PHYSICAL REVIEW B

VOLUME 40, NUMBER 13

Consequences of time-reversal-symmetry violation in models of high-7', superconductors

Bertrand I. Halperin and John March-Russell
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

Frank Wilczek
School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
(Received 5 July 1989)

We consider some observable consequences of the possible breaking of the discrete space-time
symmetries P and T in high-T, superconducting materials, as occurs in anyon models. It is argued,
within these models, that at least two species of anyons are expected to occur, as a result of a
quasimagnetic modification of the algebra of translations. We find that there is an intrinsic orbital
magnetic moment perpendicular to each anyon layer, whose sign depends on the sign of the broken
symmetry in the layer. If the coupling between layers is ferromagnetic, there should be a number of
observable bulk effects, including optical rotation and anomalous transport properties analogous to
a Hall conductance, which would occur even in the absence of an external magnetic field. Depend-
ing on the sample geometry, there may be a magnetic domain structure and/or fringing magnetic
fields, and there may be a difference in the value of H,, for positive and negative magnetic fields. If
the coupling between planes is antiferromagnetic, so that the sign of the broken P and T symmetry
alternates between planes, the bulk effects are absent, but the broken symmetry may be detected in
principle by surface-sensitive probes or by weak effects in neutron scattering. Measurements of
muon spin relaxation provide a local probe that should be a sensitive detector of broken P and T
symmetry in either the ferromagnetic or antiferromagnetic case. For the model of dilute, weakly in-
teracting anyons, we show that the magnitude of the intrinsic orbital magnetic moment can be ob-
tained exactly by a direct physical argument. Our analysis determines all of the coefficients in the
effective London Lagrangian, including the Chern-Simons—type terms, if the value of the compressi-
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bility is known.

I. INTRODUCTION

Recently theoretical studies have indicated the ex-
istence of a new mechanism of superconductivity in two
spatial dimensions,"? this mechanism being abstracted
from studies of the behavior of an ideal gas of fractional-
statistics particles (anyons) at zero temperature. We
would like to know if this new possibility applies to real
materials. Particularly promising in this regard are the
high-temperature superconducting materials based on
copper oxide planes, which are, in a useful approxima-
tion, two dimensional, and which seem to become super-
conducting by a mechanism that is new, at least to the ex-
tent that it involves something other than the formation
of Cooper pairs by phonon exchange.

One essential feature of the anyon models is a violation
of the discrete symmetries of time reversal, T,>* and the
two-dimensional reflection symmetry, P, while the com-
bined operation PT remains a valid symmetry in these
models.® As was previously noted and remarked upon in
Ref. 3, the violation of these discrete symmetries should
have experimentally observable consequences, so that an
experimental search for these properties could be very
important in establishing whether or not the anyon mod-
els have relevance to actual superconducting materials.
The major purpose of this paper will be to discuss some
of the more promising experiments that might detect bro-
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ken T or P symmetry, and, in as far as possible, to esti-
mate the magnitudes of the effects using the simplest
models of dilute, weakly interacting anyons with half-
Fermi statistics, as follows from the microscopic spin
wave function of Kalmeyer and Laughlin.l We note,
however, that there exists in the literature on models of
high-temperature superconductivity a number of papers
with exotic ground states, including several with broken
T and P symmetry, and a number which have varying de-
grees of similarity with the Laughlin-Kalmeyer ground
state.>® The qualitative discussions in the present paper
should apply to any of the models with broken P and T
symmetry.

The anyon mechanism for superconductivity is best un-
derstood in two stages. In the first stage, it is argued that
certain plausible forms of the ground-state wave function
for an insulating two-dimensional spin system have the
property that electrons or holes doped into the system be-
come dressed quasiparticles with strange quantum num-
bers.”® For example, the quasiparticles with charge *e
carry no electron spin, and in the Laughlin-Kalmeyer
model, at least, they obey fractional statistics.

In two spatial dimernsions, fermions and bosons are no
longer the only allowed possibilities—one can have mul-
tiparticle states whose wave functions are multiplied by a
phase e?, not necessarily equal to +1, as two of the iden-
tical particles are slowly interchanged along a path that
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encloses no other particles.’~!> In the general case the
single-particle states whose statistics interpolate between

bosons and fermions are said to have 0 statistics. In the

simplest versions of this idea, the charged quasiparticles
are half fermions—that is, a trajectory whereby the
quasiparticles are slowly interchanged in a counterclock-
wise fashion is weighted with phase e™2, so that
0=1m/2.

The existence in actual condensed-matter systems of
quasiparticles with fractional statistics was first noted in
the case of the fractional quantized Hall effect (FQHE).'*
There it was pointed out!*™!® that fractional statistics
could be deduced from the explicit form of the trial wave
functions for charged excitations from Laughlin’s ground
state,!” and moreover that fractional statistics provides a
natural language with which to describe the observed
hierarchy of fractional quantum Hall states.!*18720
Indeed, Kalmeyer and Laughlin first argued for the possi-
bility of fractional-statistics quasiparticles in pure elec-
tron systems—that is, in the absence of an external mag-
netic field—by making an approximate mapping of the
frustrated Heisenberg antiferromagnet on a triangular
lattice onto a problem with an effective background field,

and taking over the many-body variational wave func: -

tions used successfully to analyze the quantized Hall
effect into this new context.

A more abstract and general definition of the type of
ordering necessary to support fractional-statistics quasi-
particles was given by Wen, Wilczek, and Zee,” who
called the ordered states, chiral spin states. (See also Ref.
21.) The defining property of a chiral spin state, roughly
speaking, is that the expectation value of the line integral
for a “particle” of some type transported around a large
loop should acquire a phase proportional to the area of
the loop or, more accurately, to the number of particles
inside. Thus one can assign a fictitious magnetic flux to
each particle inside the loop, which in the simplest case is
an integer multiple of 27. As in the FQHE one is able to
construct a quasiparticle or quasihole in such a way that
there is a phase enhancement or deficit of precisely 27 for
a particle transported around it on a counterclockwise
path, so the quasiparticle is associated with a flux of 2.
The quasiparticles also acquire the associated particle
number, which is generally fractional. If one quasiparti-
cle is transported around another, it accumulates a phase
which is the product of the particle number times flux
and is therefore a fraction of 2.

In the model considered by Kalmeyer and Laughlin,’
the particles are bosons which represent the occurrence
of an up spin on a given lattice site, and the flux associat-
ed with each boson is 47. The quasiparticles in this case
carry particle number 1. When one quasiparticle winds
around another the extra phase is 7—for there is one-
half the flux of the underlying particles, and one-half the
particle number, and so altogether one-quarter the phase.
The phase 7 for a full winding implies phase + /2 for in-
terchange, reflecting half-Fermi statistics for the quasi-
particles.

The particle number in the Laughlin-Kalmeyer model
is actually the number of up spins, and the quasiparticle
referred to earlier is actually a spin excitation with no
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electric charge (a spinon)."’ If one assumes in addition
that a free electron (or hole) added to the system will
form a spin-singlet bound state with a spontaneously pro-
duced spinon, the resulting charged excitation will ac-
quire the fractional statistics of the spinon.

In the second stage, it is argued that fractional statis-
tics in themselves lead to superfluidity, at low tempera-
tures, and at least in the case where 6=m(1—1/p), where
p is an integer, which is the only case we consider here.
The argument has been made quite forcefully and in great
detail recently.>?>23 (See also Refs. 24—28.) Hence we
shall not go into any detail here but merely recall the
essential points, which are really quite simple and intui-
tive. The key step in the analysis is the following.
Anyons may be represented as fermions with fictitious
charge and flux attached. As a first approximation to the
behavior of the anyon gas, one replaces the actual distri-
bution of fictitious flux, tied to the particles, by a uniform
background fictitious magnetic field with the same aver-
age strength.? It may be shown that this is a valid ap-
proximation for statistics near to fermions, more precise-
ly when the statistical phase is 6=m(1—1/p) and p — 0.
Then, for the indicated value of the statistics, one finds
that the effective fermions exactly fill p Landau levels,
and that there is a gap in the single-particle spectrum.
On the other hand, the underlying anyon gas is clearly
compressible, and there must be low-energy excitations
corresponding to slow modulations in density (sound
waves). Thus the first approximation is incomplete in one
crucial respect—there must be gapless collective modes
in addition to the single-particle excitations.?>»?3 (In this
compressibility argument, it is essential that the fictitious
magnetic field is tied to the particle density. It is precise-
ly in this point that the ideal anyon gas in itself differs
from the anyon gas that arises in the fractional quantized
Hall effect. While it has been convincingly demonstrated
that the low-energy excitations in the fractional quan-
tized Hall effect carry fractional statistics, and effective
anyon field theories have been proposed to describe them,
in that context the anyons are subject to a large external
magnetic field. This leads to the anyon gas being
imcompressible—the charged anyons resist crossing real
magnetic field lines—and there is no gapless mode in the
quantized Hall system.)

The nature of the gapless excitations in the pure anyon
gas is elucidated by a closer consideration of the sym-
metries of the problem. The underlying anyon gas con-
tains a pair of commuting translation generators, but in
the effective model of particles moving in a fictitious mag-
netic field, the translation generators, while they com-
mute with the Hamiltonian, fail to commute with one
another.?> This mismatch involves surface terms, which
can only be repaired by a massless field coupled in the ap-
propriate way to the energy-momentum tensor. Since the
anyon gas consisted of particles all having the same mass,
the particle current is proportional to the momentum
density. Thus the massless field also couples to the parti-
cle number current, leading to superfluidity —and, if the
original anyons are electrically charged, to superconduc-
tivity. This qualitative picture is confirmed by direct cal-
culation in a controlled approximation, viz., by perturba-
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tion theory in 1/p.

In view of all this, it is important to determine whether
the mechanism of anyon superconductivity does indeed
apply to the copper-oxide superconductors. Fortunately,
since P and T violation is inherent to the anyon mecha-
nism, there are qualitative consequences of the anyon
model which can be investigated experimentally by
means of sensitive null experiments. In addition, the ap-
parently unusual properties of the copper-oxide materials
above T, may well suggest that the transition to a chiral-
spin-liquid-like state with broken P and T occurs at a
higher temperature than the transition to the supercon-
ducting state. It is possible that many of the experimen-
tal consequences outlined later for the superconducting
state also apply to the normal state. Effects of broken T
and P symmetry do persist above the superconducting
transition in the simplest model of weakly interacting
anyons.

In Sec. II we briefly recall the definition of the anyon
model. We also discuss some of the issues that arise
when the derivation of this model from an underlying lat-
tice theory is considered. Specifically, in the single quasi-
particle subspace the lattice translations do not commute
due to the chiral-spin ordering, which leads to unusual
degeneracies among the single-particle states and, for the
Laughlin-Kalmeyer model, forces the number of distinct
anyon species to be even. This noncommutativity is re-
lated to, but not identical with, the noncommutativity in
the effective macroscopic theory of anyon superconduc-
tors, emphasized in Ref. 23. The degeneracy significantly
affects the predictions for several experimental situations.

