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Superconducting UPt3 in a magnetic field
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We use earlier calculations of the possible phases of UPt3 in a magnetic field and recent measure-
ments to identify all the anisotropic superconducting phases of UPt3. We also determine more pre-
cisely the structure of the high-field phases and demonstrate their stability by an exact solution of
the Ginzburg-Landau equations at the normal-superconducting phase boundary. The upper critical
field as a function of temperature shows upward curvature. This is identified as arising from cou-
pling of superconductivity and antiferromagnetism.

I. INTRODUCTION

A number of recent measurements have established the
existence of a rich phase diagram for UPt3 in the field-
temperature (H T) plan-e. This began with ultrasound
measurements of Miiller et al. ,

' and gian et al. , with a
field along the c axis, which showed two separate super-
conducting phases. Volovik noted that the zero-field
phase of a d-wave superconductor might be difrerent
from the phase near H, 2 by finding particular solutions of
the Ginzburg-Landau equations. This phase transition
was confirmed by torsional oscillator measurements of
Kleiman et al. Further ultrasound measurements of
Schenstrom et al. , with H in the basal plane, demon-
strated that there was also more than one phase for this
case, and that the phase boundary was diA'erent. These
authors proposed a vortex core transition to explain their
data. Joynt did a general variational analysis of the
Ginzburg-Landau equations, and determined all possible
phases of a d-wave superconductor at high fields, for both
orientations. This paper also proposed a phase diagram
for UPt3 in particular, and gave a mechanism which pre-
dicted the two zero-field superconducting transitions,
subsequently observed in specific-heat experiments by
Fisher et al. These measurements have now been done
at finite fields directed in the basal plane by Hasselbach
et al. The specific-heat and upper-critical-field experi-
ments have been analyzed by Bess et al. , and by Machi-
da and Qzaki, ' and have been shown to be quantitatively
consistent with the phases proposed in Ref. 6.

The purpose of this report is twofold: First, to ela-
borate on the observed phases for both directions of the
field, and second, to demonstrate by an exact solution
that there are two high-field phases when the field is
along the c axis, a point which is crucial for the overall
picture.

We first review the notation and results of Ref. 6. A
d-wave (E,s ) superconductor with hexagonal crystal

symmetry is characterized by a two-dimensional order
parameter c/i=(g, g ). Different phases have difFerent
relative values of f and 1b . The free-energy density is
given by

a=a, (T T, )y y*—+p, (@ q")'+p, ~y yt, '

+ X«ip; W~p;*0;*+&2p; Wp,*f;+I:3p;W,p,*W,*)
V

+re, y /p, @,/'.

Here p„p2, E„Kz, IC3, and K4 are constants and

p, = —i c) /Bx + ( 2e hit'c ) A

and similarly for p and p„where A is the vector poten-
tial. The total free energy can be minimized in the ab-
sence of a field, and one finds solutions" f=g(1,+i ) and
it~=/(1, 0). These are called the A and C phases, respec-
tively. Either can be rotated in the plane, of course:
its= P(0, 1) is still phase C. More difficult, but still exactly
soluble at H, 2, is the case with a finite field. At H, 2 with
H along the c axis, the stable phases are again the 3
phase and another more complicated phase in which the
ratio of P and f» is spatially dependent and intrinsically
complex. This is called phase U (for "unsymmetric").
The relation of this phase to the 8 phase of Ref. 6 is dis-
cussed below. The precise form of the U phase is given in
Sec. III. At H, 2 with H in the basal plane the C phase is
the only stable one. If a small coupling to the antiferro-
magnetic order parameter M, =M, x (Refs. 12 and 13) is
added to F, we get a term ' b ~M. P~ =bM, Iij'j

I
~

splits the phase transition in the zero field into two, if and
only if the low-field solution of (1) is the A phase. ' If the
H=O, T=O phase was the C phase then it would be
stable at all T & T, . The 3 phase is also predicted to be
stable in zero field by a microscopic calculation, ' but
more work needs to be done to make this result convinc-
ing. ' ' The specific-heat experiments demonstrate that
at H =0 and T=O, UPt3 is in the A phase.
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II. EXPERIMENTAL PHASE DIAGRAM
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FIG. 1. Phase diagram for UPt3 when the magnetic field H is
along the c axis. The definitions of the phases and their
identification are described in the text.

