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Class of variational singlet wave functions for the Hubbard model away from half filling
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We present a class of variational wave functions for strong-coupling Heisenberg Hubbard models.
These are written in the form of three factors —a pair of determinants and a Jastrow function —and
are made out of orbitals, a la Hartree-Fock theory, which solve a fictitious one-body problem. The
wave functions respect various constraints known from general principles and appear to be poten-
tially useful in understanding the possible behavior of the models in quantitative terms.

I. INTRODUCTION

It is the purpose of this paper to introduce a new class
of variational wave functions for the problem of the s =

—,
'

(quantum) Heisenberg model with mobile vacancies.
Such a model is currently the focus of great interest, fol-
lowing the proposal of Anderson' that the high-T, ma-
terials are described by it. Although considerable insight
into the model has been gained from "mean-field"
theories, there is a need tn assess the relative stabilities
of various proposed "phases" —and it is here that we
need to appeal to more reliable quantitative tests. The
class of wave functions that we introduce are rich enough
to encompass the various possibilities uncovered by the
mean-field theories, and further to respect several
rigorous constraints that the ground-state wave function
must satisfy for Gnite-sized systems. We hasten to add

that we have not computed the energies of the various
wave functions that we propose here, but we present
some evidence for our belief that these must be competi-
tive in energy.

The problem we address consists of electrons with spin
up and down respecting the constraint that no double oc-
cupation is allowed. For orientation consider the Hamil-
tonian

II= tPQ(C, —C, +H.c. )P+ —,'gS, S,J,,
(ij ) (jt)

where P is the projection operator that annihilates doubly
occupied sites and the spin operators obey an exclusion
principle in real space vis a vis the "holes" (i.e., each site
has either an up electron, a down electron, or a "hole").
The relevant states in the Hilbert space on which it acts
are spanned by wave functions of the following kind:

g(r„rz, rMls„sz, . . . , s&)S„S„,. . . , S„Cs Cs, Cs
1 2 iV l& Z& Qt

(2)

where s„—=C„C„,and ~F ) is the reference ferromagnet-

ic state ii„C„~0). The above state represents a

configuration with Q holes, M down-spin electrons and
N-M-Q up-spin electrons. (N is the total number of sites. )

The wave function f is a function of only the coordinates
of the holes (s&, . . . , s&) and the down electrons
(r„.. . , rM) and provides the most compact description
of the configuration as long as Q (N/2 (since the up
electrons are present at all sites not contained in Ir j ar
Is j ). The function g must, in addition, obey several con-
ditions of exclusion: it should vanish when (for any i and
j) r, =rj or s; =s or r; =sj. The symmetry of the c's and
the symmetry of the s 's under exchange forces
g(r„. . . , rM~s„. . . , s&) to be symmetric under the ex-

change of any r; with r, and antisymmetric under the ex-
change of s; with sj To this list of constraints we must
add the condition of "highest weight, " i.e., S,+„,

& ~f) =0,
since the Hamiltonian is rotationally invariant and hence
we only need to generate states with a given total spin S
and S, =S (the lower S, states follow by acting with
S,„»). Thus, to generate a singlet state with Q holes (N
and Q even) we should pick M =(N —Q) j2. This condi-
tion readily translates into the following constraint on f:

where r2, . . . , r~, s &, . . . , s& are held Axed and r, is
summed over the entire lattice.
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II. VARIATIONAL WAVE FUNCTIONS

We now present our variational wave functions which
fulfill aH the above constraints and yet retain sufhcient
Aexibility as we demonstrate below. We first consider an
auxiliary problem of establishing a suitable basis in the
Hilbert space. We choose some Hermitian one-particle
problem —typically a hopping problem —and solve for
the eigenfunctions, thus:

gh; P (r )=A, P,(r;) . (4)

The eigenfunctions P form a complete orthonormal basis
set which are X in number. Thus

(P,P )=—gP;(r)P, (r)=5;, ,

, sg)

g f(s; —s) ) det[1t, (r )]det[y,* (tt3)] .
L&J

(6)