Most of the experiments discussed in this paper will be
bulk measurements that reflect the average properties of
the system over a volume containing many copper-oxide
layers. In order for there to be bulk manifestations of the
breaking of P and T, it is necessary that the coupling be-
tween adjacent layers be such as to favor the same sign of
spontaneous symmetry breaking in adjacent layers of the
material. As far as we are aware, there has been no con-
vincing argument advanced by proponents of anyon su-
perconductivity as to whether the coupling between lay-
ers should favor like—‘ferromagnetic”—or unlike—
“antiferromagnetic” —signs of the symmetry breaking in
adjacent layers. It is not even clear whether the sign of
the coupling would necessarily be the same in the
different crystal structures in which high-temperature su-
perconductivity has been observed. However, for the ma-
jority of this paper we shall assume that at least in some
cases the coupling between layers is favorable to having
the same sign of symmetry breaking throughout the sam-
ple, and we shall explore the consequences of this as-
sumption.

One of the most interesting consequences of the broken
P and T symmetry is that there is predicted to be an in-
trinsic orbital magnetic moment perpendicular to the lay-
ers, whose sign depends on the the sign of the symmetry
breaking parameter. According to the simple anyon
model, the strength of the magnetic induction B, that
would be produced by this magnetic moment is of order
15 G. In the superconducting state, however, the mag-
netic induction is expelled from the interior of the sample
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and confined to a surface region the size of the London
penetration depth A; .

In Sec. III we discuss the magnetic moment, and we in-
vestigate the possible magnetic domain structures that
might be found in a layered superconductor with an in-
trinsic magnetic moment. We find that it should be pos-
sible under various circumstances to obtain a single-
domain sample, which, of course, is extremely convenient
for experiments that seek to measure bulk consequences
of broken P and T symmetry.

In the case of a multidomain sample there would be
weak fringing magnetic fields exterior to the sample, in
the vicinity of domain boundaries, which might be direct-
ly observable. In the case of a single-domain sample,
there would be fringing fields near edges of the sample.
In either case, the fringing field might be detectable.

In Sec. IV we go on to consider the general conse-
quences of spontaneous P and T breaking for the struc-
ture of the kinetic coefficients. As was noted in Ref. 3,
the standard Onsager reciprocity relations no longer ap-
ply, and, for instance, one might expect, at least for an
isolated layer, an off-diagonal antisymmetry contribution
0,,= —0,, to the (electric or thermal) conductivity ten-
sors, analogous to a Hall conductivity, which would be
present even in the absence of an applied magnetic field.
The Hall effect for a normal conductor in an external
magnetic field is quite familiar, but this is just one of the
many anomalous transport phenomena discussed, for ex-
ample, in Ref. 29. Indeed, the anomalous properties of a
two-dimensional system with spontaneously broken T
and P symmetry are generally similar to the special prop-
erties of a normal material in an external magnetic field,
of which many are well known.

Closely related to this is the suggestion of Wen and
Zee,® that due to a possible antisymmetry contribution
to the dielectric tensor at infrared or optical frequencies
there would be a rotation of the plane of polarization of
transmitted radiation (analogous to the Faraday effect in
a magnetic field) or a difference in reflectivity for left and
right circularly polarized light. We argue that these
effects vanish in the simplest model, of a dilute anyon gas,
but they should occur in more realistic models.

The most elegant way to discuss both the possibility of
an antisymmetric term in the dielectric tensor, and some
of the other consequences of P and T violation, is via an
effective Lagrangian description of the low-energy excita-
tions of the anyon gas. Indeed as discussed in greater de-
tail in Ref. 23, it is possible to derive such an effective
London Lagrangian by performing a matching operation
to the results of the random-phase-approximation (RPA)
calculation performed in Refs. 22 and 23. L. contains
novel terms—specifically, terms of Chern-Simons type,
of which there are two in a nonrelativistic theory. In Sec.
V we show that all the coefficients in the effective La-
grangian, validly calculated to lowest order in p in the
cited references, can be obtained exactly on the basis of
physical arguments if the compressibility is known. The
exact result differs significantly from the RPA result for
small p.

If the sign of the T and P symmetry breaking alternates
from layer to layer, so that there is a net cancellation of
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the anomalous contributions in the average bulk proper-
ties of the material, there remain several possibilities for
detecting the broken symmetry. In Sec. VI we discuss
some surface sensitive probes which, at least in principle,
might reveal the broken T and P symmetry, assuming
that the symmetry breaking persists in the layers closest
to the surface. In Sec. VII we discuss two probes of the
local magnetic order, neutron scattering and muon spin
relaxation. The latter technique, which is very sensitive,
should work equally well in the ferromagnetic and anti-
ferromagnetic cases, and it may well be the most power-
ful method available for deciding whether models with
broken T and P symmetry have any relevance to actual
high-temperature superconductors.

The exact calculation of the intrinsic orbital magnetic
moment of the dilute anyon superconductor, which is one
of the parameters necessary for the specification of the
Lagrangian of Sec. V, is discussed in some detail in Ap-
pendix A. This appendix also elucidates some of the
subtleties connected with calculations of angular momen-
tum in the anyon system. Two other appendixes (Appen-
dixes B and C) discuss the antisymmetric part of the
frequency-dependent conductivity tensor, in the presence
of weak impurity scattering, and the field energy associat-
ed with a magnetic domain wall perpendicular to the
plane of the superconducting layers.

It has been suggested that there should be no Joseph-
son coupling between an ordinary BCS superconductor
and a high-T, superconductor, if the superconducting or-
der parameter of the latter displays a broken time-
reversal symmetry.3! However, according to our analysis
this is not necessarily the case if the high-T, material is
an anyon superconductor. Specifically, in the anyon
model obtained by adding electrons or holes to the state
of Kalmeyer and Laughlin, we have found that there ex-
ists a superconducting order parameter which is local in
the electron coordinates and which has the quantum
numbers appropriate to the creation operator for a pair
of electrons in a spin singlet state. (Note again that the
Kalmeyer-Laughlin model gives rise to an even number
of anyon species.) More generally, depending on the mi-
croscopic details of the model, the electron pairs in an
anyon superconductor may either condense in a state
with total momentum zero and s-state rotational
symmetry—in which case there should be normal
Josephson coupling between the anyon system and an or-
dinary BCS superconductor—or the pairing might in-
volve d-like rotational symmetry, or a nonzero total
momentum. In the latter cases there could be Josephson
coupling through a point contact but there would be a
selection rule against Josephson coupling through a uni-
form junction to a BCS superconductor parallel to the
layer.

It also appears that the Josephson coupling between
two anyon layers should be independent of the signs of
the broken T symmetry in the two layers. Therefore, the
Josephson coupling by itself would not favor either a fer-
romagnetic or antiferromagnetic arrangement of alter-
nate layers in a high-T, superconductor. Since the
Josephson coupling between layers need not, in the end,
reflect the broken time-reversal symmetry between layers,
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we shall leave a detailed discussion of this subject for
another paper.¥

II. ANYON MODELS

Since we shall illustrate many of our points by refer-
ence to anyon models, we begin by defining these models.

A. Kinematics of fractional statistics

The most familiar form of anyon model contains a sin-
gle species of particle described in ‘“anyon gauge” by a
multivalued wave function \P(")(rl, ...,Ty) defined on a
2N-dimensional space, where N is the total number of
particles. The wave function is required to satisfy the
conditions ¥'®’—0 if any two particles come together,
w'@ is continuous elsewhere, and ¥'? is multiplied by a
specified factor e‘? if two particles are interchanged in a
counterclockwise sense along a path which encloses no
other particles. The Hamiltonian of the model in the
anyon gauge may be written simply (in the absence of an
external magnetic field) as,

N p2
H?=3 ——+v,

(2.1
j=1 2m*

where V depends only on the positions of the particles,
p;,= —i#fivV j» and points where I;=r;, are excluded from
the 2N-dimensional space. Commonly we shall only dis-
cuss the free-anyon system, where ¥V =0. It should be
noted that in applications to solid-state physics where
there is an underlying crystal lattice, the use of a continu-
um model such as (2.1) can only be strictly justified in the
dilute limit, where the distance between anyons is large
compared to the lattice constant. Further, the mass m*
is properly interpreted as an effective mass, which we as-
sume isotropic, and the momentum p is actually the dis-
tance in momentum space from some point in the Bril-
louin zone where the energy of the anyon has a
minimum.

The definition in terms of multivalued wave functions
can be made more mathematically respectable by refer-
ence to the universal covering space. The configuration
space for N identical particles is obtained from (R?)" by
identifying points that differ by any permutation of coor-
dinates, and excluding the singular points where two or
more coordinates coincide. The wave function then lives
on the universal covering space of this configuration
space. On the universal covering space the relative angle
coordinate ¢ between two nearby particles runs from
— o to + o rather than from —# to +# (with end-
points identified). The anyon boundary condition for 6
statistics is

V(p+m)=e'™W(g) . (2.2)

This boundary condition can be extended in a unique
fashion over the whole covering space. For special values
of the statistics, the wave function may be well defined on
a simpler projection of the covering space. It is not
necessary to let the relative angle run over the whole real
line, if there is periodicity after a finite interval. Thus, of
course, fermion and boson wave functions can be defined
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on the original configuration space, while to accommo-
date half fermions (6=w/2) it suffices to let
the relative angles run from —27 to +27. Several
nonidentical types of anyons may be incorporated by im-
posing conditions similar to (2.2) but with 27 replacing 7
and 20 replacing 0. This lesser periodicity is appropriate
because, for distinguishable particles, winding one parti-
cle completely around the other leads to an indistinguish-
able configuration but simple interchange does not. We
shall confine ourselves to models where the different
species of anyons have identical effective masses and in-
teractions, and we shall introduce an isospin index 7 to
distinguish the anyon species.

For computational purposes it is far more convenient
to work in a fermion gauge, where the wave function is
single valued, and obeys the restriction that it is multi-
plied by a factor of —1 on the interchange of the posi-
tions and isospins of a pair of anyons. The fractional
statistics are incorporated by an appropriate effective in-
teraction. Following the sign conventions used in Fetter
et al., the appropriate Hamiltonian is given by

N | .—a.|2
H= -P—’—*’—+V, 2.3)
j=1 2m
where
ZXr;
a,=2 L (2.4)

- ’
! P ij ll'jk|2

and 1y =r;—1;. If ¥{r;} is an eigenstate of H with en-

ergy E, then we obtain an eigenstate ¥'@ of H'?, with the
same eigenvalue E, by setting
—1/p
@ )= 2k %
v {r,-}—‘P{r,-}kII 2.5)
<j

|z —2z;1

where z;=x ;Tiy;. The difference between the two for-
mulations is a singular gauge transformation.

B. Multispecies Models

It appears that the energy spectrum for an anyon on a
lattice is always degenerate in the simplest cases, with
several minima at different points of the Brillouin zone.
For the spin model of Kalmeyer and Laughlin, for exam-
ple, one finds that there is automatically twofold degen-
eracy for every state.>®> The origin of this degeneracy
arises from the fact that the operators T, and T, which
translate the anyon by a single lattice constant in the two
independent lattice directions anticommute with each
other. Roughly speaking, this comes about because the
anyon quasiparticle, when transported around a loop by
means of the product 7,T,T| 'T; !, acquires a phase 27
times the number of up spins inside, which is (on the
average) +. One consequence is that T and T, cannot
both be used simultaneously to label quasiparticle states
of definite energy, even though each separately commutes
with the Hamiltonian. Instead one may use, for instance,
T, and T3 to label energy eigenstates, but then the repre-
sentations of the full symmetry algebra based on T'; and
T, will necessarily contain several of these states. A
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closer analysis shows that in the case at hand the irreduc-
ible representations of the translation algebra are two di-
mensional. They contain states with T, labels related by
ki=k,;+m/l,, where I, is the lattice spacing in the 1
direction.