The phase diagram for H along the c axis is given in
Fig. 1, and is taken from Refs. 1 and 7. Reference 2 does
not find a line reaching down to the H=O axis, but the
specific-heat data show that there must be such a line.
We have followed Ref. 1 in joining this line to the T=O
axis, and we base our considerations on this picture.
Reference 4 also proposes an additional phase, but its ex-
istence is still not confirmed. In accord with the above
Ginzburg-Landau analysis we identify the phases as
shown. The pure C phase occupies only a small portion
of the H=O axis and evolves continuously into the U
phase as H increases. The A-U transition is most likely
first order, terminating in a second-order point. Addi-
tional strong support for this phase diagram comes from
recent neutron scattering' results which determine
M, (H, T). In these experiments, M, ( T) was measured
along a line of constant H which crossed both phase
boundaries in Fig. 1. As T decreases, M, first increases
linearly as T& —T, where T~ is the Neel temperature. In
the U phase M, is constant, indicating a probable kink in
M, (T) at the phase boundary. In the 3 phase, M, actu-
ally begins to decrease. This can be understood as fol-
lows. In the U phase, the order parameter is able to ro-
tate freely to minimize the coupling proportional to b, be-
cause in this phase ~g„~ and

~ t/i» ~
are not equal. As we go

into the A phase,
~ @ ~

and
~ @» ( are constrained to be

equal and therefore tP cannot reorient to minimize the
coupling. M, must decrease instead.

When H is in the basal plane, there must be a phase
transition between the C phase at high fields, which is the
only phase allowed, to the A phase, which, as we have al-
ready seen, is the low-field phase. The phase boundary is
observed in the experiments of Ref. 2, which have been
collected together with the specific-heat data by Hassel-
bach et al. to get the diagram shown in Fig. 2. Notice
that the experiments are not suSciently sensitive to dis-
tinguish the two possibilities shown for the topology of
the phase diagram. Bess et ah. have pointed out that
the kink in H, 2( T) is due to the fact that above a certain
field, the stable C phase is oriented by the applied field,
while below that Geld, the orientation is determined by
the coupling to M„as we have already seen. M, has six
equivalent domains, so we expect the direction of f to
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FIG. 2. Phase diagram for UPt3 when the magnetic field H is
in the basal plane. The dashed line indicates the phase boun-
daries postulated in Ref. 8, which, however, is based on various
measurements taken on diff'erent samples. The discussion in
this paper is based on the simpler diagram given by the solid
lines. The definitions of the phases and their identification are
described in the text.

vary through the sample at low fields but to be uniform at
very high fields. (This is discussed in detail in Sec. IV.)
We therefore christen the two states Cj (for "field
aligned" ) and C& (for "domain aligned" ). It is important
to note that there is no true phase transition between
these two states, since the microscopic symmetry is not
changed. f simply reorients in the various domains in a
manner which will depend on the history of the sample.
So either of the two topologies shown is possible. If C&
and C& were really thermodynamically distinct, then one
would have four phases meeting at a point in the Hassel-
bach et al. proposal. This would contradict the Gibbs
rule.

The question of what the phases are when H is not
along the c axis or in the basal plane is di%cult to answer
precisely, since the H, 2 equations appear to have no ana-
lytic solution. It seems clear that the C phase can evolve
continuously into the B phase as the out-of-plane angle
increases. Thus, the point where this angle is zero can be
considered as a critical point, since only here is one of the
components, g„or g, exactly equal to zero.

One can see from this analysis that if the Ginzburg-
Landau analysis proposed here is accepted as producing
the ultrasound and specific-heat anomalies, then the
phase diagram of UPt3 may be regarded as unique1y
determined. The vortex-core transition mechanism pro-
posed in Ref. 5 is quite distinct. These authors fix the
"background" phase surrounding a vortex core, which
can undergo a change of morphology without a change in
the background. The present mechanism by contrast is a
change in the background. Its weakness is that the equa-
tions can only be solved along the H=0 and the H, 2(T)
curves. Thus, no detailed characterization of the transi-
tion (its order, for example) can be given.

