains. 1, 2, 3, and 4 show the grain interfaces at
times t„.. . , t4, where t, & t2 & t3 & t4. The tangency condition
Eq. (2.21) is satisfied at time t =t, . The A-phase grain has just
enveloped the B-phase grain at time t = t3. The dashed rays ra-
diate from the A-phase nucleus and are tangent to the A-B in-
terface at t = ~. Retardation of the growth of the A-phase
grain occurs within the wedge enclosed by the dashed lines.
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B. Homogeneous nucleation Here,

We now turn to homogeneous two-phase nucleation
and growth in 1D. It is again convenient to first study a
"one-sided" problem in which nucleation occurs as usual
to the right of the origin but does not occur to the left.
We define pz, pic, and P as in Sec. III A. Thus, p„(t)dt is
the probability that the origin is transformed between
time t and t +dt by an A-phase grain. Such a grain can
have nucleated at any point x in the interval O~x ~@at
between times t —x lu„and t —x lu „+dt. Hence

A

p~(t)dt =f 1 „dx dt's t—

Xexp —(I „+I ) t—

I „dx dt's(t —x/u~ )

is the probability that an A-phase nucleus appears in the
interval [x,x +dx] between times t —x/u~ and
t —x /u „+dt .This can occur only if the interval
[x,x+dx] was not previously transformed —hence the
factor P(t —x/u„). The exponential factor in Eq. (3.10)
ensures that a second grain does not prevent the A-phase
grain with a nucleus in [x,x +dx] from reaching the ori-
gin. Changing variables from x to s=t —x/U~ in Eq.
(3.10), we obtain

p (t)=t „u f exp[ —
—,'(I „+1s)v„(t s)]P(s—)ds .

(3.1 1)

(3.10) In the same way,

fpz(t)=I su~ f exp[ —
—,'(I „+I~)vs(t s)]P(s)ds —.

Addition of Eqs. (3.11) and (3.12) yields

P(t)= —f II'„v„exp[—
—,'(I „+Iti)u„(t —s )]+I iiutiexp[ —

—,'(I „+Is)us(t s)]jP(s)—ds,

(3.12)

(3.13)

which is a closed integrodifferential equation for P.
To solve Eq. (3.13), we first convert it to a differential equation. This is accomplished by multiplying both sides of

(3.13) by exp[ —,'(I „+I ii )u„t ] and difFerentiating with respect to t. The resultant equation may be written as

t 'exp[ —,'(I &+1 ti)vent ][/(t)+(I ~+I ti)u„tP(t)+(I „u„+I'tiuti)P(t)]
tI sufi—(1 „+I'ti)(v„vs) exp[ ——,'(I „+Is )utes ]P(s)ds .

Differentiating once more, we obtain the third-order ordinary di6'erential equation

t +[(I „+I )(u„+u )t —1] +[(1„+I ) u„u t +(I „u„+I u )t]——d P 2 d p 2 3 dP
dt dt' dI;

+[(1„+I~) v„vent (I „u„+I—sus)]/=0 .

Our new step will be to construct a first integral of Eq. (3.15). Note that if we set

F(t)=j+(r„+r,)(u„+u, )tj+[(I,+I, )'u, u, t'+(I „v,+I,v, )]y,
then (3.15) may be written

tF=F .

(3.14)

(3.15)

(3.16)

This is readily integrated to give F(t) =kt, where k is a constant. Since P(t) approaches zero rapidly as t~ ~, we must
have k=O. We then have the desired Qrst integral F=O or

j+(I „+I,)(u„+u, )tj+[(r„+r,)'u„u, t'+(I „u„+I,u, )]y=o. (3.17)

Equation (3.17) may be reduced to standard form by
setting

/=exp[ —
—,'(I „+Is)(u„+uti)t ]g . where

=(—'v +a)g (3.18)

We obtain &=[(r,+I ti)(v„vs)]'"t—
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wher M is Kummer's function. ' We conclude that