Of course, if the minimum of the energy band does not
occur at a position which is invariant under the point
symmetry group of the lattice, there may be additional
degeneracies imposed by this point group. However, the
total number of independent minima will always be even.
Although the degeneracy of the spin quasiparticle spec-
trum was found by Kalmeyer and Laughlin in their
analysis of the Heisenberg model on a triangular lattice,
this feature has not been incorporated in previous calcu-
lations concerning the associated superconducting state.

We note that the degeneracy of minima of the anyon
spectrum presumably could be lifted, if one were to gen-
eralize the Laughlin-Kalmeyer model, by adding a per-
turbation with a period of twice the lattice constant of
the original lattice. Then one of the translation opera-
tors, say T, would no longer commute with the Hamil-
tonian, and all the remaining elements of the translation
group would commute with each other. If the degenera-
cy were lifted in this way, and if the density of anyons
were sufficiently low, only one minima would be occu-
pied. . At the same time, if the perturbation were
sufficiently weak, the fractional statistics would not be
affected by it.

To describe the continuum limit of an anyon system
with n, degenerate minima in the Brillouin zone, we
must consider that there are n, flavors of anyons, dis-
tinguished by an isospin index 7. We assume as before
that if two identical anyons are interchanged in a coun-
terclockwise manner, around a path that contains no oth-
er anyon, the wave function is multiplied by a phase fac-
tor e'®. For anyons with different values of 7, there is
only the weaker restriction that the wave function is mul-
tiplied by e?® when one particle is moved completely
around the other, on a clockwise path that contains no
other anyon. We continue to use the Hamiltonian (2.1),
which is invariant under the group SU(#n, ) of global rota-
tions in isospin space. Once again, we can transform to a
fermion representation, where the Hamiltonian is given
by Egs. (2.3) and (2.4), and the wave function ¥, which
obeys (2.5) is required to be antisymmetric under the in-
terchange of r for two particles with the same 7.

Consider a situation where the potential energy V is
circularly symmetric about the origin and chosen so as to
give a ground state with a uniform particle density (ex-
cept for edge effects) inside a circle of radius R. We will
only consider cases where (1—6/7)"! is a positive in-
teger p. Following,>?*?* we construct an approximate
ground state by working with an unperturbed Hamiltoni-
an

H,= , (2.6)
0 j=1 2m*
where
a(r)= N (ZX1r)=1b(ZXr) 2.7)
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Eventually one will treat (H —H,) as a perturbation to
generate a diagrammatic series for the energy and other
properties of the system. The perturbation commutes
with the total angular-momentum operator L,.

The one-particle eigenstates of H, may be character-
ized by a Landau level index /, and an orbital quantum
number m, with / and m being arbitrary nonnegative in-
tegers. For large values of m, and fixed /, the eigenfunc-
tion is localized near a ring of radius r,, =(27m)!/?l,,
where [, is the “magnetic length,” I,=b = 2. The state
with quantum numbers (/,m) is an elgenstate of L, with
eigenvalue #i(m —1).

In the case of a single anyon species in the thermo-
dynamic limit, where N — oo, with N/R? held constant,
the ground state of H|, is the state where the Landau lev-
els are completely occupied for 0</<(p —1) and empty
for I =p. The density of particles in each filled Landau
level is then b /2.

For the case of several anyon species, when p is a mul-
tiple of n,, the ground state of H, has (p /n,) filled Lan-
dau levels. The density of particles in each Landau level
is n,b /2w due to the isospin degeneracy. In the case
n, =p =2, the ground state has all particles in the lowest
Landau level, with both isospin states full.

If p is not a multiple of n,, then the highest Landau
level is partially occupied, and the ground state of H, is
highly degenerate. We expect that the actual interactions
between the fermions will then lead to a spontaneous
breaking of the isospin symmetry, so that in the highest
Landau level we have one or more isospin states that are
completely filled, while the remaining isospin states are
empty. This is analogous to the exchange-induced spin
splitting of Landau levels in the quantized Hall effect, at
odd integer values of 27p /B.

Strictly speaking, the approximate ground state con-
structed from H|, is justified as an approximation to the
anyon system only in the limit of p— «. Laughlin has
argued, however, that one obtains reasonable results from
this approximation even for the boson case (p =1) and
more certainly for the case of half fermions (p =2). The
limit p — « was explored in some detail in (Ref. 23).

In the present paper we will simply assume that the
wave function for a group of noninteracting electrons in a
set of filled Landau levels is a correct starting point for a
description of the ground state of the anyon system, both
in the case of a single anyon species, and in the more gen-
eral case where p is a multiple of n,. Specifically, we
shall assume that (1) the trial wave function is a good ap-
proximation to the ground state and (2) that the exact
ground state has the same quantum numbers as the ap-
proximate state, and can be derived from it by perturba-
tion theory. This will be made more precise in Appendix
A.

C. Order parameters

Finally, we state without derivation a superconducting
order parameter we believe applicable to an anyon super-
conductor in the simplest case which is n,=p. Let us
define an operator
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®'(r)= [d%, - d%,_\f(r,,...,1,)

(e, Ur)

where 773(1' ) is the fermion creation operator for an
anyon at a point r; in isospin state s. The point r, is
chosen so that the center of mass of the points {r,} is at
the location r. In addition the function f(ry,..., rp) is
required to be totally symmetric in its arguments and is
peaked when all points are close to r, and U(r) is an
operator which multiplies the wave function by a phase
factor depending on the positions of all the other anyons
in the system. Specifically we choose

><771(1'1) (2.8)

Utr)= N (z—z;)
T ]-131 lz —z;]

=exp 21rifd2r'arg(z —z')p(r’) (2.9)

where p(r’) is the density operator at the point r’. For
the case of a single species of boson, with n,=p=1,
of(r) is precisely the boson creation operator for a parti-
cle at point r. More generally, we believe that ®(r) has
long-range order in the ground state of the system, in the
sense that the correlation function (®'(r)®(r')) ap-

‘proaches a nonzero constant for [r—r|— . Thus we

can interpret {(®(r)) as an order parameter for the sys-
tem. At finite temperature, for an isolated layer, up to
the superconducting transition temperature T, the two-
point correlation function should fall off as |[r—r'| 7
with 0 <7 <{, because of the usual divergence of phase
fluctuations assoc1ated w1th the long-wavelength phonon
mode. The operator ®'(r) may be generally mterpreted
as the creation operator for a p tuplet of anyons in an iso-
spin singlet state.

In the case of a single species of anyon (n,=1) with
p#*1, a plausible generalization of this order parameter is
obtained if we simply reinterpret the operators 7,(r,) as
the fermion creation operator for a quasiparticle in Lan-
dau level s, in the state which is centered at r,. The order
parameter we have chosen is closely related to the nonlo-
cal order parameters introduced by various authors to de-
scribe the quantized Hall effect for Fermi systems.>*

D. Characteristic magnitudes

At this point is seems appropriate to discuss two of the
characteristic magnitudes that arise in anyon models. Of
course it is only the product of fictitious field and ficti-
tious charge that has physical meaning, but to relate the
effect of the fictitious fields to our intuitions in dealing
with real fields it is useful to ascribe the same unit e of
charge. The magnitude of the average fictitious magnetic
field is then related to the density according to

p=TP
b 2

If we take a typical value p=10'* cm 2 then we find that
b is about 10 MG. For the cyclotron frequency, which is
also the gap in the charged particle spectrum, we have

(2.11)

(2.10)

w,=eb/m*
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If we take the effective mass to be just the bare electron
mass, and the density as before, then we find that w, is
about 100 meV, or in terms of an equivalent temperature
about 1000 K.

The anyon models cannot be used to make refined nu-
merical estimates, for several reasons—notably that in
the real materials the geometric size of the quasiparticle
clouds is likely to be comparable to or greater than the
spacing between them, whereas the models treat them as
structureless points and that the effective mass is not
known. Nevertheless we take it as encouraging that the
above estimate of the (zero-temperature) gap is of a
reasonable order of magnitude for a high-temperature su-
perconductor.

III. MAGNETIC MOMENT AND DOMAIN STRUCTURE

Since in the many-body ground state of the anyon gas
the individual anyons are subject to an effective (ficti-
tious) magnetic field, it seems very plausible that they
carry an intrinsic orbital angular momentum. It is slight-
ly tricky to relate this intrinsic moment to the macro-
scopic properties of the gas, however. For example the
total angular momentum within, say, a large radius R
around the origin, can receive large contributions from

the particles at the boundary. The existence of currents

at the boundary, or the occupation of “skipping” orbits,
can drastically affect the total angular momentum. This
sensitivity arises essentially because the angular-
momentum operator contains a factor of the radius vec-
tor, and so the integral
Ly=m* [d*(xj)% (3.1)
receives a contribution proportional to the area from a
surface current. The total angular momentum is there-
fore awkward to study, as it depends on the precise
prescription for boundary conditions. A very instructive
discussion of related issues has been given in Ref. 35.

We can finesse these difficulties to a great extent by
considering the differential contribution to the angular
momentum due to gradients in the density. With some
benefit from hindsight, let us assume that in the interior
of the sample the current density, in an equilibrium state,
can be written in the form

1
o=V, & —pa )+
pm 2m

(3.2)

T Vilyp),

where ®(r) is a function of position that we identify as
the phase of the superconducting order parameter, A is
the electromagnetic vector potential, p(r) is the anyon
density at point r, p;, is a coefficient that we may identify
as the local superfluid density and y is a coefficient to be
described later. We have set e =c =1 for this discussion.

The first term on the right-hand side of (3.2) is the usu-
al supercurrent density, while the second term is a result
of the broken P and T symmetry. Note that the
coefficient y is odd under P and T but even under PT, so
it has the right quantum numbers to be related to an in-
trinsic moment. To cement this interpretation, simply
consider the contribution of the additional current to the
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angular momentum:
m*flerkjl=%f€k1"keznvn(7/l’)=—%f’kvk(yp)
=[yp)+--- (3.3)

where the ellipsis represents boundary terms. Evidently
then, y deserves to be called the intrinsic orbital angular
momentum per particle. Equation (3.2) allows us to iden-
tify it from bulk properties.

We shall actually find that (at zero temperature) the
coefficient y is independent of density, so that it may be
taken outside the derivatives and integrals in (3.2) and
(3.3). In any case, we note that the contribution to the
current from the second term in (3.2) is necessarily diver-
gence free.