There is no reason why the two types of transition
could not both occur in the same material. For example,
if we accept the conclusion from the torsional oscillator
data that there is yet another phase boundary dividing re-
gion A of Fig. 1 into two parts, then this additional tran-
sition could be explained by the vortex-core mechanism.
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This would leave the explanation given here of the other
phase boundaries intact.

III. THE UPHASK

The U phase is the only one which we have not yet
completely defined. It is in some ways the most interest-
ing, since it occurs only at high fields and has no spatially
homogeneous analog, as do phases A and C.

It occurs only when H is along the c axis. To find it we
need to minimize the quadratic part of y =fF dx, taken
from Eq. (1). Varying this with respect to g„* and 1tj*, we
obtain the equations

[(K+K, )p„+K,p ]g„+(K2p„p +K3p p )f
= —ao(T —T, )P

(2)
«2P,P. +K3P.P, w. + [Klp". +«+Kl )P,']e,

= —ao(T —T, )1tj

where K—:Kz+K3.
In the Hilbert space of P, the operation represented by

the left-hand side of this equation is Herrnitian and has a
complete set of eigenfunctions. Finding the lowest eigen-
value of this operator (which is a function of H) deter-
mines the upper critical field. The equation is analogous
to a Schrodinger equation for a particle in a magnetic
field with spin-orbit coupling. It can be solved exactly by
the following transformation. Define

p+ = ( l /&2)(p„+ip» )

with l =Pic/2eH, so that [p,p+ ]= l. Also let

1t+= ( p +i g ) /&2. Substitution into Eq. (2) yields

[(2K, +K)(p+p + ,' ) K'/2]g+—+—Kp+ t/t

= —ao(T —T, )l 1t+,
(3)

is any function belonging to the lowest Landau level. The
eigenvalue is c z =K& +K3 which gives a critical field of

H, 2=aokc(T, —T)/2e(K&+K3),

in agreement with earlier results. The other possible
phase is of the form alO) +Pl2)+, where a and 13 are
coeScients to be determined. %'e then find a lowest ei-
genvalue

Eg =3K, +3K/2 2[(4K—i+2K —K') +SK2]'i2,

and a critical field

H, 2=aokc( T, —T)/2eeU .

For large enough E, we have c.U &c~, and the U phase
has a higher critical field. It is then the stable phase. The
stability regions are shown in Fig. 3. The stability dia-
gram is very similar but not identical to that for the ear-
lier variational solution of Ref. 6. (See Fig. 2 of that pa-
per. )

%'e plot a single "bubble" of the 3 and U phases in
Fig. 4. For this we choose the symmetric gauge
A=H( —y/2, x/2). A simple Gaussian

exp[ —(x +y )/4l ]
belongs to the lowest Landau level, and phase A has just
the symmetric appearance of this function for both of its
components f and P . The supercurrents Row azimu-
thally and the phase may be thought of as being stable
when the coupling of the orbital supercurrent to the field
is dominant. The U phase in the same gauge and the
same basis is pictured in Fig. 5. One notes immediately
that rotational symmetry is broken, so that the super-
currents tend to flow along one axis. This phase is stable
when the coupling of the supercurrent to the direction of
f itself dominates. This sort of coupling is peculiar to
anisotropic superconductivity and has no analog in the s-