P(t) =exp[ —
—,'(I „+I s )U~ t ]

XM( —,'a+ —,', —,', —,'(r„+rs)(U„—Us)t ) . (3.19)

The fraction in the metastable phase at time t in the
original "two-sided" problem is @(t)=P (t). Explicitly,

4(t)=exp[ —(I"„+I )U„t ]

XM ( —,'a+ —,', —,', —,'(I"„+Is)(U„—Us)t ) . (3.20)

For vz =vz =v, this reduces to the one-phase result Eq.
(1.1) with I'=I „+Is, as it must. For U~ (U„, the
asymptotic behavior of 4&(t) as t ~ oo is

where

Here we have used the fact that M(x,y, z)-e'z ~ as
z ~ ~ with x and y fixed. '

The solution to Eq. (3.18) which satisfies the initial condi-
tion g(0) = 1 is the even parabolic cylinder function'

f(r)=e M( —'a+ —' —' —'v )

The decay of @(t) for large t is slower than predicted
by mean-field theory if vz & v~. Also, the leading-order
asymptotic behavior of N in the two-phase model is the
same as the one-phase result Eq. (1.1) for d= 1 with I' re-
placed by l"„+I~ and v replaced by the smaller of v„
and v~, namely, v~. These observations are completely
analogous to those made previously for heterogeneous
nucleation in 1D. The power-law correction t to the
exponential decay of @(t) is a new feature which does not
appear in the MFT. Interestingly, the exponent v varies
continuously as a function of I = I s /r ~.

In the limit v~ ~0, we have the surprising result

Thus, when v&=0 material is transformed much more
slowly in the two-phase model than in the one-phase
model. This is to be expected since if vz =0, the increas-
ing number of 8-phase nuclei serve on1y to impede the
transformation of material by the growth of A grains. Of
course, for any vz & 0 crossover from power-law decay to
the rapid decay

@(t)—exp[ —( I"„+I ~ )Ut, t ]

will occur at times on the order of

( r +r )
—1/2 —I/2

Anomalous kinetics of this kind are not expected in
homogeneous two-phase nucleation and growth with
v&=0 in higher dimensions d, since point nuclei of 8
phase stop the growth of A-phase grains only in 1D.

The fraction of material in the 3 phase at time t is

sl
n ~ (t) =21 „U„ds, ds2exp[ —

—,
' (I z + I ~ )U~ (s I

—
&2 ) jf(&I )P(&2 ),

0 0

where Eqs. (3.5) and (3.11) have been employed. Equa-
tion (3.19) for P can now be plugged into this to yield a
closed expression for n„(t). Unfortunately, we have not
been able to evaluate the resultant double integral analyt-
ically, even in the limit t = ~. Rather than numerically
evaluate the double integral for different parameter
values, we found it simplest to find nz ( ao ) by a Monte
Carlo simulation.

Performing a Monte Carlo simulation of 1D homo-
geneous nucleation is straightforward. Our algorithm
proceeds as follows: First we generate the time until the
next possible nucleation event. This quantity follows a
simple exponentially decreasing probability distribution
which depends on the sum of the two nucleation rates.
The space coordinate for the event is selected from a uni-
form distribution over the finite size of the system. This
coordinate is then checked to see whether it falls in an
untransformed region at the time of the nucleation event.
If so, a new grain is formed. The phase of the grain is
chosen randomly, based on the relative nucleation rates
of the two species. If the site has already been

transformed, on the other hand, the event is simply dis-
carded. This process continues until the entire finite in-
terval has been transformed, after which the fractions in
the two phases are calculated. Finally, the simulation is
repeated to gather statistical information.

A number of structures were used to increase the
efFiciency of the calculation. In particular, the basic data
structure for describing the system at any time is a set of
the open intervals available for nucleation. These inter-
vals contain information on the velocities of the fronts as
well as information as to when the interval will close up.
This set is organized as a binary tree to provide a fast
means of checking whether a given point falls into one of
the intervals. The information on front collision times is
also stored in a binary tree to provide an efficient means
for eliminating null intervals.