In Appendix A we shall argue that for a system with

one type of anyon, with statistical parameter
6=m(1—1/p), the value of ¥ is given by
# -

In contrast, the analysis of the electromagnetic response
function, in the limit p — oo, which was carried out in
Ref. 23, is equivalent to setting ¥ = —#p /2.3¢ For p =2,
the large p formula gives y = —#, whereas the correct
answer given by (3.4) is slightly smaller, y = —3#/4. For
the case of bosons, with p =1, the large p formula gives

= —*7i/2, whereas the answer given by (3.4) is ¥ =0.
This result is what we expect, of course, since there is no
broken T symmetry in the boson case. For the case of two
kinds of anyons, with p =n, =2, we find instead

y=—%/4. (3.5)

Now we must consider what happens near a sharp
boundary of the system. A direct application of (3.2)
would imply an edge current I parallel to the boundary
that is equal in magnitude to the value of yp/2m™* at a
point slightly inside the boundary. However, we wish to
allow for the possibility of an additional “anomalous”
edge current I' that may depend on the details of the
boundary conditions, so we write instead

1= |2 41 |zxh), (3.6)
2m*

where 0 is the unit vector directed outward from the
boundary.

Our considerations are simplified if we consider a sam-
ple with circular symmetry, where the density p(r) is as-
sumed to be a slowly varying function of the radius r, up
to a “sharp” boundary at radius » =R, and also let us
take A=0. If we further assume that there are no vor-
tices present in the interior of the sample, then the
superfluid phase ®(r), as well as p(r), can only depend on
the radius r. Then there is no contribution from the first
term in (3.2) to the azimuthal current, J,, and we may
write

Tor=——Y_9 4 s, —R).

Pt 3.7)
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The radial current must be zero in equilibrium since
V-J=0. Now if we compute the orbital angular momen-
tum M, we find

M,=2mm* fowrzlg(r)dr

=yN+2m*7R', (3.8)
where N is the total number of particles in the system,
and I' is determined by the specific boundary conditions
and by the density of particles in the region just inside the
boundary.

If we can neglect the contribution of the possible
boundary current I’ (as is certainly justified if the density
of the anyons tapers slowly to zero near the boundary of
the two-dimensional system), then the layer will have an
orbital magnetic moment arising from the anyon current
which is given by

p= %p;‘,N , (3.9)
where uj is the anyon Bohr magneton
fie
3= . (3.10)
He 2m*c

The direction of u depends on the sign of the statistics
parameter 6, and thus depends on the sign of the broken
symmetry in the layer.

So far we have only discussed the orbital contribution
to the magnetic moment—but there is also the intrinsic
magnetic moment of the individual anyons to consider.
It is known for anyons in the continuum limit, an intrin-
sic angular momentum (“spin”) is required by the spin-
statistics theorem.!®3” For the case of half-Fermi statis-
tics, this intrinsic angular momentum must be equal to
#i(k+1), where k is an integer. However, the g factor as-
sociated with this intrinsic angular momentum depends
on the details of the short distance cutoff. There is no
reason to expect any simple relation to the effective mass
m* of the anyons, and it is unlikely that the intrinsic
magnetic moment would cancel the moment arising from
the orbital motion of the anyons. Note that for a
condensed-matter system on a square lattice, the angular
momentum operator L, is strictly defined only modulo
4#i. The magnetic moment remains defined, however, and
the continuum analysis remains useful in discussing its
magnitude. In order to estimate the effects of the intrin-
sic magnetic moment, we ignore any contribution from
the anyon spin, and assume I’ =0.

The magnitude of the three-dimensional magnetic mo-
ment density is

M,=pyuy /st , (3.11)
where s is the interlayer spacing, and p the anyon density.
Using our previous value p=10'"* cm ™2, |y|=%#/4, and
taking the effective mass equal to twice the electron mass,
which is appropriate for low-frequency phenomena, and
s=T7A, wefind 4wM,~15 G.

Let us now consider the consequences of an intrinsic
magnetic moment for the bulk properties of the system,
first assuming coupling between layers favors the same
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sign of broken time-reversal in every layer. Then the in-
trinsic magnetic moment of the layers generates a macro-
scopic magnetic induction Bj, which depends on the
shape of the sample, but is different from zero except in
the case of an infinite slab or film oriented parallel to the
layers of the material. If, as seems likely, B, is below the
critical field H,, of the superconductor, this field will be
expelled from the sample due to the Meissner effect, and
there is only a nonzero value of B in a region near the
surface whose depth is essentially the London penetration
depth A; .

A simple case to consider is a cylindrical, single-
domain sample, illustrated in Fig. 1. We assume that the
axis of the cylinder is in the z direction, which is perpen-
dicular to plane of the layers, and we assume that the in-
trinsic magnetization m is parallel to the z axis, as indi-
cated by the bold arrow. A surface current I then ap-
pears on the lateral surface of the cylinder as indicated.
The supercurrent j(r) in the surface region is in the oppo-
site direction to I, and cancels the surface current over a
region of depth A,;. In the limit where the sample size
becomes infinite, the magnetic induction B is vanishingly
small in the region exterior to the lateral surface. The in-
duction jumps to the value By=4wM, just inside the
sample, and falls off exponentially with the skin depth
Ar, away from the sample boundary.

In a finite sample, there will be a small, nonzero mag-
netic field B outside the sample, which may be thought of
as a fringing field that emanates from the ends of the

\________________\
wy

FIG. 1. Cylindrical sample with a single magnetic domain.
The axis of the cylinder is taken perpendicular to the copper-
oxygen planes; the sign of the hypothesized broken time-
reversal symmetry is assumed to be the same in every layer, so
that there is a uniform intrinsic orbital magnetic moment in the
direction of the heavy arrow, with an associated surface current
I on the side of the cylinder. The resulting magnetic induction
is expelled from the sample except for a surface region the
thickness of the London penetration depth A,. The curves
show typical lines of magnetic induction B, and the symbols N
and S denote the north and south poles of the magnetization.
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sample in a region of width A; near the perimeter. The
magnetic field outside the cylinder looks something like
the field of an annular bar magnet, and the total magnetic
dipole moment is seen to be proportional to the lateral
surface area rather than the volume of the cylinder.

Now let us consider the lowest-energy configuration of
an oriented polycrystalline sample, where the z axes of all
crystallites are assumed to lie in the same direction, but
the magnetization of each crystallite is free to point in ei-
ther the +z or —z direction. If two identical cylindrical
crystallites are brought together end to end, it is clear
that the energy is minimized when their magnetizations
point in the same direction. If they are brought together
side by side, however, the energy is minimized when their
magnetizations point in opposite directions. Thus we
would expect that in an oriented polycrystalline film,
with the planes of the layers parallel to the plane of the
film, the optimum configuration would be a domain
structure, indicated schematically in Fig. 2, which is
qualitatively similar to the domain structure of an ordi-
nary ferromagnetic film.

In an ordinary ferromagnet, the energy of the magnetic
interactions becomes increasingly important as the size of
the sample becomes large, so that for a macroscopic sam-
ple, even if it is a single crystal, it is always favorable to
introduce domain walls and create a sample with no net
magnetization. This is not the case for our ferromagnetic
superconductor, however, because the total magnetic mo-
ment of a domain does not increase proportional to the
volume of the domain. If the film indicated in Fig. 2 were
a single crystal of high-T, superconductor, we would ac-
tually expect to find a single domain, regardless of the
size of the sample. In particular we expect that there
should be an energy cost to create a domain structure
which would be of the order of an in-plane spin exchange
energy J (=0.01-0.1 eV) for every copper atom adjacent
to the vertical domain wall, while the total gain in mag-
netic energy is limited to E ~B3SA, /4, where S is the

—> N

e

FIG. 2. Possible domain structure to minimize the energy in
an oriented polycrystalline film. The copper-oxide planes are
assumed to be parallel to the film plane as indicated by the
parallel sets of lines on the front face of the sample, and the
directions of intrinsic magnetization in different domains are in-
dicated by the heavy arrows. Heavy solid lines indicate the
boundaries of the domains, dashed lines suggest the surface re-
gion which extends a distance A; away from the domain walls,
and the curves indicate typical lines of magnetic induction out-
side the sample.
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area of the domain wall (see Appendix C). The ratio of
the magnetic field energy gain to the exchange energy
loss for a domain wall, at low temperatures, is thereby es-
timated to be

172
E 2 2 2
BTV (i) | FP e , 3.12)
E, #* m*J | | sm*c?

where a is the in-plane lattice constant. This is a number
of order 102 or smaller.

We note that the fringing field in the vicinity of a
domain boundary in a polycrystalline sample, or at the
corner of a single-crystal sample, is estimated to be of or-
der By~15 G in a region of linear dimension
A; =1000 A. This might be detectable with an appropri-
ate experiment.

The state of lowest absolute energy is not necessarily
the structure that would be observed in an actual experi-
ment. In particular the difference between magnetic en-
ergies associated with different structures is very small,
and the exchange energy for spin coupling between
planes may also be very small, especially in materials
where there is a large separation between cooper-oxide
planes. In these circumstances, it may be possible to
prepare a single domain, ferromagnetically aligned, sam-
ple regardless of the sign of the coupling between layers.
To do this, one should cool the sample in the presence of
a large external magnetic field in the z direction, through
the temperature T;p, where the broken time-reversal
symmetry sets in. The sign of the broken symmetry is
then the same in each layer, and is such as to align the or-
bital magnetic moment with the applied field. When the
external field is turned off, it is likely that the sign of the
symmetry breaking will remain fixed in each layer, be-
cause the energy barrier to nucleate a region with re-
versed magnetization is likely to be insurmountably large
at low temperatures.

Finally, we note that the intrinsic moment should man-
ifest itself through an asymmetry in the response of the
superconductor to an applied magnetic field; and
specifically through a dependence of the critical field H,,
on the orientation of the applied field relative to the ficti-
tious field. For a single domain our estimates indicate
that the fractional asymmetry should be quite substantial.

IV. ASYMMETRIC TRANSPORT AND RESPONSE

Consider a single copper-oxide layer of the new super-
conducting materials. Within this layer we can define
both the operations of time-reversal T and two-
dimensional parity P. Here P should be distinguished
from the usual three-dimensional parity operation in that
it is just a reflection in one axis (within the layer) rather
than a full inversion in all three spatial axes, and as such,
for example, two-dimensional parity P would reverse the
orientation of an external magnetic field in the z direc-
tion, B,— —B,. For a system that is rotationally invari-
ant within a layer, it clearly does not matter along which
axis we choose to reflect, but in the nonisotropic case we
will always choose the reflection axis to be directed along
a crystal axis.
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The case of interest to us is that of a system in which
the Hamiltonian, H, is invariant under both T and P, but
these discrete symmetries are spontaneously broken in
the ground state. In particular we can suppose that there
are two inequivalent ground states, |1 ) and | —u ), which
are interchanged under the actions of P and T, similar to
the interchange of the two degenerate ground states in
the ferromagnetic two-dimensional Ising model under the
action of these two operations. The existence of micro-
scopic time-reversal and parity invariance for a system
implies strong constraints on the allowed transport phe-
nomena, which appear formally as the Onsager relations
among the kinetic coefficients.?’ We thus need to consid-
er the weaker relations that hold among the kinetic
coefficients when some, or all, of these symmetries are
spontaneously broken.

