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Kapitza resistance between a solid wall and superfluid He near T1„
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The effective Kapitza resistance near Tz, between He II and a solid wall, is calculated employing
general boundary conditions and the hydrodynamic 4 theory of Ginzburg and Sobyanin. A com-
parison of the results to the experimental data is used to narrow the possible range of existing
boundary conditions. Further experiments to clarify the situation are suggested.

I. INTRODUCTION

If an entropy current f is applied across any boundary,
a temperature discontinuity b T ccf occurs, and the con-
stant Rk = 15.T/(T—f) is referred to as the Kapitza resis-
tance. For clean surfaces, it is characteristic of the pair
of materials forming the boundary. If one of the materi-
als is a superAuid, there is an additional contribution Rk,
characteristic of the superAuid alone. It arises from tem-
perature gradients V T ~ f, which exist in the superAuid
close to the wall. In He II, the characteristic length A,

of the temperature gradients is, far away from T&, very
small, X=10 cm. And one can only measure the total,
or effective, Kapitza resistance

Rk =Rko+Rk = b, T+ JVT(helium) (Tf) .

General considerations show that neither R& nor R& has
to be positive, but Rk )0 must always hold. Approach-
ing the phase transition from below, both A, and R& are
expected to diverge, ' and in fact, a singular contribution
to R& was recently measured. Assuming that Rk is non-
critical, the experimental data are in qualitative agree-
ment with the theoretical results, Rk= AoA, /K, where
Ao is a weakly temperature-dependent coe%cient and K

denotes the thermal conductivity. (This result was in fact
displayed as Rk ~ g/w in Ref. 8, but the healing or corre-
lation length of p', g, diverges essentially with the same
exponent as A, .)

The question we seek to answer here concerns the
choice of boundary conditions and its effects. In Refs. 5
and 6, and in part of Ref. 8, Rk was calculated using

p'=0, j'—=p'(v' —v")=0 .

Both equations appear plausible, but in fact represent
consequential assumptions. They are usually justified by
the argument that, with the amplitude of the condensate
wave function, both p' and j' ought to be zero at the solid
interface. Yet, with the coarseness of a macroscopic
description, all we really can say is that p' is probably
small. Then j'=0 is an independent assumption, and by
no means a preferred one: Far from Ti, , j'ccf has a

Obviously, for our purpose, we need

p'(0)=&, &„p'(0), j'(0) ~f . (4)

(A dynamic modification of the static relation

p'ccrc

p'
would only lead to nonlinear correction which we
neglect. ) The proportionality constant j '/f, as well as
the bare Kapitza resistance Rk, depend on three surface
Onsager coe%cients a, b, and c, introduced in Ref. 4. Re-
taining the original assumption that the critical contribu-
tion to the total Kapitza resistance arises only within the
helium liquid, we take a, b, and c as independent of
t =(Tz —T)/T&. Employing Eqs. (4), we obtain

Rk =( Aol, /a. )(1+AoBoA, /tc) (5)

where Bo depends on a, b, c, and l, /g. The temperature

prescribed value for a given boundary. If p' decreases
close to the wall, v' —v" increases to compensate, or rath-
er it does so until the critical velocity is reached. Hence,

j'=p'(0) v,p /p" =p'(0) v,

appears as the correct boundary condition to be conclud-
ed from the preceding argument. Generally, therefore,
we should have two regions of heat transfer: The first
one is subcritical, where j' and b, T ~ f; it exists further
away from T& and at a lower rate of heat transfer. The
second one is critical and should entail some kind of non-
linearity.

Our strategy is to employ generally valid boundary
conditions, calculate Rk, and compare it with the experi-
ment of Ref. 7 to see what the realistic boundary condi-
tions in fact are. In equilibrium and close to T&, the gen-
eral boundary conditions are

p'(0) = l, t) p'(0), j'(0)=0,
where p'(0) and j'(0) denote their respective value at the
boundary and /, is the extrapolation or slip length,
characteristic of the surface. (The x axis is assumed to be
normal to the surface. ) Off equilibrium and away from
T&, we have'

B p'(0)=0, j'(0)~f .
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dependence of 1, is not known, but one may plausibly as-
sume that it either scales with the healing length
/=got 2~3, or remains of order go. In the first case, Bo
is independent of t, and the detected divergent behavior
of Rk ~ A, /x in the experimental range of Ref. 7 shows it
must be small. More specifically, we obtain the upper
bound (in units of K s /g)

Bp& 10 (6)

we have

) —p'(o) =ga.p'(o),

p'(0)/p'( ~ )=&, /g .

