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Quantum mechanics of the fractional-statistics gas: Hartree-Fock approximation
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The two-dimensional ideal gas of particles obeying v fractional statistics is transformed to the

Fermi representation and studied in the Hartree-Fock approximation. The extremal ground state is

shown to be composed of Landau orbitals. When the filling factor (1—v) ' of the ground state is

an integer, a logarithmically large energy gap appears in the single-particle excitation spectrum, and

the particle and hole states are charged vortices with circulation +(1—v)h/m. The linear depen-

dence of the total energy on the density, together with the presence of this gap, suggests that the

true ground state at these fractions is a superAuid.

I. INTRODUCTION

It was recently proposed by one of us' that the charge
carriers in high-temperature superconductors obey one-
half fractional statistics ' and that this might account for
the superconductivity. In this paper and the two planned
to follow, we shall provide some computational detail
supporting this point of view. The issue we wish to ad-
dress is whether fractional statistics can, as a matter of
principle, cause superconductivity, as opposed to whether
such things occur in the real materials. While we believe
that they do, this matter is controversial and must ulti-
mately be dealt with by experiment. In this first paper,
we define the problem, identify the appropriate represen-
tation for solving it, and work out the mean-field solution
in detail. We conclude that v= —,

' fractional statistics is a
special case in which an energy gap opens up in the "fer-
mionic" excitation spectrum while the bulk modulus
remains finite. This suggests very strongly that the
ground state is a Auid supporting longitudinal sound
waves that cannot decay, i.e., superAuid Aow. The bro-
ken symmetry of the superAuid state is not manifested in
this calculation, as the solution is prevented by construc-
tion from being degenerate. However, this is a well-
known feature of variational descriptions of quantum
liquids remedied by hybridizing macroscopic numbers of
phonons into the mean-field ground state. The formal de-
velopment of this degeneracy and the excitation spectrum
associated with it is the subject of the next two papers.

By a gas of particles obeying v fractional statistics, we
mean a set of 1V spinless particles described by a wave
function + of the form

where & is the free-particle Hamiltonian

[P /'=X (1.3)

Equation (1.2) may also be written

&'4= F.@,
where

2
N

P;+ —A;
~ i 2 p7Z C

(1.5)

with

x gc N (r. —r . )
A, =g A, =(1—v) zXQ

The fractional-statistics gas may this be thought of as a
collection of spinless fermions acting as though each car-
ried a solenoid containing a fraction (1—v) of a fiux
quantum. Since we can also write

~"x=&x (1.7)

where

where z =x.+I'y. is a complex number representing the
location of the jth particle in the x-y plane, and + is a
spinless fermion wave function, satisfying the
Schrodinger equation

(1.2)

%(z„.. . , ztt )
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2
N 1 eP + ABose

2m c
(1.9)

with

iv g N (r. —r. )
A. ose = y A "«e=v z X1J 2

jAi e jAi Iri rj I

(l.10)

it may also be thought of as a gas of bosons carrying
solenoids containing a fraction v of a Aux quantum.
Equations (1.4)—(1.6), which constitute the Fermi repre-
sentation for the fractional-statistics gas problem, are
completely equivalent to Eqs. (1.7)—(1.10).

Very little is currently known about the quantum
mechanics of the fractional-statistics gas. It was original-
ly pointed out by Wilczek that fractional statistics could
exist physically in two-dimensional systems and that it in-
terpolated continuously between Bose (v=0) and Fermi
(v=1) statistics. Arovas et al. subsequently calculated
the second virial coefficient of the noninteracting
fractional-statistics gas and found it to interpolate sensi-
bly between the Bose and Fermi limits, up to a slope
discontinuity at v=0. At about the same time it was
pointed out by Halperin that the fractionally charged
quasiparticles in the fractional quantum Hall effect prob-
ably obeyed fractional statistics, and that this accounted
for the experimentally observed hierarchical states. The
correctness of this latter idea has led us to consider the
possibility that fractional statistics also occurs in high-
temperature superconductors. We must emphasize that
the quantum Hall context of fractional statistics is very
different from the one being considered here, in that the
background magnetic field in the quantum Hall problem
strongly suppresses density fIuctuations, and thus pre-

'

cludes superAuidity.
There are several reasons to suspect the v =

—,
'

fractional-statistics gas of being a charge-2 superconduc-
tor. The first is that —, fractional statistics is reliably
present if the analogy ' between the "spin-liquid state"
and the fractional quantum Hall state is correct, which
has been argued by one of us on general grounds to be
necessary. The second is that statistical transmutation is
a big effect. Given that the interpolation between the
Bose and Fermi limits is continuous, which is supported
by the work of Arovas et al. , the —,

' fractional-statistics
gas is expected to have about half the degeneracy pres-
sure of fermions at the same density. Thus, if we were to
mistakenly assume the particles to be fermions, we would
conclude that an enormous attractive potential, compara-
ble in scale to the Fermi energy, was present. Large at-
tractive potentials are, of course, required to account for
high-temperature superconductivity in the Bardeen-
Cooper-Schrieffer (BCS) framework. Similarly, if we as-
sumed the particles to be bosons, we would conclude that
an enormous repulsive potential was present. Since
repulsive potentials are actually required for achieving
ordinary charge-1 superAuidity, the observation of such
potentials does not rule out ordinary Bose condensation.
What rules it out is the third reason to suspect charge-2
superQuidity, namely that the particles are not bosons,
while pairs of them are. As illustrated in Fig. 1, one can

e

rrr
l

exp i—

~k

FIG. 1. Top: Particles obeying v fractional statistics act as
though they were bosons carrying a magnetic solenoid contain-
ing a fraction v of a magnetic Aux quantum. Middle: When
v= 2, adiabatic exchange of two wells trapping the particles re-

turns the wave function to itself up to a phase of ~/2. Bottom:
If pairs of particles are similarly exchanged, the wave function
acquires phase n./2 for each of the four possible associations of
a particle in the first well with a particle in the second. Pairs of
such particles are thus bosons.

understand this by imagining a "Berry phase" experi-
ment, in which a pair of wells containing trapped parti-
cles are adiabatically interchanged. If each well contains
one particle, the wave function evolves back to itself up
to a phase rr/2, for clockwise evolution. If each well con-
tains two particles, the wave function evolves back to it-
self up to four times this amount, or 2~, because one gets
m/2 for each pairing of a particle in the first well with a
particle in the second.