Here f (s) is an even function of its argument and will be
specified later. It is easily seen that the antisymmetry
with respect to s's stems from the second determinant
and the symmetry with respect to the r's stems from their
"residing" in both determinants. The hard-core con-
straints are all built into the determinants. The only con-
straint needing some thought is the highest weight
condition —we must verify that we annihilate 1t by sum-
ming r, over the entire lattice keeping all other coordi-
nates fixed. This follows readily when we expand the
determinants and find that a typical sum looks like
[P (r, )y,* (r, )] into functions of (r2, . . . , etc.), where

P. Qa

P and Q are some permutations of appropriate indices.
However, the sum over the square bracket is precisely
(g*,P ), which vanishes since P's and g's are distinct

Qa P.

eigenfunctions of a one-body Hermitian Hamiltonian.
The freedom inherent in our variational wave functions

stems from the various partitions of the complete set into
two subsets, and more fundamentally, from the complete
freedom in choosing the one-body Hamiltonian to "or-
ganize" the Hilbert space via Eq. (4). We give below
several examples of h;. and the resulting functions. Let
us- note that wave functions of this nature were discussed
by Shastry who considered the case with no holes and
with h; taken as the tight-binding model. The projected
Gutzwiller states considered by Gros, Rice, and Joynt
and Shiba are particular cases of this cia.ss.

where the sum is over the appropriate lattice. The
definition of h; in Eq. (4) in unspecified at this stage and
provides us with great flexibility. We define [t j for
1~a~M+Q

(ti, . . . , t~) (ri, —. . . , rM),

(tM+ltM+2) ' ' ) Q+M) ($1)$2) ' ' )Sg)

Further partition the eigenfunctions [P,] into two sets

tg, ~l ~i ~M] and [y, ~1 ~a~M+Qj with no com-

mon element. Our variational wave function is

We should note that the spin-spin correlations are
closely related to density-density correlations for "hard-
core bosons" described by their coordinates in (6) via the
correspondence Si ~(p; —

—,') and S;+~b;+ T. hus, we

may view g, as the wave function for a collection of
(hard-core) bosons and fermions which have strong on-
site repulsion. The modulus squared of the wave function
is interpretable as the Boltzmann weight of a
configuration of the bosons and fermions. It is worth
noting that the modulus square of a determinant is ex-
pressible as another determinant as follows:

)(detg, (r, )[['=detM,, 0,
where

M,, —= G(r, , r, ) =yy„*(r, )y„(r, ) .
k

The "orbitals" can thus be eliminated in favor of the
"Green's function" G(r;, r/ ).

The most interesting "sector" from our point of view is
the singlet state, wherein we have M=(X —Q)/2. In
this case the choice of g's determines completely the y's
which are M +Q = (N +Q)/2 in number and hence must
be the complementary sets. We now focus on the half-
filled case and discuss three different kinds of basis.

III. SPECIAL CASES

A. Free particles

This case corresponds to the one studied in Refs. 3—5
and the P's are simply the plane-wave solutions of a
tight-binding Hamiltonian. The singlet wave function
which shows considerable promise corresponds to choos-
ing g's to be the N/2 wave vectors comprising the Fermi
surface of a half-filled noninteracting model. For the hy-
percubic lattice, we have the complementary set of wave
vectors (entering detg) obtainable from the earlier ones
by shifting through Q=m. , m(1, 1), ~(1, 1, 1) in one, two,
and three dimensions. Thus,

Pz(ri, . . . , rM)= exp iQ gr; j[dete '
'~~ . (7)

L
1

This wave function is real and has the Marshall sign in
all dimensions. (This fact seems unknown to many work-
ers in the field. ) In fact, this wave function is intimately
related to the s-wave solution of Baskaran, Zou, and An-
derson (BZA), but has a net momentum Q (N/2) rather
than zero.