The kinetic coefficients in question, C,-‘}B, are defined by
the relation between the generalized currents J* and the
generalized forces X JB in a system, namely,

JE=3CPFxF, 4.1)

jB

where the upper indices label the type of current, and the
lower indices label the direction. The currents J are
themselves the currents of various conserved densities g¢
of the system. Typical such densities might be charge
and energy density. In this simple case the generalized
forces are then proportional to gradients of the tempera-
ture and chemical potential, and the kinetic coefficients
are essentially the usual thermoelectric coefficients.

In terms of these C,-‘}ﬂ’s, what are the relations that
hold as a consequence of the individual discrete sym-
metries P, T, and PT? Under a parity reflection through
the x axis (which we take to be a crystal axis) the com-
ponents of the currents and forces transform as

JE—~—e%JZ,
Jy—e?Jy,

a —_—a a
Xi——e%X7,

a aya
X;‘—+€ X,

4.2)

where €= depending on the intrinsic parity transfor-
mation properties of the density ¢*. Demanding micro-
scopic P invariance therefore tells us that

Ch=—e"ePCP, i#j,

4.3)
CiP=cePCg? ,

regardless of whether. T is violated or not. In the com-

mon case where we have £%f=1 for all @ and B this

forces the off-diagonal elements to

=—Cf=0.

If in addition we have rotational invariance in the
plane, or a smaller Z, or Z4 discrete rotational symmetry
(square or hexagonal symmetry), then C,, =C,, as well.
In general, isotropy or square or hexagonal symmetry
within the plane forces the kinetic coefficients C,-‘}B to be
proportional to a linear combination of §,; and ¢;;.

If the Hamiltonian H commutes with 7 and the ground

vanish C,g,B
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state is invariant under T, then the standard reciprocity
relation applies and we have

ciP=88"ch*, 4.4)
where 8% is the intrinsic time-reversal transformation
property of the density ¢®.3® On the other hand, com-
bined PT invariance requires,

C,~‘}3= —s“eBS“SBCJ’-?“, i#j,

4.5)
C,~‘,~’B=s“e’38“85C,£-’“ .
These are the general relations that hold among the ki-
netic coefficients, but let us specialize, for instance, to the
case of the thermal conductivity tensor,

K= _[Cn_cTE(CEE)‘ICET] ,

and consider under what circumstances anomalous effects
are allowed, in particular the possible appearance of a
nonzero antisymmetric contribution to x—a thermal
equivalent of the Hall effect. (For the quantities involved
in the thermoelectric processes, all the £’s and &’s are
+1). The occurrence of an antisymmetric contribution
to k has been discussed in the literature for the case of a
normal metal in an external magnetic field, where it is
known as the Righi-Leduc effect.”® We shall refer to it
here by the more graphic name of a ‘“‘thermal Hall
effect.” The results may be summarized as follows.

(1) If the Hamiltonian H is T conserving, and the
ground state is T invariant, then «,, =k, regardless
of P invariance. Isotropy would in addition force
Ky, = — Ky, =0 and «,, =k,,. In any case T invariance
does not allow a thermal Hall effect.

(2) If H is P conserving and the ground state P invari-
ant, then «,, = —«,, =0 regardless of whether T is violat-
ed or not. Again there is no thermal Hall effect, with or
without isotropy.

(3) If Pand T are both violated in the ground state,
then we can have a nonzero antisymmetric contribution
to k. The existence of PT as a good symmetry requires
Kyy = —K,, but does not force the off-diagonal part to
vanish. Rotational invariance does not change this situa-
tion. Therefore as long as both P and T are broken we
are allowed a thermal Hall effect.

In principle, a nonzero thermal Hall effect can be
detected by an experiment in which heat is forced to flow
in the x direction through a rectangular sample, and a
temperature difference is observed between a pair of ther-
mometers whose separation is purely in the y direction.
To check against spurious effects arising from misalign-
ment of the sample or due to unknown inhomogeneities
or anisotropies of the sample, one should interchange the
positions of the thermometers with the source and sink of
heat current. When the heat current flows in the y direc-
tion, there should be a temperature difference (with re-
versed sign) for thermometers separated in the x direc-
tion.

If broken time-reversal and parity invariance sets in,
for a cooper-oxide material at a temperature T, which
is higher than the onset temperature T, for superconduc-
tivity, then there should be in addition to the thermal
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Hall effect, a spontaneous Hall effect of the ordinary type,
as well as nonzero antisymmetric contributions to the
cross coefficients in the thermoelectric tensor. Since elec-
trical measurements are generally much simpler to per-
form than thermal measurements, it would be easiest, in
this case, to look for a nonzero result in a standard Hall
geometry, in the absence of an applied magnetic field.
The spontaneous Hall effect should in fact be large, since
the fictitious internal magnetic field b is predicted to be
very large.

In the case where T7p=T,, asymmetry in the trans-
port coefficients is harder to detect. In the superconduct-
ing state, the results of a standard Hall measurement are
necessarily zero, because the electrochemical potential,
which is measured by a standard voltage probe, is always
constant in a superconductor in a steady state at constant
temperature. This problem is reflected in the relations
(4.1) by the divergence of the diagonal transport
coefficients for the electric charge. However, the
thermal-conductivity tensor k;; remains well defined in
the superconducting state, and the thermal Hall effect
should be observable if P and T are broken.

There exists another version of the Hall effect which
can be observed in a superconductor.’®* Here one uses a
contactless capacitive pickup to measure changes in the
electrostatic potential produced by current flows in the
sample. Such experiments are generally much more
difficult than the conventional Hall-effect measurement,
but a nonzero result is predicted, for a superconductor
with broken P and T symmetry, in the absence of an
external magnetic field. (This was discussed in Ref. 23
for a model with one species of anyon.)

The size of the thermal Hall effect that one might see
in a high-T, superconductor can only be estimated very
crudely. The effect should vanish at low temperatures,
where the thermal conduction takes place primarily via
long-wavelength phonons, which are expected to have a
large mean free path in the superconducting state. The
electronic contribution to the thermal-conductivity ten-
sor at low temperatures, within the anyon model, should
come primarily from excitations of low-energy electron
fluctuations, which have a small wave vector k| in the x-y
plane, and a nonzero wave vector in the direction perpen-
dicular to the layers. As in the case of phonons, these ex-
citations give no contribution to the thermal Hall effect
when k| is small.

The best hope to observe a thermal Hall effect, if
Trp=T,,is to work at a temperature which is somewhat
below the transition temperature, say 7=0.97,. At this
temperature we may hope that there are reasonably large
numbers of short-wavelength electronic excitations,
which we may think of as loosely bound pairs of anyons
or pairs of vortices in a copper-oxygen plane. Energy and
momentum is exchanged as a vortex from one pair is
scattered by a vortex from another, and the effects of bro-
ken P and T symmetry are manifest as an asymmetry in
the scattering cross section for the vortices. If one
neglects the correlations between vortices, one is led by
this reasoning to an off-diagonal contribution to the
thermal-conductivity tensor, which could be a significant
fraction, say 10%, of the electronic contribution to k.
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Heremans et al.*° have estimated, assuming the approxi-
mate validity of the Wiedemann-Franz law, that in
YBa,Cu;0, high-temperature superconductors the elec-
tronic contribution to the thermal conductivity is about
10% of the phonon contribution. Thus a crude estimate
of the ratio k,, /K, is

K

X
Y ~0.1a ,
Kxx

(4.6)

with a a numerical constant that might be as large as 0.1.
However, recent measurements of the resistivity of
YBa,Cu;0, epitaxial films show a substantially higher
electrical conductivity, at temperatures just above T,
than that found by Heremans et al. It is therefore likely
that the electronic contribution to the thermal conduc-
tivity could be greater than 10%, leading to an increase
in our estimate of the ratio k,,, /K.

Our symmetry analysis can of course be extended to
the complex finite-frequency electrical conductivity ten-
sor oij(w)=C,fE(a>). At optical frequencies it is often
more convenient to discuss the frequency-dependent
dielectric tensor,

4mio;(w)

Slj(a))=811+—‘z)s— ’

4.7)

where s is the interplane spacing. When both P and T are
violated, antisymmetric contributions to o ,-j(w) and
g;;(w) are allowed.

As was noted by Wen and Zee,>® the P and T violating
term in g;(w), for >0, would lead to rotation of the
plane of polarization of light that is transmitted in the
direction normal to the superconducting planes, and a
difference in the reflectivity for the two types of circularly
polarized light. However, as discussed in Ref. 23 and in
Sec. V, these cptical rotation effects, for normally in-
cident light, are absent in the simplest model, where the
anyons are described in an effective mass approximation,
and impurity scattering is ignored. For more realistic
systems where T and P violation occurs we do expect to
find an antisymmetric contribution to o;(w), and hence
optical rotation should be observable.

V. REMARKS ON THE EFFECTIVE
LONDON LAGRANGIAN

The most transparent way to discuss many of the P and
T violating features of the anyon gas is via an effective
Lagrangian description of its low-lying collective excita-
tions. At small q and o, the response to weak external
electromagnetic fields is dominated by the contribution of
the collective sound or Nambu-Goldstone mode. This
mode can be represented by a massless scalar field, and its
interactions with the electromagnetic field expanded in
gradients. The lowest terms yield an effective Lagrangian
density

2
Ler=3(30p—C AoV —5-(3,6—C4,)
+ag;;0; 4;(3p—CA,)
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where A4, is the external electromagnetic field and ¢
represents the collective mode. Notice that in the ab-
sence of electromagnetic coupling the effective Lagrang-
ian reduces to that of a free scalar, with speed of propa-
gation v.

The a and b terms are formally higher order in gra-
dients, but are retained because they violate symmetries
(P and T) that are “accidentally” respected by the leading
terms. They bear a close resemblance to the famous
Chern-Simons term of relativistic field theory. In the
nonrelativistic theory, as we see, two such terms can in
principle arise; furthermore, we have given a manifestly
gauge-invariant form for these terms, by introducing the
scalar field ¢. The ordinary relativistic Chern-Simons
term would arise if we put @ =b and ¢=0.

If we wish to treat the electromagnetic field as a dy-
namic variable, we must add to (5.1) a field term of the
form (E?>—B?)/87. Now, however, we must distinguish
carefully between three different situations: (1) We may
wish to describe an isolated superconducting layer cou-
pled to a three-dimensional electromagnetic field. Then
the field term must be integrated over three-dimensional
space, while (5.1) is confined to the plane of the sample.
(2) We may consider a fictitious world of two space di-
mensions where the electromagnetic field, as well as the
superconductor is restricted to the x-y plane. (3) We may
consider a three-dimensional stack of superconducting
layers, interacting with a three-dimensional electromag-
netic field. Then the total Lagrangian is the sum of the
three-dimensional field contribution and the sum of con-
tributions of the form (5.1) for each superconducting lay-
er.

The results in case (2) are the simplest. The model ex-
hibits the Higgs mechanism in a form due to Stuckelberg:
¢, which in the absence of electromagnetism represents a
scalar degree of freedom-—essentially describing sound
waves with v? equal to the speed of sound squared —loses
its independent significance, and becomes the longitudi-
nal part of the effectively massive electromagnetic field.
Indeed, ¢ can be set to zero by gauge transformation,
since (5.1) is invariant against gauge transformations of
the form

¢—9+Cf,
A,— A, +3,f .