Because the fractional-statistics gas has a nonzero de-
generacy pressure, it can be argued that it is more "like'*
the Fermi sea than the noninteracting Bose Quid. It is
primarily for this reason that we have approached the
problem in the Fermi representation. Another considera-
tion is that perturbation theory is usually better con-
trolled in Fermi systems because the number of low-lying
excitations is smaller. However, this representation is
not fundamentally superior, and calculations using
different ones should produce the same results. Use of
the Fermi representation has the side effect of forcing the
number of particles in the exchange-correlation hole to
be exactly 1, which complicates the analysis of the
collective-mode spectrum.
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The first step in any fermion calculation, and the sub-
ject of this paper, is solution of the problem in the
Hartree-Fock approximation. We adopt a variational
ground-state wave function of the form

1 N!
@(z„.. . , z~)=

N~
gsgn(u)q (, )(z, ) 9 (ivy(ziv),
0

where 0. denotes a permutation, sgn(o ) is its sign, and
the y; are single-particle orbitals, and then vary the orbit-
als to minimize the expected energy ( N ~&'

~
4 ) . This is

appropriate formally because it provides a stable point
about which to do perturbation theory. However, it is
also the case that such calculations tend generally to be
physically correct. Well-known examples of this include
the energy levels of atoms and molecules, the properties
of itinerant ferromagnets, ' the properties of charge-
density-wave" and spin-density-wave' materials, and, in
an abstract sense, the properties of ordinary superconduc-
tors. '

That a Hartree-Fock calculation should be physically
correct in the present case is suggested by elementary
considerations. As illustrated in Fig. 2, the uniform sea

of magnetic solenoids seen by each particle is equivalent
to a uniform magnetic field of the form

hcB=(1—v) pz,
e

(1.12)

where

hcA=(1 —v) zXr,
2e

The eigenstates of &, which satisfy

&y„k(z) =(n +-,' )fico, q)„k(z),

where

iiico, =Pi =2ir(1 —v) p=(1 v)EF, —e8
mc m

(1.14)

(1.15)

(1.16)

with EF the Fermi energy of spinless fermions at density

p, are Landau orbitals. Written out in units of the mag-
netic length ao, defined in the manner

where p is the particle density. This may be idealized
with a single-electron Hamiltonian of the form

2

P+ —A
2m c

2 Ac
ao eB

1

2ir(1 —v)p
(1.17)

these are

( —'z —28*)" ( —'z* —28 )" —&&/4)l I'

(2n ))1/2 (2kk i)i/2 (2 )i/2

Jk JQ
L J

hcB= (1-v) —Pe

FIG. 2. Top: In the Fermi representation, the v fractional-
statistics gas consists of fermions at density p carrying solenoids
containing a fraction (1—v) of a magnetic Aux quantum. Bot-
tom: On the average, each particle sees a uniform magnetic
field of (1—v)p Aux quanta per unit area.

The set of orbitals with the same value of n is the nth
Landau level. Since the density associated with a filled
Landau level is (2irao) ', occupying the orbitals with
fermions causes the number of Landau levels filled to be
(1—v) '. Thus, the fractions v=0, —,', —'„—,', . . . are spe-
cial cases in which an integral number of Landau levels
becomes filled, and an energy gap opens in the "fermion-
ic" spectrum. Since these are precisely the cases for
which this integral number of particles is a boson, the
presence of this gap would seem to signal occurrence of
Bose condensation. This identification is supported by
the fact that v=O corresponds to an ordinary Bose Quid.

The association of superQuidity with the presence of an
energy gap, while unusual, is also reasonable. The
superAuid state is characterized' by the presence of mac-
roscopic density Auctuations, which allow an order-
parameter phase P to be defined by satisfying the uncer-
tainty relation b,N hP 1. This, in turn, implies the ex-
istence of a linearly dispersing collective mode' (in the
absence of long-range Coulomb forces) which may be
identified physically with comp ressional sound. The
long-wavelength limit of this collective mode is rectilin-
ear Bow. It is "super" because the collective mode has no
decay channel and thus has an infinite lifetime. Let us
now reason backward. Suppose it is established that a
Auid has a "ground state" ~0) and bosonic "excitations"
at ~0) which cannot decay except by scattering off each
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other, so that the Hamiltonian may be idealized in the
manner

II. EXPECTED ENERGY

Let us begin by evaluating the expected energy
~fl id X [+k k k+ ~k aka —k+ k —k ) 1

1

k

Then the Bogoliubov transformation

(1.19)
(e~w'~e)

(~l~) (2.1)

b„=ukak+Uka

where

(1.20) where &' and ~N) are given by Eqs. (1.5) and (1.11).
Decomposing the Hamiltonian into one-body, two-body,
and three-body pieces, in the manner

]/2Ek+ Ek

1 1/2
Ek ~k

(1.21)

where

&i +&2a +jf2b +&3

N P2

(2.2)

(2.3)

~vac& = Q exp "anal k io& .
uk

—(E2 g2) i /2
~k k k

removes the scattering terms, in the manner

~fluid X ekbkbk
k

e8'ectively making a new ground state of the form

(1.22)

(1.23)
we have

N

, XX
i =1j&i

e2
gA, , A,,2mc i =1 jwi

e2 N N N

A," A,„,
i = 1j Wi k&i, J

(2.5)

(2.6)

If the k ~0 limit of Uk/uk is 1, as is commonly the case,
then

~
vac ) has macroscopic density fluctuations and the

requisite broken symmetry of the superAuid state. Thus,
a gap in the fermionic spectrum is quite consistent with
superQuidity, provided that a soft collective mode is
present.