We therefore need to pay attention to the constraint
j'~ p'(0)U, that supplements Eqs. (4). For those tempera-
tures where j'=p'(0)U, is valid, we obtain

Rk =
ADA, /~(1+ C) = ADA, /ii .

Although the nonlinear term

C ~ p'(0) U, If ~ p'( ~ )v, I(gf ) ~ t 'If

(7)

may have been too small to be observable, we note that a
sudden rise in the resistance should have been observed at
the transition to the region of critical velocity. It was not
reported in Ref. 7. So if the second case l, ~ go holds, we
may conclude that the heat transfer was critical at the
surface for all temperatures of the experiment. Amazing-
ly, this implies

p'(0)/p'( ~ ) (10 j'(0)/j'( ~ ) at t =10

and decreasing with t . [Critical transfer implies

p'(0)U, I(f lo' ) (j'(0)/j'( ~ ) .

Taking t=lo, p'(oo)U, =5t, f/cr=1. 5X10, in
cgs units, we have p'(0)/p'(~)(10 j'(0)/j'(~). j Of
course, other t dependence of /, cannot be ruled out
rigorously. But it does not modify Eq. (5) or Eq. (7), only
the temperature at which the transition to the surface
critical heat transfer occurs. So except for the fact that
j (0) is critical, i.e., the existence of a transition from Eq.
(5) to Eq. (7) and the small nonlinearity in C of Eq. (7),
the experimental evidence obviously points back to Eq.
(1) as a fairly realistic approximation.

For further studies, the experiments of obvious interest
are (i) measurement of Bo, Eq. (6), looking (ii) for the sur-
face critical transition, or (iii) the nonlinearity in C for su-
percritical heat transfer. Also, we believe that the follow-
ing experiment has crucial importance: The weakest
point on the theoretical side is the assumption that a, b,
and c, and therefore Rk, do not display any critical be-
havior. If they do, although Eqs. (5) and (7) remain valid,
the comparison between theory and experiment becomes

In the; second case, Bp depends on t. But more impor-
tantly p'(0) /p'( oo ) approaches zero rapidly: With

p'(0) = /, B„p'(0)

quite unfounded. An experiment on a helium film be-
tween two parallel plates should clarify this point. As
our results in Sec. V indicate, if the foregoing assumption
is correct, the singular contribution would not diverge
with t ~0, but rather undergoes a maximum, at t = 10
for the film thickness of d =10 cm. The reason for this
behavior is that A, becomes comparable to d, and the gra-
dients in the temperature lack space to develop. (k
diverges with the same exponent as the correlation length
g and with a coefficient about an order of magnitude
larger. Therefore the depression of p' or T& is not a prob-
lem in this experiment. )

Finally, a note of caution with respect to the general-
ized + theory that we employ in this paper. It is a theory
that is valid to first order in kg. Our results are therefore
correct only if A, ))g, with perhaps qualitative predictive
value until A, g. This is a true assumption, since both
lengths scale approximately with t, cf. comments fol-
lowing Eq. (15). On the other hand, if A, ))g is indeed
correct, our results are rigorously valid. Especially Auc-
tuations of wavelengths shorter than g are fully account-
ed for. This is in contrast to the mean-field-like
Ginzburg-Landau theory.

In Secs. II and III, we review the hydrodynamic 4
theory of Ginzburg and Sobyanin and the derivation of
the general boundary conditions, respectively; in Sec. IV,
we derive Eqs. (5) and (7) and provide a summary in Sec.
V.

with +, being the thermodynamic potential of He I. The
expansion up to IVI is necessitated by the t dependence
of the order parameter and the specific heat. ' The
coefticients A2, A4, A6 are given as A2 ~t, A4 ~ t
and 26 ~t . This leads, e.g. , to p'~t . Now we exam-
ine the generalized hydrodynamic equations. ' ' " The
main change lies in the addition of an equation for the
variable p'. It takes the form

2

2 s2Ptl Yj

(9)

where the tranport coem. cient A —Apt Ap 0.3 p'
is an additional chemical potential defined as
p'—= (1/m )BN»/BI+I . Equation (9) leads to a relaxation
of p' with the characteristic time

iri/(2Am p')Bp'/Bp' .