(5.2)

When this choice is made we find the famous London
proportionality between current and potential; more gen-
erally, variation of the first two terms of (5.1) yields a
gauge-invariant version of the London equations.

The results in case (3), a stack of superconducting lay-
ers, are quite similar to the fictitious two-dimensional
case, as long as one restricts oneself to situations where
there is translational symmetry in the z direction. The
propagating long-wavelength modes with k,=0 are
pushed up to the plasma frequency o, =(47v 2c?/s)1?,
where s is the interplane spacing, while static magnetic
fields in the z direction are screened with the bulk Lon-
don penetration length A; =c /w,. In the first case of an
isolated layer, the normal modes propagate with the
speed of light ¢, at very small wave vectors k, and with a
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group velocity v, <vCk 172, for k >v*C?/c?.

The response explicitly calculated in the random-phase
approximation to the dynamics of the ideal anyon gas can
indeed be expressed in the form (5.1), with specific
coefficients. The values found by Chen et al.,?® for the
parameters v2, C, and a, for the model with one species of
anyon, are

v 2 27rgfi2

’
m*z

C=eVm*/21#,

R (5.3)
a=—peV#H/R2am* ,
b=0,
where p is defined as before by 6=w(1—1/p). The

random-phase approximation in this problem can be re-
cast in this context as a perturbative expansion in 1/p;
thus we expect that these calculated coefficients should
approach the exact answer as p — .

Now we will argue that every parameter in this
effective Lagrangian can be determined by direct physical
arguments. First, the velocity of sound is determined by
the compressibility, that is the second derivative of the
energy with respect to density. It is easy to verify that
the energy of a two-dimensional electron gas that exactly
fills an integral number of Landau levels is exactly equal
to that of the same gas in the absence of magnetic field.
In our context, this means that the velocity of sound
should be independent of p for large p, and equal to that
formally derived from the compressibility of the free fer-
mion gas. Since it is only at large p that the residual in-
teractions among anyons can be neglected, we expect that
corrections will arise for small p. Indeed, the free Bose
gas can be regarded as having v>=0.

The product v2C? appears in the expression relating
the supercurrent 8L /8 A; to the vector potential, and
thus directly in the formula for the penetration depth.
Since the anyon gas exhibits perfect diamagnetism, we ex-
pect that the penetration depth should be given by the
classic London formula, and in particular that it should
be independent of p when expressed in terms of density
and effective mass. The explicit results for large p do
bear this out.

The value of the coefficient a, or more precisely the
product of aC, can be related to the coefficient y dis-
cussed in Sec. III. Indeed, we have (setting, for reasons,
that will soon become apparent, b =0):

Jk=8L /8 A4, =v*d;¢—CA;)+aCeyd,(3,9—CA,) ,
(5.4)

and to lowest order

We see that (5.4) is equivalent to (3.2), if we make the
identifications
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Ps o _ 2
pzm*cb—v ¢,
p‘* =Cv , (5.6)
m
Y _-4a
2m* C

The RPA results (5.3) imply that p, =p (at zero tempera-
ture), which is actually an exact result for this system.

In Appendix A we have calculated y directly, with the
result (for the single-anyon model)

#i 1

p

(5.7)

This result ought to agree with the RPA result for large
p, and indeed it does. The arguments of Appendix A
seem to be much more powerful, however, and it appears
that they afford an exact evaluation of ¥. In conjunction
with the other results of this section, they allow us to
evaluate the coefficients in the effective Lagrangian for
multianyon models (and the associated prediction® for
the zero-field Hall effect) without further ado.

Although it is somewhat outside the scope of this pa-
per, we will now mention briefly some formal questions of
interest in connection with the second term of (3.2). That
contribution to the current is meaningful even for the
pure scalar theory (with C =0). What is the Lagrangian
which implements it? It is not hard to show that

AL=— Zﬁ:sm 9,000, 6= — 1_:;_;81(8’"’ 3049, 4)

(5.8)
does the job. Indeed,

. SAL
Ajp= 50,0) E"%;‘Ekzalawﬁz ;n%sklalp , (5.9
where the second expression is accurate to lowest order
in gradients.

The additional term AL is a total divergence, and thus
its inclusion does not affect the equations of motion. This
feature alters when we include couplings to electro-
magnetism. This is achieved by substituting covariant
for ordinary derivatives. For a Stuckelberg field the two
possible orders of taking covariant derivatives give the al-
ternatives

akao¢—)ak(ao¢_ CAo) P
or (5.10)

—»80(ak¢-—CAk) .

Note that in either case the quantity in parentheses is
gauge invariant, so the second covariant derivative
reduces to the ordinary derivative. Thus starting from
AL we arrive at the two possibilities,

ALy=—-T e, 8/(806—C40)(3,6—Cd,) ,

” (5.11)
ALy=— 12, 00(8,¢—C 43,6 —CA,) .

m
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Now we can see that AL;—ALy; is proportional to our b
term, while after integrating by parts, AL; becomes pro-
portional to the a term. These gauge-invariant terms do,
of course, affect the equations of motion. These results
are quite reasonable from a physical point of view. In the
pure scalar case an intrinsic angular momentum has lim-
ited dynamical significance, but it acquires direct physical
meaning when a gauge field is introduced to which it cou-
ples.

Finally, we turn to the coefficient b. The vanishing of b
found in the RPA calculation is no accident. Indeed, the
effect of b is to induce a transverse current in response to
an applied electric field. However, in a gas of nonrela-
tivistic particles all of which have the same charge to
mass ratio, a uniform applied electric field couples direct-
ly to the center-of-mass coordinate. The response to such
a field is therefore, under very general assumptions, just
the free-particle response—the motion of the center of
mass is independent of the interparticle interactions. Of
course the free-particle response does not include a trans-
verse current; thus the coefficient b vanishes.

Essentially the same argument may be given in a more
abstract form: From the microscopic universality of the
charge-to-mass ratio we extract the relation

(5.12)

between the momentum density and the current density,
that should also be implemented in any effective Lagrang-
ian. There is a general way to implement such relations,
as is explained in detail in Ref. 41. However, (5.12) is not
respected by the b term, nor does there appear to be any
way to repair the discrepancy.

Now let us consider the very interesting experiment
proposed by Wen and Zee, namely, measurement of the
rotation of the plane of polarization of linearly polarized
normally incident light. The a term, despite its being P
and T violating, does not lead to a rotation of the plane of
polarization of the reflected light. Indeed this term cou-
ples the charge density to the perpendicular magnetic
field, and does not affect the propagation of fields tangen-
tial to the plane. An effect of the type proposed by Wen
and Zee would arise from the b term. Unfortunately, as
we have seen, this term vanishes for the ideal anyon gas.

It is easy to see that off normal incidence, the a term
will lead to an effect related to optical rotation, but in
practice this is a more difficult experiment to perform.
Since we fully expect, when the simple anyon gas is gen-
eralized to a more realistic model, to find an optical rota-
tion at normal incidence we will not discuss the off-axis
case here.

In order to obtain a nonzero antisymmetric contribu-
tion to s,-j(a)), one must include in the Hamiltonian terms
which violate the Galilean invariance of the dilute anyon
model. We expect, for example, that by including terms
in the kinetic energy which represent deviations from the
effective mass approximation, or by employing a proper
band structure for the anyons, we would find a nonzero
optical rotation. Since the hole concentration in copper-
oxide superconductors is typically of order 15%, the de-
viations from the effective mass approximation should be
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substantial.

Even within the effective mass approximation, Galilean
invariance is broken if there is scattering from fixed im-
purities. We show in Appendix B that there is no anti-
symmetric contribution to €;;(w) when the calculation of
the effects of impurities is truncated to second order in
the strength of the impurity potential. However, we ex-
pect that there will be a nonzero value of ¢, (), if terms
of third order or higher are included.

Altogether, although the vanishing of b in the most
idealized version of the anyon gas makes it difficult to
form quantitative expectations, there is every reason to
expect a nonzero effect in real materials. Given the sensi-
tivity of optical techniques, the measurement proposed
by Wen and Zee remains a very worthwhile exploratory
experiment. ‘

VI. SURFACE-SENSITIVE PROBES

As we mentioned in the Introduction, if it turns out
that alternate layers of a high-temperature superconduc-
tor have opposite signs of the broken time-reversal sym-
metry, there would be no bulk asymmetry in the trans-
port properties or in &,,(w). Therefore it would be desir-
able to find a surface sensitive probe that could reveal a
broken symmetry within the surface layer itself.

It is not difficult to think of probes that would show
such an effect in principle, but it seems much more
difficult to find a convincing argument for a sizeable
effect. For example, one would expect to find a difference
in the photoemission rate for the two possible circular
polarizations of the incident light. Similarly, there
should be slight circular polarization of the emitted light
in an inverse photoemission experiment. As in the case
of optical rotation, however, the polarization sensitivity
can only occur as a result of complicated high-order exci-
tation processes, so that the final polarization dependence
may be very small.

Because of the inherent noise in a photoemission exper-
iment, and because the greatest sensitivity to incident po-
larization may occur for light of relatively low frequen-
cies (below the photoemission threshold), it is possible
that the most practical method of looking for a broken
time-reversal invariance in the surface layer would be to
look for a small residual asymmetry in the reflection of
circularly polarized light, due to the unbalanced contri-
bution of the surface layer. For light in a frequency
range which is strongly absorbed in the material, the po-
larization dependence of the reflectivity for the case of
layers of alternating sign would be reduced, relative to
the case where all layers have the same sign of broken
time-reversal invariance, by a factor of order s /A. Here s
is the interlayer spacing, A the penetration depth of the
light, and we have assumed reflection from a region with
an atomically flat surface.

A surface sensitive probe which should be capable, in
principle, of revealing broken time-reversal symmetry in
the surface layer, even if the broken symmetry alternates
in sign from one layer to the next, is low-energy electron
diffraction (LEED). For example, if an electron is in-
cident on the surface with its in-plane component of
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momentum parallel to the x direction (which we take to
be one of the symmetry axes of the crystal), there may be
an asymmetry in the intensity of electrons scattered in
the y and —y directions.

The scattering of electrons with in-plane momentum
parallel to y would show a similar asymmetry, with the
same chirality. The expected chirality does not show up
in the lowest Born approximation, however, and we do
not have a reliable estimate of its magnitude.

Finally, and perhaps most fundamentally, in anyon su-
perconductivity there is a close correlation between
charge density and magnetic field. The a term, which is a
contribution to the Lagrangian essentially proportional
to the product of charge density and perpendicular mag-
netic field, is one sign of this. More pronounced charge
concentrations, and electric potential gradients, should
occur in the neighborhood of vortices. Recent experi-
ments with scanning tunneling microscopes have been
able to study in considerable detail the tunneling charac-
teristics, and indirectly the charge distribution, of indivi-
dual vortex cores at the surface of the superconductor
NbSe, (Ref. 42). If similar experiments can be performed
on a superconductor with broken T and P symmetries,
one should observe a significant difference in the tunnel-
ing characteristics for vortices of opposite sign, for a
given sign of symmetry breaking in the surface layer. Al-
ternatively, if the sign of the broken 7 and P symmetry in
the surface layer is different in two regions of the sample,
there would be different tunneling characteristics in the
two regions for vortex cores of the same sign. If there is
antiferromagnetic ordering of the layers in the bulk of the
superconductor, then a change of sign of the symmetry
breaking in the surface layer will be produced by a step
on the surface of a single lattice constant.