N p2
(&i)= y f1I pi*(1) yi(1),

1=1 2m
(2.7)

where the sum is over all occupied orbitals, the numeral 1

stands for the coordinate r„and dl=d r, denotes in-
tegration with respect to rl. We have similarly

N N

(&2, ) = —g g f d 1 f12 pi (1)y* (2) Aiq Pi[ipi(1)y (2)—yi(2)g) (1)],
l=l m =1

2 N

(~,b)=, g g f d 1 f 12@i*(1)q*(2)~ Ai2~'[Pi(1)y (2)—gi(2)y (1)],
2mC I= 1 m =1

eZ N N N 3f

(&3)= g g g f d 1 f d2 f13pi (l)y* (2)p„*(3)A 2. A, 3 g sgn(o )q&i(o(1))y (o(2))y„(o(3))
I=1 m=1 n=l 0

(2-8)

(2.9)

(2.10)

The quantity A defined in Eq. (1.14) appears repeatedly
in these expressions and is naturally associated with p in
the form of the dynamic momentum [P+(e/c) A]. The
computation is greatly simplified if this association is
made formally. Thus, picking energy and length units for
which A'co, and ao as defined in Eqs. (1.16) and (1.17) are
unity, so that

A, = f d2 A, 2 g ~yi(2)~ = —,'zXr, ,

we rewrite Eq. (2.2) in the manner

&m'& =&w. )+&m, &+ &w, &+&m, &+(~, )

(2.12)

r; —r
A,) =(1—v)zX (2.1 1) +(&f&, (2.13)

where
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N N

&~b &
= —g g f d 1 f d2qi*(1)y* (2)[ Ai2. (Pi+ Ai)]tpi(2)q (I),

1=1 m =1
N N

&~, &=-,' g g f dl fd2lqi(1)l'lq (2)l'IAi21',
1=1 m =1

N

&&d &
= —

—,
' g g f dl f d2yi'(l)(p*(2)~ Ai2~ pi(2)q (1),

1=1 m =1
N N N

f d 1 f d2 f d3 qadi'(1)ql* (2)q„'(3) A, 2 A, 3qi(3)q~(1)q„(2),
1=1 m =1 n =1

N N N

&&f &= —
—,
' g g g fdl f d2 f d3 ~y, (1)~ q*(2)q)„*(3)A, 2 A, 3q) (3)y„(2) .

1=1m =1 n =1

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

Note that Eq. (2.12) has been used to cancel several
terms.

III. KXTRKMAI. CQNDITIQN

I.et us now evaluate the extremal condition. If we min-
imize the total energy with respect to variations in the
y&*, subject to the normalization condition

(3.1)

we obtain a set of equations of the form

N

fd2q* (2)[A, .(P, + A, )]q, (2)q) (1),
m =1

(3.6)

N

f d2 y* (2)[ A~, .(P2+ A2)]qi(2)p (1)
m=1

f d2 hapl(2)ql (1)[A2, ( —P2+ A~)]y* (2),

~HFlql & Ellql &— (3.2) (3.7)

where &H„ is a nonlocal single-body Hamiltonian and el
is a Lagrange multiplier. &HF decomposes naturally into
12 pieces, in the manner

N N

PH„'qual( 1 ) = —g g f d2 fd3 y (~2)q„*(3)A32. A3i
m=1 n=l

&&ql(1)lp (3)y„(2) .
~HF g ~HF '

From the first variation of Eq. (2.14), we obtain

~HFq'l(1) = 2(Pi+ Ai) q'l(1)

(3.3)

(3.4)

From the first variation of Eq. (2.16), we obtain

~HFq l(1) rf f d2~q (2)
~ A12~ q l(1)

m =1

(3.8)

(3.9)

From the first variation of Eq. (2.15), we obtain

(3.5)

N

%'HFqll(1) —g fd2y~(2)[A2i (P2+ A2)]pi(1)q&~(2) .

From the first variation of Eq. (2.18), we obtain
(3.10)

From the first variation of Eq. (2.17), we obtain

&HFlpi(1)= —y f d2lp*(2)~ A, 2~ q, (2)q (1) .