We only consider one-dimensional variations, along x,

II. THE GENERALIZED O' THEORY
OF GINZBURG AND SOBYANIN

In this section we give a summary of the generalized
hydrodynamics for HeII near the A, point' "and dis-
cuss earlier results for the effective Kapitza resistance.
We start with the free energy C&»(p, T,+), where 4 is
the complex order parameter 4=g'e '+ of He II
(l+l =p'/m). We have to write down the Ginzburg-
Landau functional in the form
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appropriate for the experiment. The superAuid is on the
right (x )0) and the solid on the left. Interested in sta-
tionary solutions, we set all time derivatives to zero. The
hydrodynamic equations are then given as' '"

dynamic equations (10a)—(10d) can be solved. It is possi-
ble to reduce them to one equation for the dimensionless
temperature w (r—=T/T, where T is the temperature
in the bulk):

8 g=0, a.~—a, (~'a,'~) =0 . (14)

d„pp+sT+ — g+—g2 pg,—+ Q j' =0,1 4 gp"

p 3

(lob)

a. p —p
' p'0, —p4+

p 2m

n
P P g s 0

2Am p'

(10c)

K—oj' ——8 T =0
X x (10d)

p g3 p(4+p h—A/(p'2m ) —App" l(2Am p')

for —3g+g2 —
pg& and p g3

—
pgz, respectively. Now we

solve Eqs. (9) and (10a)—(10d) to obtain the temperature
profile in helium. Our notation, e.g.,

n'= moo+ &no+ &n'

is the same as in Ref. 5, double zero denotes the bulk
equilibrium value, single zero the equilibrium deviation
that occurs at the boundary, while the unindexed devia-
tion only occurs o6' equilibrium. With the dimensionless
variable g= I+5m//goo, Eq. (9) reads

where g=p'U'+p"U" is the mass current and j '=p'(U'
—U") the counterfiow. Note that Eqs. (10a)—(10d) could
have been formally obtained from the hydrodynamic
equations far away from T& by substituting

—', g+f2 —pg, +Rp" /(2Am )

and

A, is a characteristic length, mentioned in the Introduc-
tion. The behavior of the viscosities g and g,. near the A,

point is not known in detail, but they show no diver-
gences. With p'~t, the most divergent part of A,

takes the form

A, =l,o/g(x) with Ao=—1 A P~A
2 m g gpoo

(15)

While ~ has never been measured in HeII directly, a
rough estimate from scaling considerations' or measure-
ments above Tz (Refs. 15 and 16) shows that a. behaves
similarly to A. Assuming x = 10 t ' erg/(cm K s) we
have A.o-—A,oo+10 t cm, where the nondivergent
part of A, is given by A,oo=10 cm. Therefore our esti-
mate of A,o is (as are all other estimates in this paper)
only true for t ( 10 . (Note, however, that
~=[1222+70.5(2t) ] erg/(scmk) describes the data
of Refs. 15 and 16 best. ) The solution of Eq. (14) is
di%cult because k, due to its dependence on p', shows a
variation in space as given by (13). However, if the pa-
rameter p is not too large, p' can be approximated by

p'=pootanh (x /g); (16)

B,r= A cosh" —F(a, /3, y, cosh (x/g)), (17)

with p—= —g/A, o. The first three agruments of the hyper-
geometric function F are given as

then, an analytic solution becomes possible. By applying
the boundary condition that the temperature should
reach a constant value far away from the interface, i.e.,
~( ~ ) = 1 and B,r~„=„=0,the result is

—(I+2p)g+g +2pg = —,'g B,g,
the dimensionless parameter p =2 A 6goz/A4 of order 1 is
t independent, while

g= m A rj' /A =got

go= 10 cm. ' Equation (12) is completely decoupled
from the rest of the hydrodynamic equations and deter-
mines the equilibrium shape of

and

X=1—
V

4a= —(I+2p)+(I+4@ )'~

4P= —( I+2p)+( I+4p )'