Kp 1t++[(2K, +K)(p+p + ,')+K'/2]g—
= —ao( T —T, )l'g

15 I I I

I

I

I I

I

I 1 I

~

3 I I

where E'' =K& —K3.
We now take g+ and 1t in the occupation number

representation which diagonalizes

10—

p+p . 0+= &~. ln &+ -0 =Xo"I.ln &- -.
0

p+ ln ) =+(n +1)(n +2)in+2),
p' ln & =&n (n —1) ln —2), n ~ 2,

and p l0) =0. It is then immediately evident that the
problem breaks up into disjoint subspaces spanned by
I lO)+ I, I l0), l2)+}, [ l2), l4)+ I, etc. There are also
subspaces with odd numbers of quanta, but these can
never be the ground state. Only the first two spaces are
candidates for the lowest eigenvalue. In fact, l0)+ is the
solution first found by Volovik, and is precisely the A

phase. In real space it is simply P(r) (1,—i ), where tP(r)

0—
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FIG. 3. Region of stability for the A and U phases as a func-
tion of the Ginzburg-Landau parameters defined by Eq. (1). In
the unstable region, the system's free energy is not bounded
below and is therefore not physical. The shaded region is the
region which gives a reasonable fit to 0,2(T) data. The circle is
the weak coupling point.
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I4„l = I4yl

FIG. 4. Shape of a single vortex belonging to the 2 phase.
I@ I'= I@,I' is shown.

FICx. 5. Shape of a single vortex in the U phase. I@ I & I @y I'

and rotational symmetry is spontaneously broken.

wave case. It is evident that a change in the symmetry of
the vortex lattice can occur during the A-U transition.

There is one interesting difference between phases A
and U. Phase A is completely independent of the param-
eters in the free energy. It has precisely the same form
everywhere in region A of Fig. 3. Phase U, on the other
hand, has the coefficients a and P in its definition. These
are complicated functions of the parameters. This has
the important consequence that the U phase may be ex-
pected to evolve continuously as H and T change with
possible changes in the shape of the unit cell of the vortex
lattice, for example, whereas the A phase should main-
tain a triangular lattice, though perturbed by the cou-
pling to the antiferromagnetism, neglected in Eq. (2).

Furthermore, the U phase breaks rotation symmetry
and can reorient itself in the basal plane. This is impor-
tant when we consider the coupling to M„otherwise
neglected in this section. The U phase will have a smaller
resulting value of the coupling than the A phase because
of this additional degree of freedom. Correspondingly,
we would expect a smaller value for M,, in the 3 phase
than in the U phase. As we noted above, there is evi-
dence for precisely this effect in neutron scattering exper-
iments which measure M(H, T) across the A-U phase
boundary. The exact solution given here for the U phase
was found earlier, and independently, by Zhitomirskii. '

The exact solution for the U phase is similar to the B
phase of Ref. 6 in that the behavior under the point
group and time reversal is the same. For both phases at
H, 2, when the problem is precisely linear, the eigenfunc-
tions of the lowest level cannot be chosen to be invariant
under any of the symmetry operations. Thus, for exam-
ple, a vortex lattice formed below H, 2 by a linear super-
position of the eigenfunctions would break the hexagonal
symmetry in both cases. This would not necessarily be
the case for the A phase as noted above, allowing either
B or U to be distinguished from 3 in, for example,
decoration experiments.

The general issue which this raises, however, is to what
extent the precise form of the lowest eigenfunctions al-
lows one to characterize a phase. The eigenfunctions ap-
ply, strictly speaking, only at H, z, whereas we wish to
unambiguously identify different phases in a finite region
of the H-T plane. In fact, the criterion of determining
the point-group symmetry is not always sufficient for the
simple reason that the nonlinear terms can break down
these symmetries, even at an infinitesimally small dis-
tance away from H, z. In the isotropic case, for example,
axial symmetry breaks down to hexagonal symmetry im-

mediately, because of the formation of the vortex lattice.
Indeed, in the full nonlinear regime it seems to be very
dificult to formulate a criterion based on the solutions at
H, z which mould allow different solutions to be dis-
tinguished. On the other hand, very near H, z there is a
perturbative regime where only linear combinations of
the lowest eigenfunctions are allowed. The mathematical
problem is to identify properties of this 6nite-dimensional
subspace which differ from one phase to another. This
appears difFicult, and we do not pursue that issue further
in generality. It is important to point out in this special
case that the B phase and the U phase could, in principle,
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be distinguished on this basis. The chief difference be-
tween them is that the ratio of itI„and f is constant in
the B phase and spatially varying in the U phase. This
difference remains for all linear combinations.

