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Quantum percolation and lattice instabilities in high-T, cuprate superconductors
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Lattice instabilities are the mechanisms that place upper bounds on T, in theoretical models of
superconductivity based on dynamical electron-phonon interactions. In percolative metals this

upper bound can be much larger than in ballistic metals. For parameters appropriate to high-T, , cu-

prates, I show that the maximum value A, ,„ofthe percolative electron-phonon coupling constant is
about four times larger than the value A, „-1appropriate to ballistic metals. I also review values

of A, in "anomalous" ballistic metals, such as Nb3Ge homoepitaxial films, and show that these may
be defect enhanced.

I. INTRODUCTION

In the standard Bardeen-Cooper-Schrieffer (BCS)
theory of superconductivity, electron pairing occurs be-
cause of a dynamical attraction between electrons caused
by phonon exchange. The strength A, of this exchange is
given by N (EF ) V, where N (EF ) is the density of electron
states at EF, and V is an electron-phonon interaction en-

ergy. When this attractive interaction was first pro-
posed, '" it was immediately noticed that with increasing
k the lattice would become unstable, ' qualitatively for
A, & A, ,„-1. With superconductive tunneling it became
possible to evaluate A. for materials which would form
good tunnel junctions, and to check these values with
specific-heat data. It was found that on the whole this
qualitative argument was correct. There are some chemi-
cal variations in k „for simple s-p metals, transition
metals, and transition-metal —metalloid alloys, but most
of these are well understood. The general background for
this subject is reviewed in my book. One minor prob-
lem, that of Nb3Ge, was left unresolved by the extensive
discussions of lattice instabilities in the context of tunnel-
ing experiments, neutron measurements of lattice vibra-
tions spectra, and extensive electronic band-structure cal-
culations that were carried out ' in the 1970's. For the
reader's convenience I review this material, as well as the
formal literature as it developed up to 1980, in Sec. II.
There I also suggest a simple explanation for the high
T, '-s observed occasionally in Nb3Ge.

The main aim of this paper is to begin the discussion of
the analogous condition for X „in high-T, cuprates,
where there is a growing experimental evidence for my
model of conductive electronic states which are not
ballistic but are percolative on an atomic scale. The gen-
eral motivation for this model is discussed in my book,
and some of the more recent data are reviewed in this
context in Sec. IV. This model is entirely new and prob-
ably will not be familiar to those who have not read my
book or the background papers on localization which I
have written in the 1980's. The discussion of the concep-
tual basis of my model in Sec. III is necessarily con-
densed, and the reader who wishes to understand these

ideas in detail is well advised to consult the earlier refer-
ences.

The general problem which confronts any percolative
model, classical or quantum, is that the percolative states
cannot be simply identified. For ballistic conduction by
plane-wave-like states indexed by crystal momentum k,
and with a group velocity v=VI, E(k) obtainable from
one-electron band theory and renormalizable (in princi-
ple, at least) by nearly free-electron many-particle tech-
niques, electron-phonon interactions can be (and have,
especially for simple metals like Al) calculated quite accu-
rately. For percolative conduction, this is no longer the
case. Thus, although experimental evidence is indeed ac-
cumulating which supports the percolative model (Sec.
IV), it is still not clear how strong the electron-phonon
interaction at defects can be, that is, what X „is in the
percolative case.

The view taken in Sec. III is that we will explore
several models for X „in order to see how it may differ
in the percolative from the ballistic case. By so doing, we
will be able to avoid the apparently intractable problems
associated with identifying the specific defects and their
configurations and then finding the electronic states
which actually percolate, and how these are scattered by
lattice vibrations. Instead we simply assume that the
values of A, „calculated in a percolative model will cor-
respond fairly well to those achieved in the highest-T, cu-
prates. This is a reasonable assumption, which has al-
ready been verified in the metallic cases, even, as we shall
see, in the so-called "unsolved" case of Nb3Ge. It is
therefore a reasonable goal for theory in the cuprate case.

II. LATTICE INSTABILITIES
IN BALLISTIC ME'f ALS

By a ballistic metal I mean a material with metallic
conductivity (dp/d T )0) where the current-carrying
electrons (or holes) can be identified with quasiparticles of
crystal momentum k and (if necessary) a Bloch band in-

dex n, . The connection between electron-phonon cou-
pling strength k, electron-ion screening, and lattice insta-
bilities has been discussed in many papers. In a jellium or
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continuum model one can easily estimate that
A, „-1,because for larger values of A, the electrons
"overscreen" the ions and the lattice becomes unstable.