P Poo+ fipo =Pook

Equation (12) has been solved exactly with the following
boundary conditions: (i) p' should reach a constant value
far away from the interface, i.e., p'(x = ~ ) =poo or
g(~)=1. (ii) p'(0)=g(0)=0. With (i) and (ii) the solu-
tion of (12) is

tanh[(x/g)&1+p ]
[ I+[p/(3+2p)]cosh [(x/g)&1+p ]}'~2

With this equilibrium profile of p the rest of the hydro-

The corresponding Kapitza resistance

R„=f-' J'dx a.~

is obtained by integrating Eq. (17):

1 3 I ( —p/2)l (1/2)
2 f I"((I —p) /2)

(19)

1 I (y —a)I (y —P)
f ~ 1(y)l (y —a —P)

(20)

Combining (20) with (19) we see that the divergence in Rk

[3F2 is an abbreviation for 3F2(a,P, —p/2;y, 1/2—p/2; I).] The constant A in (19) or (17) is determined
by the boundary condition f= (v/T)B T = —vB r, —
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is essentially given by g/Ir, since a, P, y, and p depend
only weakly on t.

III. THE GENERAL BOUNDARY CONDITIONS

Rs=f5, T+j'(Il /p Z) . — (21)

The entropy current f and the eounterfiow j'=p'(v' —v")
are known from the preceding chapter. II and Z are
the dissipative parts of the momentum conservation and
Josephson equation of the superAuid, respectively. '

Equation (21) implies

In this section we discuss the general boundary condi-
tions, valid far away from T&. We have the following
situation: a vessel wall at x =0 and a superAuid on the
right (x )0). We need two boundary conditions: one
for the determination of the temperature jump

Tvessel Tsuperfluid at x =0 and one to decide how
the heat current f divides up into its reactive [= crj—']
and its dissipative [=(a/T)B„T] parts at the interface.
[In Sec. II, it was assumed that f= (~/T—)c) T.] The
structure of the boundary conditions is essentially ob-
tained by applying the laws of irreversible thermodynam-
ics. We start with the expression of the surface entropy
production rate Rs, calculated from the continuity of the
energy current,

independent spatial variation 5p0=0 (i.e., if /, = oo). If a,
b, and c are noncritical, Rk and Rk remain regular for
t +0 —despite the divergence of k/~. This is correct ex-
cept if b vanishes (with ab )c this implies c~0 also).
The case b c =0 is equivalent to the boundary condi-
tion, j'(0)=0, as employed in Ref. 5 and the preceding
section. generally, Rk =k/~ and Rk =(aT) ' hold only
if b goes faster to zero than ~/A, .

In the next section we shall apply the general boundary
conditions, Eq. (22), to the hydrodynamics near the A,

point. The question is then why they remain valid for
temperatures near T&. This is because the new quasihy-
drodynamic variable p' does not contribute to the energy
current in the stationary case, and therefore Eqs. (21),
(22), (24), and (25) remain valid. All we need is the addi-
tional boundary condition for p',

p'(0)=l, B p'(0),

or equivalently, the value of p' at its boundary. They are
related by

p'(0)/p'( ~ ) =&, /(g+&, ),
since g characterizes the length scales of variations in p'.
p'( ~ ) —p'(0) =gB p'(0). In contrast, we took p'(0) =0 in
the preceding section.

f=ahT+c(II /p —Z )

j '=cd, T+b(II /p Z)— (22)
IV. THE GENERAL FORM OF
THE KAPITZA RESISTANCE

r =T/T„= —W Xe -"",
where A, is given far away from the A, point by

~'=[l~ (ki+4)p+—4+p'k]~s 'T '

(23)

and Eq. (14) remains valid. To determine AT and 3 if f
is given, we rewrite Eqs. (22) in the form

where a, b, and c are the surface Onsager coeScients with
a, b )0 and ab —c 2) 0. In our case the entropy current f
is given, while the temperature jump AT and the temper-
ature profile inside the superAuid should be calculated.
Far away from the transition point the temperature
varies as

Now we want to combine Secs. II and III, i.e., to solve
the hydrodynamic equations for He II near the A,

point ' '" with the general boundary conditions. This
is a simple task now except for critical velocity effects.
Close to Tz, v, ~ t (Ref. 17) becomes small and the
super(luid velocity required at the boundary v'= j'/
p'o- t j' becomes large. So it becomes more and more
difficult to assure ~v' ~ v, . However, because of the
linear relation j'~ v'~ f, ~v'~ ~v, always holds if f is
chosen small enough. Therefore we divide this section
into two subsections, the undercritical and the critical
case.