The size of the system was varied to provide about
10000 actual nucleation events in each simulation. This
was found to make the finite size efFect negligible relative
to the statistical errors. Ten simulations were performed
for each data point, to provide an estimate of the statisti-
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cal fluctuations. The results are presented in Fig. 7 for
several values of

along with the mean-field prediction. As expected, the
Monte Carlo results fall below the values predicted by the
mean-field theory.

IV. MONTE CARLO RESULTS IN TWO DIMENSIONS

From our geometric results on the collision of a single
pair of grains in two dimensions, it is clear that a simula-
tion of a system of growing and colliding disks would be
dificult. In lieu of this, we have performed Monte Carlo
simulations of nucleation and growth in 20 for
diamond-shaped grains. To be precise, we employed the
Manhattan metric in which the distance between two
points (x„y, ) and (x2,y2) is

A

I

I

I

I

I

I

l

t

I

I

I

I

I

I

I
I

t
I
I

d» = lxi —x21+ lyi
—y2I,

whereas in our earlier work the Euclidean metric
FIG. g. An example of the grain geometry at t = ~ for

heterogeneous nucleation with U&/U„=0. 5. In this case there
are four A-phase grains and six 8-phase grains.

was used. At time t, therefore, the boundary of a single
A-phase grain which nucleated at the origin at time t=0
is given by ~x ~

+ ~y ~

=v„ t. A similar expression holds for
a 8-phase grain. As they were previously, A-B interfaces
are treated as stationary. Note that the grain boundaries
in these models are straight lines, even after two or more
grains have collided. This simplifies the Monte Carlo
simulation enormously.

The mean-field theories for heterogeneous and homo-
geneous nucleation are easily modified to apply to the
problems with growing diamonds. The results are given
by Eqs. (2.6) and (2.12) with d=2, and are the same as for
growing disks. Note that the retardation effect is still
present in our modified problems, so the mean-field
theories are only exact for v~ =v~.

A. Heterogeneous nucleation

lel to either x =y or x = —y. The stationary A-B grain
boundaries are also linear, but with slopes depending on
the relative velocities of the species. The primary data
structures we employed were two sorted lists of the mov-
ing boundaries, one for boundaries with constant x +y
ordered according to the value of x +y, and the other for
boundaries with constant x —y ordered according to the
value of x —y.

There are two types of events which can alter the
structure of these lists. One event corresponds to the
passing (or collision) of two parallel boundary segments
moving in opposite directions. The other event corre-
sponds to the disappearance of a boundary segment
which has been shrinking in size. The time to the earliest
event of either type is calculated in a single pass through

To simulate heterogeneous nucleation in two dimen-
sions, we distributed 100 nucleation sites in a square of
side 1000 with periodic boundary conditions. Although
these sites were constrained to lie on a square grid with
unit lattice spacing, the subsequent evolution was calcu-
lated in the continuum. The details of the algorithm are
presented in the following paragraphs. The simulation
was repeated ten times for each set of nucleation rates
and velocities. An example of a completely transformed
system is shown in Fig. 8. The Monte Carlo results for
n „(~ ) are shown in Fig. 9 for several diff'erent values of

9A =PA~(YA+VB)

and are compared to the mean-field prediction Eq. (2.6).
The data are very close to the mean-Geld results, but are
consistently below the latter by about one standard devia-
tion. As expected, the MFT is a much better approxima-
tion in two dimensions than in one.