B. Density wave

We set up the one-body Hamiltonian by choosing a
staggered one-body potential energy which takes values
+Ap on the two sublattices 3 and 8. The tight-binding
model is defined by the recursion relations for this ampli-
tude

Ag(r) = gg(r +5)+ho—g(r)(5„„—5„s),

where k is the eigenvalue and 6 is the set of nearest-
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neighbor vectors. These equations are solved by

The amplitudes satisfy the two equations (A, —Ao)@z
Pk

—@a and (A, +ko )4a = fk—@„,where

d

fk = g cosk~
a=1

Thus, the eigenvalues are A, =+Ak, Ak =(Ao+gk )'~z. For
the bonding states X= —A, k, we have

and for the antibonding states k=+Xk,

A complete set of states is obtained by confining our-
selves to the N/2 k values for which fk )0 and retaining
the two solutions A, =+A,k. The variational wave function
for the half-filled case is now

ga(r„. . . , rM ) =detg'k '(r~ )[detlt'k+'(r )]' .

Note, however, that

where 8' is a unit translation vector [say a, a(1,0), a
(1,0,0) in one, two, and three dimensions]. Therefore,
denoting f(r„.. . , rM )

—=det1f 'k ', we thus find
1

ga(ri, . . . , rM)= exp iQ gr; .f(ri, . . . , rM)f*(ri+&, r2+&,.. . . , r~+@) .

Note that f can be chosen real since all wave vectors ap-
pear with their negates in the (lower) bonding band, and
hence ga is also real, and has the "correct" Marshall
sign.

This wave function ga is instructive, since it is actually
a singlet, and is translationally invariant for any finite-
sized system. The first determinant breaks translation in-
variance, which is restored by the second one. The wave
function ga possesses oscillatory spin-density correla-
tions which appear to decay exponentially, and the decay
length decreases rapidly with increasing A,o.

C. Flux phases

This case is perhaps the most fascinating one and has a
particular appeal and "naturalness" in two dimensions
that we now consider. The Hamiltonian h,z

is chosen to
be that of the tight-binding model in the presence of a
uniform magnetic field B pointing along the normal to
the plane. This is a problem considered by Hofstadter'
for arbitrary values of the flux through a square. We il-
lustrate the case of the square lattice with a fiux m (in
units of A'c/e) through each square. Such a flux is natu-
ral within the mean-field theory where it is recognizable
as the flux or s +id phase. * This flux, we believe, is op-
timal for small concentration of holes 5, but expect that
with increasing 5 the optimal flux should be reworked.
In particular, we expect commensuration effects to be
very important, and that there should be plateaus of sta-
bility of flux for rational 5."

The simplest illustration of our ideas is for the case of
flux m. which can be realized in a tight-binding model
with recursion relations

A,1t|(n,2v+1)= —t g [g(n+cr, 2v+1)
a=+1

+ f(n, 2v+ 1+cr )],
Ag(n, 2v)= t g [P(n, 2v+o) —f(n +—o, 2v)] . . (10)

These relations correspond to the Landau gauge with
A=( —y~8~, 0,0) with

Ba =
—,'hc/e,

and
r

2me j
t; =t exp —i A.dl

hc

We denote the "sublattice" A as all sites in odd num-
bered rows, i.e., (n, 2v+ 1) and k as all sites in even num-
ber rows (n, 2v). The obvious solution reads

P(n, m) =(@„5„„+@a5„a)e

with

( A, +2t cosk„)@„= 2t cosk» @—a

(A, —2k cosk )@a= 2t cosk~N~—.

The eigenvalues are thus A, =+A,k, where

A,„=2t(cos k„+cos k )'i

Correspondingly, the amplitudes

O'„+':Na'+'=[cosk„W(cos k +cos k )'~ ]:cosk

Noting that k„and k„+~ lead to the same solution, we
obtain the complete set of solutions by restricting to the
"first Brillouin zone'-' (BZ) —m (k„&n. , —

m /2 (k
m/2 containing one-half the k values, and retaining the

two bands with X=+A,k.
The singlet wave function obtained by choosing fk to

eA' 'is

Pc(r„. . . , r )M=[detg' (kr )][detP'k+'(r )]* .

Notice, however, that
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The amplitudes are

Note that f, is also a real wave function with the
Marshall sign; we thus see that all the functions P„, g~,
and gc are singlet and satisfy the Marshall sign and
hence cannot be orthogonal to each other nor to the ex-
act ground state of the Heisenberg model for a finite-
sized system. Further, the wave function gc should, in
the thermodynamic limit, be equal to the Gutzwiller pro-
jection of the Bardeen-Cooper-Shreiffer (BCS) BZA (Ref.
2) state with s +id symmetry. Its energy —as found by
Gros —is ——0.32 per bond (with the Hamiltonian
S; S per bond) and quite competitive with more ela-
borate calculations, and also much better than the s wave
(which should correspond to g~) with no fiux which has
an energy ——0.27 per bond.