VII. NEUTRON SCATTERING
AND MUON SPIN RELAXATION

Magnetic moments in solids can scatter neutrons be-
cause of the spatially varying magnetic induction B(r)
produced by the moments. A uniform orbital magnetic-
moment density in a copper-oxide plane would actually
produce no neutron scattering, however, because
VXm=0 in the interior of the sample, and except at the
boundary of the sample there will be no currents to pro-
duce a spatially varying B(r). It makes no difference to
this whether alternate planes have the same or opposite
signs of the magnetic moment. The situation is different
if one takes into account modulation of the magnetic-
moment density, due to variations of the orbital current
density associated with the periodic electronic charge
density within a unit cell of the copper-oxide planes. It is
possible, in fact, that the modulation of the magnetiza-
tion density will be a significant fraction of the average
magnetization in the plane. In the case of ferromagnetic
alignment of the planes, the result is a magnetic contribu-
tion to neutron scattering at the same points in reciprocal
space where there will be Bragg scattering in any case
due to the scattering by the nuclei of the system, so the
magnetic scattering would surely be impossible to detect.
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In the case of antiferromagnetic ordering of the planes,
however, there would be new Bragg peaks associated
with the magnetic order. For example, if the copper-
oxide planes are stacked directly above each other, the
new Bragg peaks should appear at scattering vectors of
the form

Q=(G,5G,), (7.1)

where G| is a nonzero reciprocal lattice vector parallel to
the copper-oxide planes, and G, is an odd multiple of the
elementary reciprocal lattice vector perpendicular to the
planes.

Unfortunately, the strength of the magnetic Bragg
peak is proportional to the square of the local magnetic
moment. In the present case, the maximum modulated
moment in a unit cell is of order pa’yu} /#, which is a
small fraction of Bohr magneton, so the magnetic scatter-
ing would be very weak.

An experimental technique, which is apparently very
sensitive to the small spatially varying magnetic induc-
tion B(r), that would be produced by modulations of the
orbital magnetic-moment density at the period of the lat-
tice, is positive-muon spin relaxation (uSR) studies.*® (A
modulation of the anyon density, with an associated local
magnetic field should also be produced by the Coulomb
potential of the muon itself.) This technique should be
equally sensitive whether the broken time-reversal sym-
metry has the same sign or opposite sign in different lay-
ers of the superconductor. Thus far, no intrinsic moment
has been reported in uSR studies of high-T, supercon-
ductors. A quantitative analysis of both the experimental
limits and the size of the periodic magnetic field expected
in realistic theoretical models is clearly called for.

VIII. CONCLUSION

We have seen that there are a variety of possible effects
whose existence in the superconducting state of the
copper-oxide materials would imply the existence of a
broken P and T symmetry within the copper-oxide layers,
and would support the hypothesis that the superconduc-
tivity itself results from an unconventional chiral-liquid
order among copper spins. Although a true calculation
of the magnitude of these effects is possible only in the
context of a detailed model, we can at least estimate the
possible size in some cases by using the anyon model of
Laughlin and co-workers.

If the coupling between layers is ferromagnetic, so that
there exist domains in which all layers have a single sign
of the broken time-reversal symmetry, then there are a
variety of bulk experiments which, it seems, should be
adequate to see the predicted effects. On the other hand,
failure to see positive results in these experiments could
either indicate the absence of broken T and P symmetry
or could indicate that the layers are antiferromagnetically
ordered. Experiments that could detect broken T and P
invariance in the antiferromagnetic case seem to be much
more difficult to perform, except for the case of muon
spin relaxation.
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APPENDIX A: CALCULATION
OF THE ANGULAR MOMENTUM

The orbital momentum is most conveniently defined in
the “anyon gauge” where we write simply

N
L,=3r1;Xp;, (A1)

ji=1
where p;=—i#V;. If ¥'@ is a wave function in the
anyon gauge,which is an eigenstate of L, with eigenvalue
M,, and if ¥ is the corresponding wave function in the
fermion gauge, as given by (2.5), then W is also an eigen-
state of L, with an eigenvalue M, related to M, by
M=, AN =1
p 2
We shall identify M, as the actual orbital angular
momentum of the anyon system.

Let us now consider a system containing one species of
anyon, in the circularly symmetric situation described in
Sec. II, and let us compute the angular momentum for a
reference state which is chosen to be an eigenstate of the
approximate Hamiltonian H,. For a large but finite sys-
tem, the number of particles N, in Landau level / may be
chosen slightly differently in each of the occupied Landau
levels, depending on the nature of the confining potential
at the boundary radius R. However, it will be convenient
to choose as our reference state the simplest case, where
the occupation is precisely the same in each Landau level,

N,=N/p, (A3)

. (A2)

and we require that N be a multiple of the integer p.

In each of the occupied Landau levels, we occupy the
states with O=<m =N,;—1. Then the orbital angular
momentum of the reference state, in the fermion gauge, is
equal to

N _ N#
2p 2 P

_ p_l
1=0

Thus the orbital angular momentum of the reference
state in the anyon gauge is

MZ=—%(p—p“). (AS)
For the case of particles with half-Fermi statistics
(p=2), this gives an orbital angular momentum
M,=—3#%4N /4. For bosons, with p =1, we have M,=0
as expected. On the other hand, for p — o« we do not re-
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cover the result M, =0, that one would expect for a set of
noninteracting fermions. This suggests that the reference
state is not a correct description of the actual ground
state for sufficiently large p.

It is possible to obtain a state with M, =0, for p+#1, by
small rearrangements of the occupation numbers, which
lead to additional currents at the boundary. For exam-
ple, we may choose

N,=i;’-+a1v”2(1—p +1), (A6)
for 0=1 <p, where a is a constant of order unity. The to-
tal number of particles is unaffected, but the angular
momentum is now given by

2.2 .
Mz=—-NTﬁ (p—p'l)—iﬂ—(z%—l—)— (A7)

Clearly one can obtain M, =0 with an appropriate choice
of a.

Let us now return to our reference state where M, is
given by (A5). If we begin with this reference state, and
adiabatically turn on the perturbation (H —H,), we ob-
tain an eigenstate of H whose angular momentum is the
same as that of the reference state. If we now apply the
definitions and analysis of Sec. III to the perturbed refer-
ence state, we see that

mz+2m*I’=—g(p —p p, (A8B)
where p=N /(7R ?) is the particle density, and m, =yp is
the angular-momentum density, which are both constant
in the interior of the system, not too close to the bound-
ary, and I' is the anomalous boundary current, if any.

The true ground state of H'® may differ from the per-
turbed reference state because of a repopulation of the
Landau levels in the vicinity of the boundary. This could
lead to a different value of I', and a different value of the
angular momentum per particle M, /N.

We shall now argue that I’ is actually zero for our per-
turbed reference state, and therefore

y=—g(p —phH. (A9)
To see this, let us adiabatically add to the Hamiltonian
H'? a weak potential 8V (r), which is a slowly varying
function of radius r, and which leads in turn to a radial
variation of p and m,. The values of N and M, will be
unaffected by this process. The radius R will also be
unaffected if we choose 8§V (r) in such a manner that

2m [ “8p(rir dr=0. (A10)

According to (3.8), the variation in M, is given by

m,

dp
so that 8M, =0 implies 8I'=0.
A useful way of describing the nonuniform state is to

generalize the “unperturbed” Hamiltonian H of (2.6) to
include a nonuniform effective magnetic field b(r), which

[27f0R8p(r)r dr]+2m *mR2%I' , (All1)
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satisfies b(r)=2mfip(r)/p in the interior of the sample,
and b(r)=2nfip(R)/p for r > R. If we now put N /p fer-
mions into each of the lowest p Landau levels, and then
turn on the perturbation (H —H), we should obtain pre-
cisely the same final state as before, when we started with
the perturbed uniform reference state and then turned on
8V (r). We now see, however, that the occupation of the
states at the edge of the inhomogeneous sample must be
the same as for the uniform reference state with density
equal to p(R). It follows that

dl'(p)

31'=8p(R) | <

, (A12)

where I'(p) is the anomalous edge current for the per-
turbed uniform reference state at density p. Therefore
dI' /dp=0, and from (AS8),

dm, # _
dp 2(p p ).

(A13)

Assuming that m,—0 as p—0, we see that m, =yp, with
v given by (A9) and I'=0, as just asserted.

It is interesting to consider in more detail the behavior
of a nonuniform system in the limit of large p. In partic-
ular, let us consider a system where the density p(r) takes
a constant value p, for 0=r <R and a different constant
value p; in a region R, <r <R, and where p(r) varies
smoothly between p, and p, in the intermediate region
Ry<r<R,. We may assume that p,/p; is not very
different from 1, and that Ry and R, are both very large
compared to the interparticle spacing pg !, but R| — Ry is
only a few times larger than py !. If the integer p is not
very large, then the current density J4(7) given by (3.7)
remains fairly small, and it is a reasonable proposition
that the state we have obtained is the true ground state of
the system. If we let p become large, however, while
po/py and R —R, are held fixed, the current density will
grow, and eventually the energy cost will ensure that the
system is no longer in its proper ground state. How can
we lower the energy of the system? One possibility is to
introduce a row of vortices of one sign at radius R, and
a row of opposite sign at radius R, such that there is a
supercurrent in the region Ry <r <R,, which approxi-
mately cancels the current produced by Vm,. If we as-
sume that the core energy of a vortex is given by the cy-
clotron energy #ib /m *, then the core energy vanishes in
the limit p — o0, and it is plausible that the cancellation
becomes more and more perfect as p increases. Thus for
fixed values of py, p;, and R; —R, when we take the limit
p—> o, we can recover the result of the noninteracting
Fermi system, where there is no broken time-reversal
symmetry, and (J(r)) =0, in an arbitrary potential V' (r).
We may also deduce that I'550 in the correct ground
state of a system of anyons with sharp boundary condi-
tions and a large value of p.

Now let us consider a situation where there are two
types of anyons (n,=2), with p =2. The reference
ground state in this case consists of Ny =N /2 particles of
each type in the lowest Landau level, filling the states out
to the maximum radius r,, =R. In this case we find that
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the angular momentum M,, in the anyon gauge, is given
by M,=—#N /4, and the value of the coefficient y is
therefore —#/4. For arbitrary integer n,, with p a multi-
ple of n,, we find

#i

7=“E'

p 1
ng D

(A14)

It is interesting to compare the aforementioned results
with the internal orbital angular momentum of a bound
pair of anyons. Suppose that two identical anyons in-
teract with a potential ¥V, which is a function only of the
distance r;, between the particles. We can choose as a
trial wave function for the ground state of the Hamiltoni-
an H'® a function of the form

W (g, 1,)=f(r, PR (A15)
where
11,=r5(cosdy,,sind,;)

and u=6/m (mod 2). The energy of the trial wave func-
tion, for a fixed choice of f, can be written as,

(H@)=¢gy+eu?, (A16)
where
_ m e lf(r)|?dr
£ —m*fo U (A17)

Clearly the energy is minimized by choosing |u| as small
as possible, which means =0/, if || <#. The orbital
angular momentum of the pair is given by M, =7%u, so
that the angular momentum per particle is #ip /2.