N N
&lH„'ql(l)= g g f d2 fd3y' (3)y„*(2)A, 2. A, 3@i(2)y (1)y„(3),

m =1 n=1

N N

&HFlpl(1) = g g fd2 fd3 y* (3)q&„*(2)A2i A23yi(2)q) (1)y„(3),
m=1 n=l

N N

&HF'yi(1) = g g f d2 f 3' (~3)y„*(2)A3i A3qqri(2)q&~ (1)y„(3) .
m =1n=1

(3.1 1)

(3.12)

(3.13)

From the first variation of Eq. (2.19), we obtain
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&'H'pyi(1) = —
—,
' g Q f d2 f d 3 q)~(2)q&„*(3)A, Z. Ai3yi(1)q&~(3)p„(2)

m=1 n=1
Ã

&Hp'y&(1)= —g g fd2f d3lq&„( 3)l qr* (2) A3, . A3zy (1)p&(2) .
m =1 n=l

(3.14)

(3.15)

IV. LANDAU LEVEL PRO JKCTORS V. BOSK FLUID

It is possible to solve Eq. (3.2) exactly because the or-
bitals guessed in Eq. (1.18) are correct. The demonstra-
tion of this requires that we first establish two key prop-
erties of the projector onto the nth Landau level, defined
in the manner

(4.1)

II ( „,) = g y (z, )y' (z )
k=0

—
& 1~4& l~, l'+ l~, l'& &1~24' q*&2

e 1 2

2&
(4.2)

H„ is a nonlocal operator similar in behavior to the
Hartree-Fock Hamiltonian defined in Eq. (3.2). From
Eq. (1.18) it can be seen that the nth projector may be
generated from the zeroth, given explicitly by

Since the formalism used in the paper is new, its pre-
dictions need to be tested in limits for which the answer
is known. The limit of v=1 is the noninteracting Fermi
gas, and thus is trivially correct. The other limit for
which we know the answer is v=O, which corresponds to
the noninteracting Bose Quid. If the case can be made
that the formalism describes this limit properly, there is
good reason to believe its predictions for v= —,'. Let us
therefore solve Eq. (3.2) for the case of v=0.

We shall proceed by assuming that the orbitals y& ap-
pearing in Eq. (3.2) are of the form of Eq. (1.18) and that
only the lowest Landau level is occupied. This solution is
extremal if the Hartree-Fock Hamiltonian SHp generat-
ed from the filled orbitals using Eqs. (3.3)—(3.15) may be
expressed as a sum of Landau level projectors H„defined
by Eq. (4.1). From Eqs. (3.4)—(3.7) we obtain

in the manner

1II„(zi,zi) — (T~zi 2B e ) ( ~zp 29~ ) lip(zi, zz)
nnf I

=L„(,'lzi —

zeal

)Il—o(z„zz), (4.3)

where L„(t) is the nth Laguerre polynomial. ' However,
from the orthonormality of these polynomials it also fol-
lows that

m'„'„'= y (n+-,')lI„,
n =0

&' „'= lim (P + A )11 (2,3)=0,
3~2

&H3p'= —[ A, z (P, + A, )]lip(1, 2) = —
—,'Ilo,

~Hp= I [ A/i'(Pp+ Ap)]lip(2 1)I = —' llo ~

(5.1)

(5.2)

(5.3)

(5.4)

I' ( Izi —zz l )Iio(zi, zz )

00 —(1/2)r2f F(r)L„(—,'r )e "~ '" r dr II„(z„z~),
n ——0-

Using a number of algebraic steps that are described in
detail in Sec. VI, we obtain from Eq. (3.8)

(5.5)

(4.4) From Eq. (3.9) we obtain

for any function F. Thus the set of II„ is complete over
the set of nonlocal operators consisting of a function of
separation times IIo. Proving that the Landau orbitals
constitute an extremal solution therefore reduces to
showing that &Hp is of this form and then computing its
projector expansion coefficients.

~~H6p'= f d21 Aizl'= lim f "dr
2~ e~O 0 T +6' (5.6)

where R is the sample radius. This expression is formally
infinite, but combines with Eq. (5.7) to yield a finite re-
sult. From Eq. (3.10) we obtain

00 t1 n ( 1)k 2
lim dr(r +e) " 'e " '" IIHF

n =0 k=0
n

P

QO n= —lim f dr e "~ '"+
—,
' g g —II„,~0 0 P +E' (5.7)
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~HF llo

~HF &+0 &

(5.8)

(5.9)

oo

n+1 n
(5.10)

(5.1 1)

OO

m'„'„"=—E,11,——,
' y —fi„,

n=1
(5.12)

where we have used Eq. (Al) in the last line. Again using
algebraic methods discussed in Sec. VI, we obtain from
Eqs. (3.11)—(3.15)

Regardless of their physical nature, the particles and
holes form a natural basis for describing the true ground
state and elementary excitations perturbatively. The
practicality of this depends on whether ways can be
found to handle the large interactions between them.
The presence of such interactions is easily appreciated by
noting that if they were absent the lowest excited state
energy would be 1,3+Ez, which is absurd. The system
has no preferred density, and thus its low-lying excita-
tions must be soft compressional sound waves.

Let us now pursue the question of cornpressional sound
by calculating the ground-state energy, summing Eqs.
(2.14)—(2.19) over a single filled Landau level. From Eq.
(2.14) using Eq. (5.1) we obtain

where

E~ = I dr (1—e —"~ i" )=in(R)+ —'[y —ln(2)],
0 r

(S.13)

with y =0.577. . . denoting Euler's constant. Combining
these results, we obtain finally

~HF ( 2+8 )+0
OO n

oo

(&,)= g q, —+ g nB„q,)=—,'X.
1=1 n =1

From Eq. (2.15), using Eq. (5.3) we obtain

&& &
= g &q ~

—-'rr ~q &
= ——'x

From Eq. (2.16), using Eq. (5.6) we obtain

(5.15)

(5.16)

(5.14)

This expression, which supersedes Eq. (6) of Ref. 1,
demonstrates the extremal nature of the ground state.

Let us now consider the eigenvalues of AHF, the first

few of which are listed in Table I and sketched in Fig. 3.
According to Koopmans's theorem, ' these should
roughly approximate the energies of excited states associ-
ated with the injection of a "particle" or a "hole," mea-
sured with the chemical potential set to zero. The largest
factor in this energy is the logarithmically large quantity
—,'Ez, which is the same for particles and holes. The large
size of this energy is consistent with the fact that the
Bose fluid has no low-lying ferrnionic excitations. Also,
the equality of the particle and hole energies indicates
that the state is stable, since otherwise it could gain a log-
arithmically large energy by bringing charge in from
infinity. The fact that this energy is logarithmic suggests
strongly that the excitations to which the particle and
hole correspond are charged vortices. This will be dis-
cussed further in Sec. VIII.