Real solids, of course, have definite crystal structures
with atoms with complex atomic potentials at the atomic
sites. In this case, in addition to the continuum screening
terms, one has umklapp screening involving reciprocal-
lattice vectors Ca&0 and the local-field corrections associ-
ated with this screening should be considered, as well as
the nonlocal atomic-pseudopotential form factors. For
polyatomic unit cells one must treat optic modes as well
as acoustic modes. These corrections greatly complicate
the lattice-dynamical problem, and as a result the
electron-phonon interaction strength A, for scattering on
the Fermi surface is no longer simply related to lattice in-
stabilities, especially if these involve optic modes, which
is usually the case when there is more than one atom per
unit cell. Even in the simple case of acoustic modes, one
can easily use standard self-consistent-field screening
techniques to show' " that, in principle, A, might be
very large before the lattice becomes dynamically unsta-
ble. These techniques, however, consider only instabili-
ties due to second-order phase transitions. Indeed once
k) A, ,„ in polyatornic crystals, many first-order phase
transitions can occur which may include phase separa-
tion.

By now more than 70 superconductors are known
with T, & 10 K, and for many of these we have estimates
of T, from tunneling and specific-heat data, ' as well as
band calculations of A, based on various approximate
methods. ' ' This means that we can test the notion that
a A. ,„exists simply by surveying known values and
grouping the materials chemically and structurally. The
advantage of this approach is that it includes not only
second-order displacive instabilities (which are calcul-
able, in principle, by perturbative methods, even though
it seems that this has seldom been done in practice), but
also first-order instabilities (such as phase separation) as
well.

Suppose we consider a close-packed metal, like Al,
which has a nearly free-electron band structure and a
small atomic core. In this case theory can calculate T,
and A, accurately because both are small (1.2 K and 0.43,
respectively). We can' increase T, by increasing the
ion-core charge Z and decreasing the valence-electron
density ri, as in Pb, the result being T, =7.2 K and
A, =l.S (expt. ) or 1.3 (theory, omitting nonlocal correc-
tions). We notice that already A, ) 1, presumably because
a close-packed structure is inherently more stable than
jellium. (This is an important observation, because the
cuprate structures are based on the open perovskite
structure and contain many vacancies as well. Thus, if
these materials were ballistic metals they would probably
already be mechanically unstable at A, = 1 or less. ) Con-
tinuing along this line we form Pb& „Bi alloys, ' in-
creasing T, and A, to 9.0 K and 2.1 at x =0.35. For
larger x a nonclassical transition from a dense close-
packed structure to the open, nearly simple-cubic struc-
ture of Bi with a miscibility gap of Ax =0.65 and phase
separation occcurs. '

We see from this example, which is a case where the
exception proves the rule, that X,„=1 is a good criterion
for most simple metals which do not have close-packed
structures. For transition metals the largest value is
Nbo 7~Zro @~ (T, =10.8, A, =1.3), which is similar to Pb.
To go to higher T„one must use binary transition
metal-metalloid compounds.

Before discussing binaries (and later ternaries, quater-
naries, and quinaries for the cuprates), it is important
that we pause to orient ourselves. In cubic monatomic
elemental materials and pseudoelemental alloys (such as
Tl-Pb-Bi) the crystal structure contains only one coordi-
nate, the lattice constant. In polyatomic multinary com-
pounds there can be many internal coordinates in the unit
cell, and associated with each of these, lattice instabilities
can occur. [Perhaps the simplest (but most often over-
looked) of these is the antisite defect. ] Therefore, we
must be careful in generalizing results on A, from elemen-
tal monatomic systems to polyatomic multinary ones. (It
was just this generalization that was made by McMillan
in his empirical fits' to tunneling values of k which led
him to conclude that T, (A. ) saturates with increasing A, ,
whereas it is now known' that T, (A. ) for large A, in-
creases like A,

~ .) Some polyatomic multinary systems
behave like monatomic elemental ones, while others do
not.

A useful global classification of superconductive crystal
structures for our purposes has been made' using Villars
quantum structure diagrams based on quantum-
mechanical definitions of size and electronegativity. The
plot for high-T, superconductors is shown for the
reader's convenience in Fig. 1. On these plots a suitably
weighted size differences hR is the single most important
variable, although the other variables, such as average
valence number X, and electronegativity dift'erences ~
are important as well. On the hR, b,g plot the pseudoele-
mental systems, such as Tl-Pb-Bi, obviously fall near the
origin, in what is called' island A. This small island
contains mainly A 15 compounds, which thus might be
described, like the Pb-Bi system, as having high T, s be-
cause they are vicinal to a covalent-metallic instability. '

However, this description need not apply ' to island 8
(NbN family) or to island C (Chevrel compounds like
PbMo6Ss or high-T, cuprates)

At this point it is convenient for us to examine, and in
my opinion resolve, a long-standing puzzle, which is the
anomalous behavior of T, in Nb3Ge. It turns out that
the resolution of this puzzle forms a useful introduction
to the quantum percolation model which is the main
subject of this paper.