A. Undercritical heat transfer

—(a +ac )f=a ~B r —(ab c)o T„A, B„r, —
b +c /cJ f+ c /o
ab —c ab —c

which yield:

r(0) —r( co ) 1, 1+oc/a
k

1+(b —c /a) oT—.

o 4T 1 ~/A, +co+ho.
T„f aT„ Ir/g+(b —c2/a )o2

(24)

(25)

(26)

(27)

We calculate the equilibrium profile of p'=poop with
Eq. (12) that remains valid. In its solution we do not as-
sume p'(0)=g(0)=0. This changes the solution only
slightly: One has to substitute x for x on the rhs in Eq.
(13), with

x =x+
&1+p

1+p /(3+2p )X arctanh 0 1+g (0)p /(3+2p )

Equations (26) and (27) are valid far away from Tz. Due
to the formal equivalence mentioned in Sec. II following
Eqs. (10), however, they are also correct for t~0 after
the appropriate substitution, and p' is assumed to have no

g(0)=0 leads to x*=x and g(0) =1 implies g(x) —= 1 as it
should.

Next we calculate the temperature profile by solving
Eq. (14). It was not possible to do this exactly in Sec. II;
neither is it here. By using the same approximation
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with (29)

We cannot solve integral I analytically. If I, ~g its
dependence on g(0) does not lead to any variation with
the temperature. The constant A can be calculated with
the help of the boundary condition Eq. (24). The results
are

g(x) =tanh(x /g) [cf. Eq. (16)] an analytic solution again
becomes possible. It has the same structure as in Sec. II;
one only has to substitute x* for x on the rhs of Eq. (17).
Now we apply Eq. (18) to calculate R& ..

Rk = —— gI

j'(0) =p'(0)U, =g (0)poou, (33)

for Eq. (24), j'(0) ~f. Of course, one can always avoid
the critical region by lowering f.

There is an additional complication that we need to
comment on. Although p'(x) is a monotonic function,
j'(x) is one too only if Xo))g. (Our rough estimate in
Sec. II yields A,o=10$.) If Xo is comparable to g, the os-
cillatory behavior in j'(x) will lead to islands or critical
currents at about the same temperature when j' exceeds
the critical current at the boundary. However, these is-
lands would give rise to an f-dependent contribution in
Rk. To see this, assume ~U'(x)~ ~U, is violated between
x=x, and x=x2. Then j,'(x)=p'(x)v, for x&[x„x2].
The Kapitza resistance Rk „caused by the tempera-

1 2

ture variation between x =x, and x =x2 is given by

K K

xl

"2 f dx [oj'(x)+f] .

with
1+crc la

[1—
g (0)] i' F (30)

Therefore the change in the measured Kapitza resistance
ARk is given by

2T
B=(b —c /a) —p+[I —

g (0)] F'/F
g(0)p'

F and F' are abbreviations for F(a,P, y, 1 —
g (0)) and

F(a+ 1,P+ 1,y+ 1, 1 —g (0) ), respectively. Note the
constants E and B depend on a, b, c, and g(0). Combin-
ing Eqs. (29) and (30) we find

(31)

With the boundary condition (25), Rk=b, T/(T f) is
also easily calculated:

r

o 1 1+c/(o b ) Kc/(ob)[1 —
g (0.)]Rk=

gT 1 —c~/(gb ) 1+(g/K)B

(32)
where the second term vanishes for t ~0. Note that any
t dependence of Rk and Rk can be easily constructed by
assuming a corresponding t dependence of a, b, c, and
g(0). Taking them as t independent (first case of the in-
troduction), however, the recent measurements clearly
indicate Bg/a((1 in the temp. erature range of the exper-
iment (10 )t) 10 ). Even if Bg/i~=1 at t =10 the
measured divergency gives the upper bound 8 &10'
K s/erg. This is a hint that the depression of j' at x =0
is large in view of the fact that

j'(0)/j "( ~ ) =(Bg/~ —oc/a )/(Bg/~+1) .