The key element in the simulation is the observation
that the moving grain boundaries are line segments paral-
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FIG. 9. The fraction of material in the A phase at time t = ~
for heterogeneous nucleation in 20. The mean-6eld curves
(solid lines) and Monte Carlo results (vertical bars) are shown
for g &

=0.1, 0.2, 0.3, 0.4, 0.6, and 0.8.
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0.4 0.6 O.S

per time step was adjusted so that approximately 1000
nucleation events occurred for each simulation. Ten
simulations were performed for each data point. The re-
sults are shown in Fig. 10, along with the mean-field pre-
diction [Eq. (2.12)]. The results are once again close to
the mean-field prediction (and below it), but they appear
somewhat farther away than the heterogeneous case.
Part of this diA'erence is due to a small systematic bias in
favor of the slower 8 phase in the discretized version of
the problem. A more careful justification of our Monte
Carlo approach can be given by arguing that our results
provide a lower bound on the actual value of nz(~ ),
however. In any case, the Monte Carlo simulation again
supports our view that the MFT becomes an increasingly
good approximation as d is increased.

FIG. 10. The fraction of material in the 2 phase at time
t = ~ for homogeneous nucleation in 20 with u= 2. The solid

curve is the mean-field prediction, while the vertical bars give
the Monte Carlo results.

the lists. The segments are then updated to the new time,
and the area of each grain is incremented (by the amount
enclosed by the trapezoid formed between the old and
new location of a grain boundary segment). Finally, the
lists are updated to reAect the eItects of the various
changes in ordering, collisions, and disappearances. The
process continues until the lists of moving boundaries are
empty and the entire area of the system has been
transformed.

To avoid precision problems, all quantities in the simu-
lation were represented as rational numbers. This was
possible because the positions of the nuclei were on a lat-
tice and the velocities were chosen to have a ratio of
small integers. The algorithmic does not depend on ei-
ther condition, but the roundoA errors necessitate these
choices.

B. Homogeneous nucleation

As a result of the precision problems involved with real
number calculations, it was not possible to extend the ap-
proach we used for heterogeneous nucleation to the
homogeneous case. To obtain Monte Carlo data for this
case, we discretized both space and time and fixed the ve-
locity ratio e at —,. The simulation involved two stages at
each time step. In the first stage, a nucleus could form at
each untransformed site with a probability proportional
to the total nucleation rate. In the second stage, one of
the species was selected to grow. To obtain a velocity ra-
tio of —,', the 8 phase was chosen once every three steps.
Each untransformed site adjacent to the growing phase
was then occupied by that phase.

Simulations were performed on an 800X800 square
lattice with periodic boundary conditions. As mentioned
previously, o; was fixed at —,'. The total nucleation rate

V. CONCLUSIONS

In this paper we have studied nucleation and growth in
systems with two distinct stable phases, 3 and 8. Both
homogeneous and heterogeneous nucleation were con-
sidered. Our first step was to develop mean-field theories
for these problems which give the fraction of material in
the A phase at time t, n~(t). We then showed that dur-
ing the collision of an 2- and a 8-phase grain, the growth
of the faster-growing A-phase grain is retarded. This led
us to conclude that the mean-field theories are exact only
in the U„=uz limit. For U~ &U~, the mean-field result
for n„(t) is an upper bound on the exact result, however.
We then solved the homogeneous and heterogeneous nu-
cleation and growth problems exactly in one dimension.
The mean-field theories give poor approximations for
n„( oo ) in 1D, except in the limit u„ /uii —+ l. In addition,
we find an anomalous power-law correction to the
leading-order exponential decay of the untransformed
fraction 4(t) in homogeneous 1D nucleation and growth.
The power-law exponent is a continuously varying func-
tion of the nucleation rates. Nothing of this kind appears
in the mean-field theory.

As usual, we expect the mean-field theories to become
increasingly good approximations as the spatial dimen-
sion d is increased. This expectation is supported by our
Monte Carlo simulations of heterogeneous and homo-
geneous nucleation in two dimensions. Indeed, we found
that the mean-field results provide a surprisingly accurate
approximation for n„( ~ ) in d=2.

In closing, we would like to remark that many of the
results reported here are easily generalized to systems
with three or more distinct stable phases.
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