IV. UPPER CRITICAL FIELDS IN THE PRESENCE
QF A STAGGERED MAGNETIZATION

So far we have considered the solutions for the 3 and
U phases in the absence of a coupling to the staggered
magnetization. However, this coupling can produce
changes in the shape of the upper-critical-field curves

( T) 9, 20

Let us deal first with the case where H is directed in
the basal plane. Then at H, 2 we need only consider the C
phase g=itI(1, 0), and rotations in the plane. This is the
only stable phase when the field is in the plane. There is
now an important orienting effect because of the coupling
term b M, fI . g will be perpendicular to M, at the zero
applied field if b )0, and parallel if b (0. But we expect
M, to vary through the system, because there are six
equivalent domains. All of these will be equally popu-
lated if no attempt is made to align them (by field cooling,
for example).

Let us first focus attention on a single domain, as done
by Bess et al. At a low applied field the coupling to M,
determines the direction of 1'. At a higher field (how
high depending on the relative orientation of g and M, )

there will be a sudden change in the direction of @ if
M, lH. This can produce a kink in H, 2. If M, is at an
arbitrary angle to H, then there is a continuous reorienta-
tion of g, as we show below.

Now consider all six domains. Each has the same T,
at H =0, but in general each will have a slightly different
critical field. Thus, the "R,2" of the sample will depend
on the way it is measured. A resistive measure will give
the field at which enough domains have gone supercon-
ducting that a percolating path has formed in the sample.
A magnetization measurement would yield quite a
different average of the critical fields of the various
domains.

What then, produces the kink observed in some experi-
ments ' ' but not in others? Presumably the kink
occurs in a situation where the field is very close to the
magnetization direction (the b )0 case) of one of the six
domains. When these particular critical domains go su-
perconducting, then the percolating path is set up —so in
effect one is measuring the H, 2 of a subset of domains all
having the same M, . Thus, the theory of Bess et al. goes
through, and there is a kink. If the field is in an inter-
mediate direction, or if there is even small mosaic spread
in the crystal, then there will be upward curvature in H, z,
but no kink.

As an illustration of this we take a case where H is at
an angle of 45 to M, . The calculation of H, 2 then
proceeds as follows. The free energy is

&= Jd'x(~0(T T, )@.4*+&Ip,g,—l'

] ir2
+a'm4

A fit of this equation to the H, 2 observed in Ref. 20 is
given in Fig. 6. These data were also obtained by a resis-
tance measurement in which it was found that H, z was
independent of the direction of H in the basal plane. We
took 45' as a reasonable average angle between H and
M„rather than attempting to average over domains. In
the absence of detailed knowledge of the domain struc-
ture and the criteria used to define H, 2, the latter pro-
cedure is not well defined. The 45' curve gives a perfectly
adequate fit to the observed results.

Now let us turn to the situation with H along the c
axis. The angle between H and M, is always 90 because
M, always lies in the basal plane. Thus, all domains are
equivalent. We consider two different phases 3 and U,
although it does not appear that the 3 phase is ever real-
ized at high fields in UPt3.

Take phase A first. We rewrite the coupling bM, If
as bM, (/+/*+/+A ). The A phase is the phase where
the coupling of g+ to 1tI from the gradient terms, pro-
portional to K, is small (see Sec. III). Thus, unless we are
very close to the 3-U boundary, we obtain a good ap-
proximation to the solution by considering only the sub-
space I IO)+, IO) I, with the two states coupled only by
the 6 parameter. Thus the variational equations become

I I I I

/

I I I I

i

I I I I

f

I I I I

J

I I I I

)

I I I

20—

0

10—

0 0.'i 0.2 0.3
T(K)

04 0.5

Here we have chosen the axes so that H=Hx, A= —zy,
and M, = ( I//2, 1&2). This can be minimized by choos-
ing ItI and itI separately to lie in the lowest Landau level
and diagonalizing the resulting quadratic form. One then
sees that the upper critical field is given implicitly by