B. The supercritical heat transfer

As discussed in the introduction and the beginning of
Sec. IV, the value that j'(0) ~f ought to have becomes,
for a number of combined reasons, eventually super-
critical, j'(0) & p'(0)u, . With U, ~t, ' p'( ao ) o- t
p'(0)/p'( ~ )=I, /g', this happens, for a given f, with a
fairly high power of t. If l, =go, p'(0)U, ~t; if 1, ~g,
p'(0)U, ~ t ~ . Then we need to substitute

ARk „„ fd, x [j'(x)—j,'(x)] .
"2

Since both x2 —xi and j'(x)—j,'(x) are proportional to f,
we have b.Ri', „„~f. This contribution to R„should
have been observed, yet was not, substantiating our esti-
mate A,o)&g.

Now we calculate Rk for the critical case. By using
(33) instead of (24) the constant A becomes

K, op (0)poou,1+
K

(34)

where IC, =[1—g (0)]"~ /F. The parenthesis in (34) ap-
proaches 1 for t ~0, and we obtain

(35)

V. SUMMARY AND CONCLUSIONS

We have calculated the e6'ective Kapitza resistance Rk
for a He II-solid interface near T&. The result is given
by Eqs. (31) and (32). If we compare them with the mea-
sured divergence of Ri, (Ref. 7) we find an upper bound
for the constant B, Eq. (30), which depends on the surface
Onsager coefficients a, b, c, and the value of p'(0) Ip'( ~ ).
If the heat current f is not small enough, critical velocity
eft'ects become more and Inore probable near the A, point.

It is. important to realize that the expression of the sur-
face entropy production Rs, Eq. (21), is no longer valid.
If it would, a relation j'(0) ~f necessarily follows, and
not j'(0)=const. Consequently, Eq. (32) for Ri becomes
invalid. One may think of the supercritical heat trans-
port as a situation with two surface entropy productions,
R& and R z, where the latter accounts for a narrow vortex
producing region, in which j' ~f is brought down to
j'=p'U„while AT increases correspondingly to maintain
a constant f. As a net result, Rk is increased.
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heat current in further experiments. In addition, we sug-
gest a modified experimental setup: The Kapitza resis-
tance can also be measured between two parallel plates,
where the distance d between them is such that it varies
between d ))A,o(t) and d ((A,o(t) for the experimental
range of t. As long as d ))A,o holds, RI', will diverge as
described in the preceding sections. If d «A, o the tem-
perature variation lacks space to develop and Rk van-
ishes. To calculate the explicit expression for Rk one has
to use our boundary conditions at both plates. To simpli-
fy the calculation, we assume that p' does not vary in
space in equilibrium (as has been done in Sec. III). This
should lead to quite reasonable results as long as d ))g
holds. A calculation anologous to that of Sec. III gives

FIG. 1. RI', is plotted vs the logarithm of the reduced temper-
ature t = ( Tz —T ) /Tz. The plates distance d = 10 cm and
b=c=0 is assumed. If the Kapitza resistance of a helium
sandwiched between two plates shows a maximum as a function
of t, one may confidently conclude that the singular part of the
Kapitza resistance indeed comes from temperature gradients
within the helium liquid.

If this is the case, the estimate of Rk will be given by Eq.
(35), which is also consistent with the measured data.
The condition that the critical velocity has been reached
leads to an upper bound for p'(0)/p'(ae)(10 j'(0)/
j'( ca ).

The experiment of Ref. 7 gives no clear-cut decision
which boundary condition is realized. But it remains a
powerful tool to probe both. Therefore it is very desir-
able to enlarge the temperature range and to lower the

(1+o.c /a )sinh[d /(2k) ]
Ic c osh[d/(2A, )]+(b —c /a )o To(A, /n')sinh[d/(2A, )]

For d ))A, it becomes just twice the result of Eq. (26), as
it should, while it vanishes for d « A. as

Rk =d/ (n1+oc/ a)[1 —O(din)] .
Because (b —c /a )oTo A, /n (( 1 . (for the experimental
temperature range) is one possibility of the experiment,
we have plotted Rk over t for b =c =0 (Fig. 1). The pro-
nounced maximum that results should be precisely deter-
minable in the experiment and gives a precise measure of
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