,'N lim I —dr
a~0 0 r +6'

log(R)

log(R)

(5.17)

TABLE I. Eigenvalues of %HF, as given by Eq. (5.14), for
+=0.

Landau level (n)

0 (filled)

1 (empty)

2 (empty)

3 (empty)

Eigenvalue (c„)
1—-E~
2

—+ —E~13 1

8 2

—+ —E„24 2

199+ 1E
48 2

FIG. 3. I11ustration of Hartree-Pock density of states for
Bose (top) and v= —' fractional statistics {bottom) Auids, as given

by Eqs. (5.14) and (7.13). In each case, the number of occupied
Landau-levels is (1—v) ', and an energy gap that grows as the
logarithm of the samp1e size R appears between the highest oc-
cupied and lowest empty Landau level. The logarithmic nature
of this gap is due to the fact that particles and holes are charged
vortices.
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which is formally infinite, but combines with Eq. (5.18) to
yield a finite result. From Eq. (2.17), using Eq. (5.7) we
obtain

tions in the problem, involves a number of algebraic steps
which require discussion. In doing so we shall make fre-
quent use of the identity

qi lim f dr e
0 0 r+E A, 2 A, 3 —,'(1 V)

(z i
—zq )*(zi

—z3 )

= —
—,'X lim dr e

R 1 2

g~0 0 r +E
From Eq. (2.18), using Eq. (5.8) we obtain

N

&m, &= y &q, ,'il, l+, &=,'x.

(5.18)

(5.19)

1

(zi —z2)(zi —z3)*

Let us first consider &g„'. From Eq. (3.8) we have

&HF'
———J d2 f d3 A, 2. A3, lIIO(2, 3)l

1 2 2 1
z

8~ z (y +z/2)*

(6.1)

From Eq. (2.19), using Eq. (5.11) we obtain

N

&~f &
= X & q i l ,' E~ l q i &

—=—!&E~. — (5.20)

1

z*(y +z/2)

(6.2)

Evaluating Eq. (2.13) by summing Eqs. (5.15)—(5.20) we
obtain finally

(5.21)

where z =zz —z3 and y =
—,'(z2+z3)+zi. Writing z =re'

and performing the angular integration as a contour in-
tegral in the manner

This result is midway between the true Bose gas energy of
zero and the energy X/2 of a spinless two-dimensional
Fermi gas. In light of Eq. (1.16), this energy is propor-
tional to the number density p, and gives the finite sound
speed

21T 1

z(y +z/2)* +. ' de
z*(y +z/2)

ry* u (u+r/2y*)

Vs
ap

~ ape
= i/ I /2, (5.22)

2 1

r2 (u +2y/r)

in units of m, a0. Note that it is stated erroneously in Ref.
1 that the sound speed is zero.

Since the problem we are actually solving is the nonin-
teracting Bose gas, the finite sound speed of Eq. (5.22) is
at least partially a pathology. Its origin may be under-
stood by considering the Bose wave function to which the
Hartree-Pock ground state we have constructed corre-
sponds. From Eq. (1.8) we have

N N

e(z„.. . , z )= + lz, —z, lexp —
—,
' g lz, l, (5.23)

j(k I=1

where we have used the Vandermonde determinant ex-
pansion of Eq. (1.11). Thus, use of the Fermi representa-
tion forces the Bose wave function to have nodes at parti-
cle coincidences. While the Fermi wave functions have
sufhcient variational freedom to describe the true ground
state, in that the wave function may rise from zero to a
constant over a short distance without significant varia-
tional energy cost, high orders in perturbation theory are
required to accomplish this. However, a wave function
of this form is quite reasonable for a Bose Quid with
strong short-range repulsive potentials, such as helium.

T

0, « I2yl

r2'
(6.3)

we obtain

&HF= ——fd y f dr e—
7T l2yl r

(6.4)

m„"„'=f d 3 A, . A, II (1,3)II (3,2)

' rl, (1,2) J'd' ' +
4

Note that care must be taken in choosing the change of
variables to obtain the correct result given by Eq. (6.4).
With our choice (y, z) of integration variables, Eq. (6.4)
agrees with the requirement that the integrals of the first
line and last two lines of Eq. (6.2) with respect to z, be
equal. From Eq. (3.11) we have

VI. CONTOUR INTEGRATION
—(1/2) tzi (1/2)yz (6.5)

The evaluation of &HF and &HF —&H„' in the preced-
ing section, which derive from the three-body interac-

where z =z3 —z, and y =z2 —z1. Defining z =re' we
have for the angular integral
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2m ]

0
(1/2)yz *dg

co
1 2 &8 ie

0 kt 0 ry~ ry

'k—iO

de=~,
2

(6.6)

From Eq. (3.12) we have

m„"„)=f d3 A, A II (1,3)II (3,2) . (6.8)

Since this is the complex conjugate of Eq. (6.5) under the
interchange 1~2, we have

and thus

~(()) —1 11

~HF s +0

(6.7) From Eq. (3.13) we have

(6.9)