The high-T, materials with the A-15 structure that are
easily prepared are V3Si (T, = 17 K) and Nb3Sn (T, = 18
K, A, = 1.7). Stoichiometric Nb3Cre has not been grown as
large single crystals, but for purposes of neutron scatter-
ing a O. 1-cm sample of Nb3 2CJeo s (T, =6 K) was
prepared, ' with 20% of the Ge sites occupied by Nb,
which reduces T, from the value of 17—20 K typical of
most polycrystalline and thin-film samples.

The lattice constant a of Nb3Ge can be expanded in
two ways. Bombardment by a particles increases a by
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FIG. 1. Diagrammatic separation of high-T, superconductors according to type of lattice instability (see Ref. 17). The diagram is
essentially complete: it includes ternaries as well as binaries (note the crystal structure types listed on the right), and the separation
using chemical variables defined quantum mechanically (rather than empirically) is essentially perfect.

1% and decreases T, from 20 to 4 K. On the other hand,
by using a suitable A 15 substrate a 1 or 2 Jo larger lattice
constant can be imposed on a homoepitaxial thin film.
This has the effect of expanding the range of thermo-
dynamic stability ' of Nb, Ge in the 2-15 structure
from x =0.19 to 0.26. Although the exact composition
of the film is not known, this appears to produce a max-
imum in T, (x) near x=0.25. This enhanced stability and
sample volume filling factor of the 3-15 phase of Nb3Ge
with an expanded lattice constant was confirmed on a
different substrate.

The fact that T, can be enhanced by nudging a favor-
able phase closer to a lattice instability is, of course, fully
in line with our general expectations. The theoretical
problem arises when we compare the electronic structure
of Nb3Ge with that of Nb3Sn calculated by the same
method. The calculated value of A, =N(Ez) Vin Nb3Ge
appears to be lower than in Nb3Sn, because V should be
changed little and near E~ the upper peak in X(E) seems
to be —1.5 (unit cell eV) ' in Nb3Ge compared to 1.9
(unit cell eV) in Nb3Sn, as shown in Fig. 2, reproduced
from Ref. 23 for the reader's convenience. Are these
discrepancies explicable?

First we note that X(E~) estimated from specific-heat
data for Nb3Ge should be low, because of heterophase
problems which almost surely exist even when the minor-
ity phases are not detected by diffraction on homoepitaxi-
al films. The theoretical estimate of N(Ez) could arise
from band-structure errors on a scale of 0.05 eV, which is
an accuracy well beyond the present state of the art on an
absolute basis. However, one may ask why these do not
spoil the Nb3Sn calculation. This could be because of a
fortuitious choice in atomic sphere sizes for Nb and Sn
(which improves convergence in Nb3Sn but not for Nb
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FICx. 2. Summary of density of electronic states X(EF) for
various high-T, superconductors (idealized crystal structures)
calculated theoretically, and also measured experimentally by
specific heats, reproduced from Ref. 23 for the reader's conveni-
ence.

and Ge). Since there is no general rule here, the choice of
sphere sizes is arbitrary, and a sharpening of N(E) near
E =EI; in Nb3Ge in a more completely converged band
calculation is the easist way to resolve this puzzle.

Another way is the presence of 1 —2 % Ge atoms in Nb
sites in the expanded films grown epitaxially. ' Be-
cause the Ge atoms do not have d states near EF their
presence on Nb chains, which have been weakened by a
lattice constant expansion, could enhance the upper peak
near EI; in Nb3Ge to make it even stronger than in
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Nb3Sn, and bring it closer to E„. Such enhancement gen-
erally occurs for a short-range potential whose strength is
just below the critical value needed to break off a discrete
state from a band edge.

I have discussed the case of Nb3C+e in some detail be-
cause one often hears casual comments to the effect that
the Nb3Sn-Nb3Ge discrepancy illustrated in Fig. 2 is
"unexplained, " and that this somehow is indicative of an
overall inadequacy of the BCS theory. These comments
are often made by individuals with little or no detailed
understanding of the materials problems associated with
homoepitaxial films or the computational problems asso-
ciated with one-electron self-consistent-field calculations
for materials with many atoms per unit cell. From the
discussion we see that the "discrepancy" in Fig. 2 can be
explained in at least two ways, because both the experi-
ments and the theory are technically very di%cult. These
same technical difFiculties are present to a larger degree
in the high-T, cuprate superconductors. The same prob-
lems arise: heterophases, defect enhancement of N(Ez),
and convergence limitations of the band calculations.
However, if we are aware of these technical difficulties,
we will be less likely to regard them as fundamental
failures in principle, and therefore may be less tempted to
use them as a justification for revisionist exotic theories.

