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K. Flensberg and J. Bindslev Hansen
Physics Laboratory I, Modellering, Ikke-Lineaer Dynamik og Irreuersibel Termodynamik,

The Technical University ofDenmark, DK 280-0 Lyngby, Denmark
(Received 26 April 1989)

We present experimental data of the temperature-dependent subharmonic energy-gap structure
(SGS) in the current-voltage (I-V) curves of superconducting niobium point contacts. The observed

SGS is modified by heating effects. We construct a model of the quasiparticle conductance of metal-

lic superconducting weak links that includes the heating effects self-consistently. Our model is com-

bined with that of Octavio, Blonder, Klapwijk, and Tinkham [Phys. Rev. B 27, 6739 (1983)],which

is based on the idea of multiple Andreev scattering in the contact. The shape and the temperature
variation of the calculated SGS is found to be in good agreement with the experimental curves for
contacts with resistance larger than S Q.

I. INTRGDUCTIGN

Subharmonic energy-gap structure (SGS) is observed in
the current-voltage (I V) chara-cteristics of supercon-
ducting metallic weak links (e.g., superconducting
point contacts and microbridges) around V =2b/ne, ,

n = 1,2, 3, . . . . In the same weak links an excess
current, I,„„is also seen at high voltage ( V »2b, /e ).
Modeling the super conducting weak link as a
superconductor —normal-metal —superconductor (SNS)
microconstriction, both of these features of the I-V curve
have been successfully explained by Andreev reAections
(AR's) at the N Sinterfaces. -' '

The excess current arises from the extra quasiparticle
conductance through both X-S interfaces due to AR of
the quasiparticles with energy in the superconducting gap
region and the accompanying addition of Cooper pairs to
the superconductors. Under the assumption that there
are no interference effects between the scattering process-
es at the two interfaces, the total excess current is simply.
the sum of the contributions from the two X-S boun-
daries, but when nonequilibrium effects (which may be in-
duced by AR's) are included, this is no longer correct. '

The SGS is a result of multiple Andreev reAections at
the X-S interface. An Andreev reAection is the reAection
of an electron as a hole (and the opposite process). A
particle gains an energy 2neV after n Andreev refIections
alternating between having electronlike — and holelike
character and may overcome the energy gap, 2b, (for two
identical superconductors). This leads to the structures
in the I-V curve at V=26, /ne.

For the SNS junctions the experimental verification of
this model has only been given on a qualitative level (in
the case of the NS configuration the theory has been
justified quantitatively ). The aim of this work is to make
quantitative comparison between theory and experiment
for metallic S-S point contacts. In Sec. II we present typ-
ical I-V curves and compare them to the results of the
Octavio, Blonder, Klapwijk, and Tinkham (OBKT) mod-

el. ' In Sec. III this model is reviewed, and in order to ac-
count for the discrepancies between theory and experi-
ment we incorporate into the model the effect of heating
(which is quite large in low- and medium-resistance con-
tacts).

II. EXPERIMENTAL RESULTS

The experimental data were obtained by recording I-V
and dV/dI Vcurves a-s a function of temperature for a
number of point contacts. The study comprised, in all,
65 contacts with normal resistance ranging from 0.1 to 2
kQ. The niobium-niobium point contact was chosen for
this study due to its three-dimensional geometry and the
wide temperature range for niobium accessible in a con-
ventional He cryostat. The contact was formed by
pressing an electrochemically sharpened wire (99.5% Nb
with I —150 A) against a polished fiat (99.99% Nb). The
etching and polishing procedures have been described
previously in Refs. 5 and 6. The Nb Aat was mounted on
a temperature-stablized copper block inside a vacuum
can immersed in a liquid helium bath at T=1.3 K.
Stainless steel bellows on top of the vacuum can trans-
mitted the mechanical pressure from a differential screw
to the contact while only introducing a negligibly small
heat leak. This setup is rather unique because it allowed
the temperature of the point contact to be varied over the
range from 1.3 to 9.2 K (=T, of Nb) without affecting
the mechanical setting of the contact.