IV. TRIANGULAR LATTICE

Another instructive example of the eKcacy of the flux
phases is the triangular lattice. Here, we could try the
wave function, at half filling, to be essentially as in gz,
with the two determinants made up of the set of N/2
lower and N/2 upper momentum eigenfunctions (i.e., bi-
partitioning the eigenfunctions using ek & ck ). The vari-

J
ational energy per bond was evaluated for a 6X6 lattice
and yields s- —0. 112/bond. Here the single-particle en-
ergies for the tight-binding model read

Ek=2t[cosk„+cosk +cos(k +k )]

(viewing the triangular lattice as a square with all diago-
nals in the northeast direction), and the density of states
is very skewed and asymmetric about zero energy—
unlike in bipartite lattices.

However, our construction (at half filling) requires a bi-
partitioning of the set of eigenfunctions and it would ap-
pear advantageous to choose a h that has a symmetric
spectrum (about zero energy). We show below that at a
flux of ~/2 through each triangle is specially suited for
this. The recursion relations for the amplitudes [analo-
gous to Eqs. (9) and (10)] are

P(n, m)=,t[g(n, m +1)+g(n, m —1)

+e ' g(n+ l, m)+el'™t/i(n —l, m)

me —&m/2q( n '+ 1

+ei~me iv/2$(n —
1 m 1)] (13)

where the hopping elements are worked in the Landau
gauge (with a flux m. /2 through each triangle). These can
be solved in the usual way with

f(n, m)= exp(ik n+ik m )

X [(( ~ (k)5~,„,„+pa(k)$~ ()dd] .

where the wave vector k + Q is brought into the first BZ
by adding an appropriate reciprocal-lattice vector.

Using this we find

(12)

[Pii(k):P~(k)]= ——cosk„:[cosk» i—cos(k„+k )],

where the eigenvalues A, =+ho(k)

(14)

Ao(k)=2t[cos k„+cos k +cos (k„+k )]' . (15)

The zone is halved in the usual way —m(k ~m. and
vr/2—~k ~m/2. The fascinating feature of (15) is that

the allowed energies form two very symmetric bands
t [—2&3, —v'3] and t [&3,2&3], and further, the spec-
trum has a gap 2&3t. Thus, the fiux ir/2 restores the
particle-hole symmetry in that the spectrum has a sym-
metry A,~—A, . We choose the two determinants to be
those corresponding to the two sets of eigenvalues and
would expect the energy to be rather competitive and
better than the previous case at any rate. A calculation
on the 6X6 lattice confirms this expectation and yields
c, ——0. 159/bond.

Several remarks are in order here. The wave function
in this case can be written as

P= exp t'(n, vr)gr, . [detg(k '(r, )]2, (16)

where the orbitals are in the lower subband (on using

[q(+)( )]0 (7r(n +may( —) (r)

to express the positive-energy determinant in terms of the
lower one}. However, the determinant in (16) is not real
in spite of being a filled subband. The reason, of course,
is that we have introduced a nontrivial flux ~/2 per trian-
gle which is to be distinguished from —ir/2. Thus, g and
its complex conjugate are distinct wave functions with, of
course, the same energy expectation value. Thus, the
time reversal invariance breaking that is masked in the
square lattice (by e' =e '

) is unveiled in the frustrated
triangular lattice for fiux m/2. In fact, if we switch on a
small diagonal bond in the square lattice with a hopping
strength 5t, then the fiux n./2 phase immediately becomes
viable and the eigenvalues are as in (15) with 5 as the
coefficient of cos (k +k ). A similar fiux n. /2 state is
discussed in a recent work by Wen, Wilczek, and Zee'
who work at the BZA level with a square lattice contain-
ing both classes of diagonal bonds.