/f"„'= f. d3 A, A 11 (1,3)II (3,2)= II (1,2) f d z — —+1 2 1 1

41r z*(z +y) z (z +y)*
e

—( &/2) lzI
—

( &/'2)yz*e (6.10)

where z =z~ —
z& and y =zj —z2. De6ning z =re' and performing the angular integration as a contour integral, in the

manner

2r, 1

z* z+y z z+y '
—(1/2)y d g

1 A 1 1 + 2 1 —(]/2)y 0
i ry u(u +r/y) r2 (11 +y*/r)

exp( —
—,)r ), r ( yl2+2

r2 r2 exp(-,'lyl'» r) lyl
(6.11)

we obtain

m(")=+(11—2l )rl,(1,2),
where

(6.12)

~(&) 1
( 1 e

—(1/2)r )d& +( 1+ (1/2)s
) e

—(1/2)r
2 0 r s r

(6.13)

In light of Eq. (4.4) this may also be written

~c- (10) ~ ~ d 2k + 1 —(1/2)s y ( n
n =0 k=o

(6.14)

The coeKcient of H„ in this expression may be evaluated simply by reversing the order of the r and s integrations. We
have specifically

2k+1 —()/2)s2~( ) 1 1 f d 2k+1 —(1/2)s f —(1/2)r d&+e(l/2)s f e
—(1/2)r d& f0 g~o 0

m2 r r r

1 2k+2
11m 2kk 1 f e ( 1/2)r dr + f e

—(1/2)r dr
g~0 2 e r r 2k +2

2kk) y f —(1/2)r
( )r2)pdr

oP. e r 2

2kk~

4

k

k+1
p

—I P
(6.15)

and thus

n n
m(„(„0)=,11,+-, y y „(—1)" —(1—t',.) g —11. .

n ——1k=0 k+1 ) p
(6.16)
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Using Eqs. (A2) and (A3), we find that this simplifies to
r

where Ez is defined as in Eq. (5.13). From Eq. (3.15) we
have

1 1+-
PE+1

From Eq. (3.14) we have

m'„'))= —,' f—d2f d3 A„.A„l11,(2 3)l'

(6.17) (12) 1
~HF HP( 1&2)f d3 A31 A/22'

1 2 1
II()(1,2) d z + 1

4~ z*(z +y) z (z +y)*

—1 1
G Z

16m. z*(z +y)

—( l /2) ~y~e
z(z +y)*

(6.21)

where z =z3 —zl and y =zl —z2. writing z =re' and
performing the angular integration as a contour integral,
in the manner

(6.18)

where z =z3 —z, and y =z2 —z3. Defining y =se' and
performing the angular part of the y integration as a con-
tour integral, in the manner+-, dOz' z+y z z+y *

1 1 1 1

z*s u(u+z/s) lzl' (u+s/z*)

+ ' . de
Z Z+y Z Z+y

1 1 1 1 1+
i "

ry u(u +r/y) r2 (u+y "/r}

o, r ) lyl
(6.22)

o, s & Izl

4m
S Z

and thus

(6.19)

and thus

a„","=r(
l

1 —2)rr, (1,2),
where

F(s)= —f dr
1

s r

(6.23)

(6.24)

dr — ds se " ' = —'E, (6.20—)HF R In light of Eq. (4 4), this may also be written

~(12) ~ ~ d 2k + 1 —(1/2)s
—p k —p 2 k. s I' n (6.25)

2k+1 —(1/2)s ~(S)
0

2
'

yy—
0 I'

P =0

which gives

(6.26)

The coefficient of H„ in this expression may again be
evaluated by reversing the order of the r and s integra-
tions. We have

VII.
2

FRACTIONAL-STATISTICS FLUID

Let us now reevaluate the expressions of Sec. V for the
case of two filled (n =0 and n = 1) Landau levels, which
corresponds to a two-dimensional gas of particles obeying
one-half fractional statistics. These are slightly more
complex, due to the necessity of evaluating integrals with
factors of HO+IIl rather than HO only, but ultimately
quite similar. From Eqs. (3.4)—(3.7) we obtain

~(12) d ( 1
—(1/2)s

)HF

W(') = y (n+-,')rI„,
n=0

W"„)=0,HF

(7.1)

(7.2)

+X X
n=1 ', k=l

k

rl„.
p=l P

(6.27) (7.3)

U»ng Eq. (A3), we find this simplifies to
&(H4F) ———

—,'rl„—) 11) . (7.4)

QO

W(„'„')= —E, II,——,
' y —11„.

n=1
(6.28) Using algebraic steps described in Sec. VI, we obtain

from Eq. (3.8)
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HF Y '

From Eq. (3.9) we obtain

HF ~lim f dr
e~o 0 r+E

(7.5)

(7.6)

where R is the sample radius. This expression is formally
infinite, but combines with Eq. (7.7) to yield a finite re-
sult. From Eq. (3.10) we obtain

&"'= —-' lim f dr e
—""'"'

e~o 0 r +E'

energy unit is half as large [cf. Eq. (1.16)]. This is due to
the fact that the vortex associated with this excitation has
—,
' the vorticity, and thus —,

' the kinetic energy, of the Bose
Quid vortex. This will be discussed further in Sec. VIII.