In the case of 6= /2, a bound pair of anyons is a com-
pound particle that obeys ordinary Bose statistics. For a
suitable potential V( v ), which is attractive at short dis-
tances, we may expect that a pair of anyons may form a
bound state, and that the effective interaction between
pairs is repulsive. Then the ground state of the multi-
anyon system at intermediate values of the density would
presumably be equivalent to a Bose condensate of anyon
pairs. The orbital angular momentum of this state would
clearly be M,=7#N /4, giving the value y=#%/4 in this
case. This is different from the result y = —3#/4 that we
found above for the ground state of the weakly interact-
ing anyon system, with n,=1 and p =2, assuming that
Laughlin’s wave function is a correct starting point for
the ground state.

For the case of two different species of anyon, the re-
striction on the trial wave function of a pair is now weak-
ened to u=6/7 (mod 1). A choice p=86/7 (mod 2) im-
plies that the two anyons occur in an isospin triplet state,
while u+1=60/7 (mod 2) may be interpreted as an iso-
spin singlet. For p =2, the lowest-energy state for an iso-
spin singlet, has 4= —1, which has angular momentum
M,=—#/2. A Bose condensate of isospin-singlet pairs
would lead to M, = —#N /4, or y = —*#/4. It is interest-
ing to note that this is identical to the result obtained ear-
lier for the reference ground state of a noninteracting sys-
tem of two species of anyons with n, =p =2.
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APPENDIX B: ABSENCE OF OPTICAL ROTATION
TO SECOND ORDER IN THE IMPURITY POTENTIAL

We use here a well-known method which relates the
k=0 frequency-dependent conductivity tensor of a sys-
tem of electrically charged particles with a fixed charge
to mass ratio, in the presence of a collection of fixed im-
purities, to the longitudinal density response function of
the interacting system with no impurities present, correct
to second order in the impurity potential.**

The antisymmetric part of the two-dimensional con-
ductivity tensor o;(w) is given by the difference
o (w)—0 (), where oT(w) is the conductivity in
response to an infinitesimal circularly polarized uniform
electric field of the form

E(t)=Ege “"“(X%i¥) .

It suffices to study the real parts of o¥(w), since the
imaginary part can then be determined from the
Kramers-Kronig relations.

We assume that the Hamiltonian in the absence of the
electric field can be written in the form

H=H_,,.+ fu(r)p(r)dzr , (B1)

where u(r) is the “impurity potential” at point r, p(r) is
the density of particles at point r, and H . is the Hamil-
tonian of a collection of particles with mass m*, which
interact with each other via a velocity-independent po-
tential that depends only on the separation of the parti-
cles. The particles may obey any statistics we choose.

Let us now make a Galilean transformation to an ac-
celerating frame which is displaced from the laboratory
frame by a vector

__eE(2)

m*w?

s(t)=Re (B2)

In this frame the uniform electric field is cancelled by the
“gravitational” field produced by the transformation, but
the impurity potential acquires a time-dependent form

Ulr,t)=u(r+s(t))=u(r)+s(t)-Vu(r) . (B3)

The spatial Fourier transform of U has a positive fre-

‘quency part given by

8U(q,1)=8U(q)e i,
where
ieE,

m*w

dU(q)=— 5 (g, Eig,)u(q) . (B4)

Let us assume that the system is initially in the ground
state of H. The average power dissipated by this time-
dependent potential U (r,?) is given, correct to second or-
der in u by the formula

= [0 d2 ’"
P=~5f—(—2—ﬂ%|8U(q)|2Xpure(q,w) , (BS)
where Xpu.(q,@) is the imaginary part of the density
response function of the pure system at wave vector q
and frequency w. To obtain this formula, we have made
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use of the fact that, due to translational invariance, the
response function Xp,.(q,®) is diagonal in q. It is clear
from (B4) and (B5), that Pis independent of the sign of
the circular polarization. Since P is related to o™ by

P=1|E,|’Rec*(w) ,

we find that o ¥ (0)=0 " () to second order in u.

If we wish to calculate P correct to third order in u, the
density response function on the right-hand side of (B5)
must be calculated in the presence of the static potential
u(r). The response is no longer diagonal in the wave vec-
tor ¢, and we can no longer argue that P is independent
of the sign of the circular polarization.

APPENDIX C: MAGNETIC ENERGY
OF A SINGLE DOMAIN WALL

We calculate here the magnetic energy of an infinite
domain wall in the y-z plane, perpendicular to the planes
of superconducting layers. Assume that the sign of the
coefficient y, introduced in Sec. III, is positive for x <0
and negative for x >0. The energy (or the free energy at
finite temperatures), is written in the form
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f IVX Al IVX AL 1, +f-———-—{ﬁvt1>—pe A/cl|*d’r

ZI—;E—dzr , (C1)

where 2I is the boundary current from the discontinuity
of the magnetization in a single layer, s is the interlayer
spacing, and the integral in the third term is over the area
of the domain wall. The second integral, in principle, is
confined to the volume of the superconductor, and only
the x and y components A and V® should be included
since we neglect the Josephson coupling between layers.
The current 21 is in the y direction.
A solution which minimizes F, is obtained by choosing
V& =0, and A||y, with
lx] /A

A=A Bge 'L, (C2)

where
. :(477,PseZ/m *c2)*1/2

is the London penetration depth, and By=4x1 /c is the
value of the magnetic induction for x —0~. The energy
per unit area of the interface is equal to —A; B3 /4.

ly. Kalmeyer and R. B. Laughlin, Phys. Rev. Lett. 59, 2095
(1987).

2R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988); Science 242,
525 (1988).

33. March-Russell and F. Wilczek, Phys. Rev. Lett. 61, 2066
(1988).

4S. A. Kivelson and D. S. Rokhsar, Phys. Rev. Lett. 61, 2630
(1988).

S5F. Wilczek, X.-G. Wen, and A. Zee (unpublished).

6See, for example, G. Baskaran, Z. Zou, and P. W. Anderson,
Solid State Commun. 63, 973 (1987); 1. Dzyaloshinskii, A. M.
Polyakov, and P. Wiegmann, Phys. Lett. A 127, 112 (1988); P.
B. Wiegmann, Phys. Rev. Lett. 60, 821 (1988); G. Kotliar,
Phys. Rev. B 37, 3664 (1988); I. Affleck and B. Marston, ibid.
37, 3774 (1988); D. S. Rokhsar and S. A. Kivelson, Phys. Rev.
Lett. 61, 2376 (1988); B. 1. Shraiman and E. D. Siggia, ibid.
62, 1564 (1989); L. B. Ioffe and A. I. Larkin, Int. J. Mod.
Phys. B2, 203 (1988); (unpublished); X. G. Wen and A. Zee
(unpublished); P. Lederer, D. Poilblanc, and T. M. Rice (un-
published); D. Poilblanc (unpublished); P. W. Anderson, B. S.
Shastry, and D. Hristopulos (unpublished); Z. Zou, B.
Doucot, and B. S. Shastry (unpublished); D. Kheshchenko
and P. B. Wiegmann (unpublished).

7P. W. Anderson, Science 235, 1196 (1987).

8S. A. Kivelson, D. S. Rokhsar, and J. P. Sethna, Phys. Rev. B
35, 8865 (1987).

93. M. Leinaas and J. Myrheim, Nuovo Cimento 37B, 1 (1977).

10F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982); 49, 957 (1982).

HF. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1984).

12y S. Wu and A. Zee, Phys. Lett. 147B, 325 (1984).

BD. Arovas, J. R. Schrieffer, F. Wilczek, and A. Zee, Nucl.
Phys. B251, 117 (1985).

14B. I. Halperin, Phys. Rev. Lett. 52, 1583 (1984); 52, 2390(E)
(1984); R. Morf and B. 1. Halperin, Phys. Rev. B 33, 2221
(1986).

15D, P. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev.

Lett. 53, 722 (1984).

16R. B. Laughlin (unpublished).

17R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1985).

18R, D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

19B. 1. Halperin, Helv. Phys. Acta. 56, 75 (1983).

20R. B. Laughlin, Surf. Sci. 142, 163 (1984).

2IR. B. Laughlin, Ann. Phys. 191, 163 (1989).

22A. Fetter, C. Hanna, and R. B. Laughlin (unpublished).

23Y. H. Chen, B. I. Halperin, F. Wilczek, and E. Witten, Int. J.
Mod. Phys. B 3, 1001 (1989).

24Y. Hosotani and S. Chakravarty (unpublished).

25X. G. Wen and A. Zee (unpublished).

26G. S. Canright, S. M. Girvin, and A. Brass (unpublished).

2’D. H. Lee and M. P. Fisher (unpublished).

28T, Banks and J. D. Lykken (unpublished).

293. M. Ziman, Electrons and Phonons (Oxford University Press,
Oxford, 1960), Chap. XII.

30X. G. Wen and A. Zee, Phys. Rev. Lett. 62, 2873 (1989).

31p. W. Anderson (unpublished).

32B. I. Halperin and F. Wilczek (unpublished).

33y. Kalmeyer and R. B. Laughlin (unpublished).

345, M. Girvin and A. H. MacDonald, Phys. Rev. Lett. 58, 1252
(1987); E. Rezayi and F. D. M. Haldane, Phys. Rev. Lett. 61,
1985 (1988); N. Read, Phys. Rev. Lett. 62, 86 (1989).

35R. Peierls, Surprises in Theoretical Physics (Princeton Univer-
sity Press, Princeton, New Jersey, 1979), Sec. 4.3.

36Note: The sign convention employed in RPA calculations of
(Ref. 23), which were chosen to coincide with that of Fetter
et al. (Ref. 22), corresponds to a choice of negative sign for 6,
and hence gives a sign for ¥ which is opposite to the one
quoted here.

373, Frohlich and P. A. Marchetti, Lett. Math. Phys. 16, 347
(1988), and Commun. Math. Phys. (to be published).

38gee, for example, R. Kubo, M. Toda, and N. Hashitsume, Sta-
tistical Physics II: Nonequilibrium Statistical Mechanics
(Springer, Berlin, 1985).



8744

393. Bok and J. Klein, Phys. Rev. Lett. 20, 660 (1968).

403, Heremans, D. T. Morelli, G. W. Smith, and S. C. Strite III,
Phys. Rev. B 37, 1604 (1988).

41M. Greiter, F. Wilczek, and E. Witten, Mod. Phys. Lett. B (to
be published).

HALPERIN, MARCH-RUSSELL, AND WILCZEK

40

42H. F. Hess, R. B. Robinson, R. C. Dynes, J. M. Valles, Jr.,
and J. V. Waszczak, Phys. Rev. Lett. 62, 214 (1989).
43Y. Uemura et al., J. Phys. (Paris) Suppl. 49, C8-2087 (1988).

44C. S. Ting, S. C. Ying, and J. J. Quinn, Phys. Rev. Lett. 37 215
(1976).