III. MAXIMUM ELECTRON-PHONON COUPLING
STRENGTH A, ,„IN PERCOLATIVE METALS

The salient characteristic which suggests percolation in
high-r, cuprate alloys is that very small changes in com-
position or structure (sometimes too small to be detected
by diffraction) can change the material from semiconduc-
tive (dpldT & 0 for T above T, ) to metallic (dpldT )0).
In the best samples p becomes a linear function of T
(sometimes over several decades), and this behavior is
also explained (without adjustable parameters or atomic
form factors) by the quantum percolation model.

In most materials percolative conductivity arises as the
result of the presence of at least two phases, with a
minority metalhc phase dendritically embedded in a ma-
jority semiconductive or insulating phase. The cuprates
are special because they contain, in effect, semiconductive
and metallic phases on an atomic scale. Moreover, ac-
cording to the model, even the "metallic" cuprate planes
are actually not metallic in isolation, but they become so
only when rendered effectively three dimensional through
connection by interplanar metallic defects embedded in
intervening semiconductive planes.

The picture of electrical pathways in this model is that
they consist of domains of Cu02 planes (usually) or CuO
chain segments (occasionally) alternating with interplanar
defects with a density f = n IN, where n is the number of
defects per planar domain or chain segment of N atoms.
Electron-phonon coupling occurs with a strength A,

&
in

the planes, and a strength A,2 at the defects.
We now ask what the mechanical consequences of

these two kinds of couplings should be. First note that as
the defect density f~0, the planes become semiconduc-

tive well before they become antiferromagnetic. The
simplest way to explain this, in accord with earlier
reasoning about the separability of localized and extend-
ed states, is to divide the planes and chains into
domains, with one domain per planar defect and one ex-
tended state per excess of axial defects over planar de-
fects. If we assume that the electron-phonon coupling for
localized states A,

&
is small (A, I & 1) and similar to Al

(k&-0.5), then the degrees of freedom associated with
these localized states can act as a "cage" to restrain the
instabilities associated with the strong interactions of the
extended states. This suggests that we replace the ballis-
tic condition

by a percolative condition, normalized per extended
state. This would be

fA, , +(1 f)AI &1—

or, with A,
~
=

—,
' and f =0. 1 (as in La, sSro zCuO4),

A. (
~ 5.5,

fA, ,Az&1, (5)

which might be regarded as an alternative to (4). To
maximize T, we would like to have X, =f2=const in
which case (5) becomes

=f ' -35
for f =0. 1. For heuristic purposes, there is little
difference between (4) and (6), because they both show
that enhancement of T, (A, ) from 20 K (1.5) to 125 K (4) is

which means that in the percolative case

~max 5' 5~max ~

which is a sufficiently large enhancement of the coupling
strength to explain the high-T, 's in the cuprates.

Conditions (3) and (4) apply to the planar instabilities.
The "cage" that stabilizes the defects, which are embed-
ded in the semiconductive layers, is probably more rigid
than that which stabilizes the Cu02 planes. This suggests
that the electron-phonon coupling A,2 at the defects may
be much larger than the coupling A,

&
in the planes. On an

octahedral nearest-neighbor basis, —', of each cage is co-
planar, while —,

' is in thy nearest-neighbor planes, so that
X2 might be as much as 2A, &. Experimental evidence on
these points is discussed in the next section.

Although (4) is a satisfying result, there are other pos-
sibilities. The most important of these is that as f in-
creases the samples may become severely inhomogeneous
(incipient phase separation). In general, no analytic tech-
nique exists for discussing phase separation, but intuitive-
ly one would like to think that this would arise as a result
of defect-defect coupling mediated by Cu02 planes or
CuO chains. Such a coupling would itself involve
mechanical percolation from defect to defect, which
would depend on the magnitudes of A. , and A,2. A simple
expression which does this is
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possible because of the cage effect.
Some comments should be made on the justification for

Eqs. (2) and (5). Neither is based on a normal-mode
analysis, but this problem is less serious than it may ap-
pear. First, we know from studies of percolation of
mechanical instabilities in noncrystalline networks that
a mean-field approximation, such as (2), is much more ac-
curate for mechanical instability percolation than it is for
electrical percolation. Second, with such large unit cells
the crystalline periodicity itself becomes of secondary im-
portance and the strength of the coupling at which the
structure becomes unstable more closely approaches that
of a continuum model. [The largest uncertainty in using
Eq. (2) actually lies in the estimate of the strength A,