—~,(T —T, ) = '
(QrC, SC, +QE:,rC )+bM,'

Ac
2

(+It,rc, Q—z,z )'

+& Ip, &.I'+& (Ip, +.I'+ Ip. @,I')

+bM, Q itI*+bM, ( g P*+P*ItIy ) ] . (4)

FICx. 6. H, 2(T) for H in the basal plane, experimental data
(points) from Ref. 20. The theoretical curve (line) is taken from
Eq. (5).
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fl bM, +(K, +K3 ) jg++il bM, g
= —ao(T T,—)l p+,

il—bM, Q++ [(K, +K~ )+ l bM, jg
= —ao(T —T, )l P

The lowest eigenvalue is

— —[(2K, +K2+K3)+bM, j
2 1/2

(K3 —K~) +b M,"

and the critical field is given by setting this equal to—a( T —T, ). This means that H, 2( T) shows upward cur-
vature, with

dH, 2—/dT~T =aohc/e(K+K, ),

tained. We have done this and find that if EC/E, is not
too large ( 5 15), then there is not very much curvature in
the upper critical field, as observed. A good fit was ob-
tained by choosing A'caoleK& =25T/K, K/K& =7, and
E''/E

&
=5.4. The H, & curve obtained in this way is com-

pared to the data of Ref. 23 in Fig. 7. To be consistent
with the experimental data, we find that the K parame-
ters must lie in the shaded region of Fig. 3. Thus, the ex-
periments put very important constraints on the parame-
ters in the Landau free energy, which, in turn, gives clues
for the microscopic theory. The conclusion at the
present time is that weak coupling is not a terribly good
approximation for UPt3. It does give the correct phase at
all fields, however, which is unlike the situation for the 3
phase of He.

V. CONCLUSION

20 I f

i

I I

O &0

dH, 2/d—T~aohc/e(K +K, —~K2 —K3 ~ ),
when

H ))ficbM, /e
~ K2 —K3 ~

.

This means that H, 2(T) can appear linear, as observed
experimentally, only if E2=Ã3, or more precisely if

~ Kq —K3 ~
&&K +K

&
. As noted by Tokuyasu et al. ,

K& =Ez =Ez in weak coupling theory.
In the U phase, the whole problem becomes much

more complicated. All the blocks of the Hamiltonian are
coupled by the b term, and it is no longer possible to find
the lowest eigenvalue analytically. However, since the
eigenfunctions belonging to the lowest eigenvalues are
well localized in the lowest few Landau levels, it is a very
good approximation for these levels to truncate the Ham-
iltonian matrix in the occupation number space. The ei-
genvalues and eigenvectors can then be calculated numer-
ically, and from this the upper critical field can be ob-

We have presented the Ginzburg-Landau theory of su-
perconductivity in UPt3 regarding this system as a d-
wave superconductor belonging to the representation
E& . The chief result is that the phases observed in the
H-T plane can be identified from this analysis, which is
based on symmetry alone. UPt3 has three distinct super-
conducting phases: the 3 phase which is realized at low
temperatures and fields; the U phase which is only real-
ized at high fields and only when the field is along the c
axis; and finally the C phase which occurs at high trans-
verse fields and in a small region of temperature at zero
field, where the antiferromagnetic moment acts
eA'ectively as a transverse field. This identification allows
us to understand precisely what change of symmetry is
taking place at each peak in the ultrasound and specific-
heat experiments. It also gives a good account of the
change in the antiferromagnetic moment at these phase
boundaries as this change is observed in neutron scatter-
ing experiments.

The shape of critical-field curves is strongly aftected by
the coupling of superconductivity and antiferromagne-
tism. In particular, H, 2(T) shows upward curvature ex-
perimentally when the applied field is in the basal plane.
This is nicely explained by the Ginzburg-Landau theory.
UPt3 shares this feature with URu2Si2. The parameters
which one obtains from fitting the H, 2 curves suggest
that there are deviations from the weak coupling theory,
though this theory gives a reasonable picture of the
overall phase diagram.
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