The other remark concerns the close similarity be-
tween our estimate of energy ( ——0. 159) and that for
the triangular lattice of Laughlin and Kalmeyer' who
work with a Laughlin-Jastrow wave function to again
find ( ——0. 159/bond). This curious coincidence could
be the consequence of the possibility that the Laughlin-
Jastrow wave function is the best approximant to our
determinants in a certain technical sense. ' It should also
be noted that the energy of the wave function is not as
good as the best available variational estimates'
( ——0. 179).
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V. AWAY FROM HALF FILLING

The above examples show that the Aux states are very
appealing and yet are unable to be variationally the best
available wave functions in most cases treated above.
Frustration induced by exchange interactions does not, in
most cases, "stabilize" the Aux states. However, the main
frustrating term in the problem is the hole kinetic energy
which prefers some sort of ferromagnetism' but may not
be representable in terms of a static distribution of frus-
trated exchange bonds. We can introduce correlations
among the holes via the hitherto unspecified function f.
We suggest f (r) =[d (r)], with

d(r)= sin —x+sin —y
2~

L L

the "distance" variable, and v a parameter (either posi-
tive or negative). This term gives the probability distri-
bution for a configuration —an extra term

—+4vg in~s; —
s~ ~,

which is analogous to an electrostatic repulsion (or at-
traction) for v) 0( (0).

The extra flexibility ofFered by the Jastrow function for
holes in g, [Eq. (6)] can be used to introduce correlations
of considerable variety in the problem. A large and posi-
tive v, for instance, would favor a "Wigner crystalliza-
tion" of the holes. ' We envisage a program consisting of
evaluating the kinetic energy of holes in the various Aux

phases numerically, in addition to the exchange energy,
and varying the set of orbitals (i.e., of flux) to minimize
the total energy. Several "natural" possibilities ofFer
themselves —the Aux m state near half filling should be
favorable.

Another interesting possibility in the case of Aux ~/3
which should be of relevance close to a filling of —,

' (i.e.,
M=Q =N/3). Here the band splits into three Hof-
stadter subbands. One proposal is to choose the lowest
set of N/3 states in the first determinant and the highest
—', X states in the second determinant. Such a wave func-
tion is clearly a singlet. Another proposal is to choose
the orbitals in the second determinant from the bottom

and top bands while keeping the first determinant un-
changed. This state is not a singlet (since the orbitals are
not exclusive). We can, however, project out the singlet
component in this wave function, at least formally. Like-
wise, in the case of quarter filling we expect a state with
fiux m/4 to be relevant —this state may, in fact, apply to
the case of YBa2Cu307 & for 6-0. A singlet state is ob-
tained by choosing the first determinant to be made of
from the lowest of the four bands and the second from
the upper three.

Let us also note that the wave function fs [Eq. (8)] can
be modified to give a nonsinglet state with Neel order-
to do this, we merely omit the second determinant (f ')
and take the modulus squared of the first. This wave
function contains a variational "handle" on the Neel or-
der through the parameter A,o. At A.o=O, we get back the
state Eq. (7), and for large A,o we have a pure Neel state:
the wave function explicitly breaks translation invariance
since the orbitals do so. It is not clear whether one can
generalize the state usefully to move away from half
filling since all the complications of commensurability are
likely to be lost. Let us also note that Neel order enters
explicitly in this wave function through A,o (the conjugate
field), unlike the case of say f„[Eq. (7)], which if raised
to a sufficiently high power, should display Wigner cry-
stallization of the hard-core bosons (i.e., Neel order) as
spontaneously broken symmetry. Such a situation
arises' in the case of the Jastrow functions in the 1-1
1/r problem. ' '

In addition to the above variational viewpoint, we
could also independently examine the nature of various
correlation functions in the given (explicit) wave func-
tions numerically. It would be amusing to see if the exot-
ic nature of excitations in the half-filled limit (i.e., of frac-
tional statistics advocated by Laughlin and Wilczek '),
which are believed to be "inherited" by the dopants, ac-
tually comes to be realized in our explicit construction of
"doped" wave functions starting from the insulating lim-
it.

Finally we should note that these wave functions can
possibly be of use in disordered quantum spin systems
where the natural guess would be to choose orbitals
that are eigenfunctions of an appropriate random M;. ,
leading to the picture of a "valence-bond glass" for
strong enough disorder.
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