Let us now calculate the ground-state energy, summing
Eqs. (2.14)—(2.19) over two (n =0 and n =1) filled Lan-
dau levels. From Eq. (2.14), using Eq. (7.1) we obtain

oo

q, —+rr, + & nn„q, l=n'. n. &4)
/=1

From Eq. (2.15), using Eq. (7.3) we obtain
n

n=2 k=1
L

(7.7) &a, &= y &q, l

—
—,'(11,+11,)lq, &= —,'N . (7.15)

m'„'F'= —,', 11,+ —,', 11, ,

u'„'„'= —,', 11,+ —,', 11, ,

(7 8)

(7.9)

where we have used Eq. (Al) in the last line. Again using
algebraic methods discussed in Sec. VI, we obtain from
Eqs. (3.11)—(3.15)

From Eq. (2.16), using Eq. (7.5) we obtain

(~, )=—,
' g y, —f dr tp,

—= ,'N lim f —dr
2 0 r e~o 0 r+E

(7.16)

1 1

n —2

~HF ( g 2@R )+0 2~ R i

(7.10)

(7.1 1)

which is formally infinite, but combines with Eq. (7.17) to
yield a finite result. From Eq. (2.17), using Eq. (7.7) we
obtain

&&„)=-,' g g, —
—,
' lim dr e ""'"+-'lI

O O r+E

1 11 g + rr.4 n n —1
n =2

(7.12)

where Ez is defined as in Eq. (5.13). Combining these re-
sults, we obtain finally

+

= —~N lim dr e ' " +—'N . (717)1
4 eo o r+E

From Eq. (2.18), using Eq. (7.8) we obtain

~HF= (8 —
—.'&z) o+(V

00
1 n

2(n —1)

N

&m, &
= y & q, l —,', 11,+ —,', ll, lq, & =-', N .

From Eq. (2.19), using Eq. (7.11) we obtain

(7.18)

(7.13)

This result, which supersedes Eq. (8) of Ref. 1, demon-
strates the extremal nature of the ground state.

Let us now consider the eigenvalues of &HF, the first
few of which are listed in Table II and sketched in Fig. 3.
As is the case in Table I, the largest factor in this energy
is the logarithmically large quantity —,Ez, which is the
same for particles and holes. This energy is actually —,

' of
the corresponding quantity for the Bose gas because the

TABLE II. Eigenvalues of &H„, as given by Eq. (7.13), for
1V=—2'

(W'&= —"N .32 (7.20)

This result is only slightly smaller than the ground-state
energy X of a two-dimensional Fermi gas in an external
vector potential A, . In light of Eq. (1.16), this energy is
proportional to the number density p, and gives a finite
sound speed of

1/2

&~/&= g &q»l ,', ,'z, lq»&—=——
,',—N ,'NF, ————

l=1

(7.19)

Evaluating Eq. (2.13) by summing Eqs. (7.14)—(7.19) we
obtain finally

Landau level (n) Eigenvalue (c,„) 2 8 E
aq

~
aq x =i 29/16, (7.21)

0 (filled)

1 (filled)

2 (empty)

3 (empty)

1 1

8 4
11 111
8 4
121 + 1E
48 4
89+ 1E
24 4

in units of co,ao.
Unlike the result of Eq. (5.22), this finite sound speed is

not an artifact of the formalism, but is rather mandated
by the nodes in the fractional-statistics wave function at
particle coincidences. The value of U, is not expected to
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be accurate, however, because the Hartree-Fock wave
function need not give the correct functional form of the
node.

strate this explicitly by calculating the expectation of the
current density operator, given by

N

VIII. CHARGED VQRTICKS
J(r)= —,

' g P;+ g A;1, 5(r —r;) (8.1)

As we previously remarked, the logarithmic nature of
the energy cost to make particle and hole excitations in
the Bose and —, fractional-statistics Auids indicates that
they are actually charged vortices. Let us now demon-

where A; is given by Eq. (1.6). For any single Slater
determinant wave function l)I/) comprised of orbitals (pi,
the expected current density at rl is given by

(+lJ(I)l+) = g fd2q,*(2)-,'IP, , 5(l —2)]q (2)
I =- 1

+ g g f d2 f d3 (p,*(2)&p* (3) A2, 5(1—2)[yi(2)cp (3)—p, (3)&p (2)] .
I=1 m=—1

(8.2)

The change to ( J ) resulting from adding a particle in or-
bital y is therefore

5J(1)= f d2 (p*(2)—,
'

I P2+ A2, 5(1 —2) I(p(2)

d2A12@* 1H 1,2y2+cP*2H2, 1y1
+Pf d2 A)2ly(2)l (8.3)

where p denotes the particle density and where

+(i)—
+ (&) Zne

—(1/4)(z(1

(2n +1 1)1/2

(Ir2 n
—( 1/2) p-2

e
2~r

)
(n + —,'r ),n!

Elementary considerations give, for rl =r,

f d 2 y*(2)—,
'

[ P2+ A2, 5(1—2) I y(2)

(8.5)

(8.6)

II= g II

filled

(8 4) and

with II defined as in Eq. (4.3). The current density asso-
ciated with a hole is the negative of this expression. Let
us now specialize to the case of a particle (hole) in a
Gaussian orbital in the nth Landau level centered at the
origin, given by

1l

P d2 A12cP 2 = — 1 —e " ' —'I.

Using methods outlined in Sec. VI, we also obtain

(8.7)

f d2 A, 2[y*(1)II (1,2)(p(2)+y*(2)II (2, 1)y(1)]

( )r2)"
( )

XXr ((/2)p 2

2'ITr nl
—e(n —m)+ ( ,'r )e(n——m +1) ) (8.8)n+1

where

1 m&n
e(n —m)= '0 )

Combining these results, we obtain finally

5J —z r
(

1 2)ne —(1/2)r
(Particle 2~r n ~

2 (
i 2) + 1 e

—(1/2)r y (1 2)p (8.9)

5J (
) r2)ne —(1/2)r [n (2 v) + (

1 r2)v]+ 1 e
—(1/2)r g (

1 r2 jP
zXr 1 1

hole 2~r n. p=0 I (8.10)
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0.14

0.12

0.1

0.06

0.04

0.02

0 1 2 3 4 5 6 7 8
I'

FICx. 4. Expected current density versus r for particles (solid)
and holes (dashed) in the Bose Auid (v=0), as given by Eqs.
(8.9) and (8.10). The hole current is the negative of the plotted
value.