&
of

the cage. ] Finally, the defect-medium-defect interaction
described by (5) is the simplest model which could lead to
defect "precipitation" and phase separation. Like the
mean-field model (2), it is not likely to be seriously in er-
ror.
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FIG. 3. Sketch of the two competing factors which deter-
mine the maximum value of T, : one is the density n of percolat-
ing states, while the other is lattice instabilities. Both are relat-
ed to f, the fraction of interlayer defects discussed in the text.

The equations (2) and (4) which define A. ,„(f) deter-
mine only a bound on X and T, which may not be at-
tained. Broadly speaking, T, is observed to increase with
dopant concentration x (for example, in La2 Sr, Cu04)
in several high-T, cuprates. However, above a certain
critical concentration some kind of lattice instability (ox-
ygen vacancies, phase separation, or rapid increase in
heterophase character) limits T, . It is this second effect
which our discussion is meant to describe. Both effects
are illustrated in Fig. 3.

It is important to realize that there is still some uncer-
tainty about f in (2) and (4), and that it may be close
to, but is not necessarily equal to, x in
p-type La2 Sr Cu04. The same uncertainty applies
to n-type alloys such as ' ' Nd2Cu04 E and
Nd2 Ce Cu04 . In these materials T, -30 K. In ma-
terials such as YBazCu307 and the bismates and thal-
lates, 6 T, —100 K and it seems likely that f is larger, but

FIG. 4. Correlations between T, and o. (muon-spin-
relaxation rate) for cuprate superconductors, reproduced here
for the reader's convenience from Ref. 32.

we have no firm evidence on this point. Attempts to
determine f directly by Hall-efFect measurements near T,
may not yield reliable values because of macroscopic per-
colation effects which are sensitive to temperature-
dependent resistivity anisotropy ratios.

Perhaps the best way to examine the relation shown in
Fig. 3 is by measuring the muon-spin-relaxation rate o..
In homogeneous type-II superconductors o. is directly
proportional to the carrier density n, (or f in Fig. 3). In
percolative superconductors where only an unknown
fraction of the sample volume becomes superconductive,
and the material is electronically inhomogeneous, this
simple relation no longer holds. What this means in
practice is that qualitative trends can probably be in-
ferred correctly, but that the quantitative functional form
which is measured is probably distorted by hidden
composition-dependent filling factors from the general
trends shown in Fig. 3. This is evident in Fig. 4, which is
reproduced from Ref. 32. The breaks in the slope of
T, (o ) are the results of changes in the filling factors and
associated spinodal electronic phase separation, which in-
itially limits T, and for large o. eventually decreases it as
the fraction of superconductive electronic phase de-
creases and percolation is suppressed. The spinodal re-
gion is indicated in Fig. 3 by the dotted line.

With these uncertainties in mind we can see that the
present discussion merely provides a useful supplement to
experimental data which indicate that for small doping
T, increases with x. We can estimate how far this in-
crease continues before it is stopped by a lattice instabili-
ty by converting our estimates of 1, „into estimates of
T, by using an Einstein model for the phonon spectrum
and various solutions to the Eliashberg equations which
have been derived both analytically and numerically.
For the phonon energy we choose ficoD=300 cm ' [ex-
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perimental values of the CuOz planar oxygen A &s (z po-
larized) bending mode range from 340 cm ' in
YBa2Cu307 to 280 cm ' in the bismates ]. Using the
equations

T —() 25 (
(2/I) 1 )

—1/2
C ' P

X, =A(1+2.6p)

(7)

a largish Coulomb repulsion parameter p =0.2, and
X=4.5, we have A, =3.0 and T, —110 K, which is satis-
factory. Without the cage e8ect the closest analogy with
the cuprates is either the A-15 (Nb3Sn) or B-I (NbN)
families where T, ~ 20 K.

In conclusion, our analysis shows that the quantum
percolation model with very strong (A. —5) electron-

phonon coupling in Cu02 planes is capable of explaining
the observed T, 's in the cuprates. This strong electron-
phonon coupling should lead to buckling of the Cu02
planes. This has indeed been observed, and when the
cage is slightly stronger, so that the buckling is reduced,
as in the YBa2Cu307, bismate, thallate series, T, is in-
creased, ' as one would expect with a larger X,„.This
reasoning strengthens previous general arguments that
exotic models are unnecessary for the explanation of
high-T, superconductivity.
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