Plots of the first few of these expressions for v=O and
v= —,

' are shown in Figs. 4 and 5. Far from the origin, the
core contributions in these expressions become negligible,
and we have

zXr
27Tt

(8.1 1)

~=(l —v) dl 5J=(1—v)—h h
(8.12)

While the existence of vortices with this value of circula-

0.16

0.14

0.12

0.1

0.06

n= 3
n= 2

n= 1

0.04

0.02

FIG. 5. Expected current density versus r for particles (solid)
and holes (dashed) for the fractional-statistics Quid (v=

~ ), as

given by Eqs. (8.9) and (8.10). The hole current is the negative
of the plotted value.

which is the desired result.
Let us now calculate the circulation ~ of this vortex.

Dividing Eq. (8.11) by p, which is related to the magnetic
length by Eq. (1.17), to obtain the particle velocity, and
integrating this around the vortex, we obtain, with the di-
mensions reinstated,

tion is consistent with charge-(1 —v) superfluidity, the
attachment of charge to the vortex is highly unusual.
This result is clearly pathological in the case of v=O be-
cause the underlying physical system, the Bose Quid, con-
serves parity and thus cannot associate positive charge
with a particular handedness of circulation. In the case
of v= —,', however, it is quite reasonable, particularly in

light of the recent work of March-Russell and Wilczek'
showing in a continuum version of this problem that
charges are vortices and vortices charged as a matter of
principle. Thus the result should be taken as an indica-
tion that the charge of the order parameter will then be
(1—v) ' when the superfluid state is correctly described,
and as predicting that a v= —,

' superconducting vortex
carries charge +e.

IX. DISCUSSION

The results presented in this paper are consistent with
the assertion that the v= —,

' fractional-statistics gas is a
charge-2 superfluid. The key step in our reasoning is the
observation that a gap in the fermionic excitation spec-
trum, particularly one that grows with sample size, is
highly unusual in a system possessing ordinary compres-
sional sound and indicates that this collective mode can-
not dissipate except by interacting with itself. This, in
turn, suggests that hybridizing macroscopic numbers of
these "phonons" into the "ground state" per Eq. (1.23)
produces a true ground state with the broken symmetry
expected of a superAuid. Since the gaplessness of the col-
lective mode is central to the argument, the next logical
step is to develop a formal description of this mode.
While Eqs. (5.22) and (7.21) do not constitute such a
description, they do indicate that the correct description
must be gapless. '

The properties of the v= —,
' fractional-statistics Auid

implied by our results are very similar to those of an in-
teracting Bose Quid at the same density. In particular,
the superconducting transition temperature is roughly
the Bose condensation temperature, which is of order 1 in
our units [cf. Eq. (1.16)], and the thermodynamic proper-
ties near the transition are similar to those of helium-4
near its I, point. When Coulomb interactions are added
to the problem, the super Quid transition, Meissner
screening, and critical fields are expected to be those as-
sociated with a charged Bose Quid, unless these repul-
sions are sufficiently strong to induce crystallization.
Since the experimental properties of high-temperature su-
perconductors are quite BCS-like, and thus inconsistent
with this result, it is important to make clear that they
are not expected to be consistent. In order to demon-
strate convincingly that fractional statistics can cause su-
perconductivity, we have elected to remove the spin de-
grees of freedom from the problem. As a result, the exci-
tation generated in a tunneling experiment, the energy
gap of which regulates the transition temperature in an
ordinary superconductor, does not exist in our calcula-
tion. Since these critical low-energy excitations are miss-
ing, many of the low-temperature properties are expected
to be given incorrectly. It should be remarked that the
Bose condensation temperature forms a natural upper
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bound to the transition temperature of any superAuid, in-
cluding an ordinary superconductor. It may be con-
sidered an accident of nature that the thermodynamic
collapse of the gap in an ordinary superconductor occurs
at a temperature lower than that required to destroy the
long-range coherence of the order parameter by thermal-
ly exciting phonons.

We remark finally that the behavior we ascribe to the
fractional-statistics gas, namely the binding of integral
multiples of particles into bosons which then condense, is
very reminiscent of the mechanism of "oblique
confinement, " thought to be a generic feature of simple
gauge theories with parity-violating terms in their La-
grangians. ' Since the confining phase, which may be
thought of as a superAuid of "monopole" excitations of
the gauge field, occurs at any rational fraction of the
parity-violating parameter, the possibility is raised that
the fractional-statistics gas is actually a charge-m
superfluid for any rational fraction v=n lm of statistics.
An appropriate analogy would be the existence of a frac-
tional quantum Hall state at any "rational" value of the
electron density. It is also significant that the most com-
monly discussed precedent for this behavior is three di-
mensional. Thus, it is possible that a three-dimensional
version of the behavior in this paper may exist and be
relevant to the three-dimensional aspects of high-
temperature superconductivity.
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n n ( 1)k n n
(
—x)"—dx

k=1 . - k=1
n= f —[(I—x)"—1]dx = f dy

0 x 0 1 —y

f' kd

0 O k, k
(A 1)

In Eq. (6.16) we have

n n
( 1)k n n f ( —x)"dx

k=O . . + k=O

= f (1 —x)"dx =
0 n+]. (A2)

In Eqs. (6.16) and (6.27) we have, for n ) 1 and n ) trt,

n

( —1) lim
k =m 0 P+E

k

n k —1

g ( —y)" g f x~dx
,=0

The following sums are used to simplify the expres-
sions for the Hartree-Fock self-energies. In Eqs. (5.7) and
(7.7) we have
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