In Fig. 1 we show experimental data for four represen-
tative contacts. Three of the contacts have been com-
pared with theoretical curves calculated from the OKBT
model. The elastic scattering Z, used in the fit is found
from the measured "average" excess current (as will be
discussed in Sec. IV, the heating also affects the excess
current). The qualitative agreement is reasonable, but in
order to understand the quantitative disagreement with
regard to the voltage position of the SGS, we have con-
structed a heating model.
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III. SGS MADEL INCLUDING HEATING

In order to see how heating can be incorporated into
the SGS model, we first review the basic ideas for the
superconductor —isolator —normal-metal —isolator —super-
conductor (SINIS) configuration as developed by
Blonder, Klapwijk, and Tinkham (BKT) (Ref. 3) and Oc-
tavio and BKT (OBKT) (Ref. I) and recently recon-
sidered by Flensberg, Hansen, and Octavio. "

A. The OBKT model

The theory is restricted to the quasiparticle current,
and for this purpose the Bogliubov-deGennes equations
were used to derive expressions for the transmission and
reAection coe%cients for an incoming electron at an NIS
interface. Here I is a layer which causes elastic scatter-

ing. In the BKT model it was modeled by a delta func-
tion centered at the NS boundary. The Bogoliubov-de
Gennes equations were solved in this geometry, with the
pair potential modeled by a step function: zero in the
normal metal and constant in superconductor. This gives
the transmission coefficient C(E), the normal reliection
coefficient 8(E), and the Andreev reflection coefficient
A (E), where E is the energy of the incoming electron.
These probability amplitudes can now be used to derive
equations for the nonequilibrium electron distribution
function in the normal layer of the SINIS sandwich. Fol-
lowing OBKT, we have at the left interface

f (E)=c(E)fo(E)+&(E)[I f ( —E)]—
+8(E)f (E) .

The arrows correspond to left- and right-going parti-
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FIG. 1. Experimental data for four different contacts, (a), (b), (c), and (d). For three of the contacts the curves have been compared
with theoretical curves based on the OBKT model without heating. The Z value has been determined from the measured excess
current in the contacts.
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cles. fo(E) is the Fermi function, fu(E)C(E) is the
distribution of the electrons transmitted from the
left superconductor to the normal region, and
A (E)[1 f—( E—)] is the distribution of left-going holes
being Andreev rejected and converted into electrons.
The last term in (1) is the distribution of the normal
rejected electrons. A similar formula gives the right-
going distribution at the right end of the normal elec-
trode, and these two are combined through the require-
ment of particle conservation. In this (one-dimensional)
model the potential drops from zero to —e Y in the nor-
mal region so

f (E,O)=f (E+eV,L) . (2)

Equation (1) and the similar equation for f(E,'L) to-
gether with Eq. (2) may be combined to give the follow-
ing equation for f (E,O):

f (E)=A(E)f (E —eV)

+B(E)[1 f ( —E —e V—)]+C(E)fo(E), (3)

where f has to be computed numerically in a self-
consistent way.

Knowing f (E,O), f (E,L) is obtained by the rela-
tion

f (E)=1 f —( E —eV)—. (4)

The net quasiparticle current is found by integrating the
difEerence between the distribution functions for right-
and left-going particles:

I, = I dE[f (E)—f (E)] .
eR~

It is easy to show that

R~ = ( 1+2Z )/[2A uF e N(0) ];
A is the contact area, uz is the Fermi velocity, N(0) the
density of states at the Fermi level, and Z is a dimension-
less scattering parameter Z =ho/A'uF proportional to the
strength ho, of the 5-function barrier. With the distribu-
tion functions in hand, the current is calculated by nu-
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merical integration of these [Eq. (5)], and also the deriva-
tive d V/dI can be determined.

B. Heating model

dT
dr

P(r)
Qa( T)r

where 0 is the solid angle as seen from the contact vertex
and ~ is the thermal conductivity.

To calculate P (r) we assume that the current density is
given by

i (r)=I„,/Qr (9)

which implies that no quasiparticle current is converted
to supercurrent over the length scale of interest. This as-
sumption is valid for a three-dimensional contact since
the charge-imbalance relaxation length A, ~ (Ref. 8) is

much larger than I, and hence the solution to the three-
dimensional diffusion problem, exp( —r /A, , ) /Ar, is

dominated by the 1!r dependence. The cooling of the
contact is, however, strongly dependent on the thermal
conductivity of the superconductor.

When an electron is Andreev rejected, a pair is inject-
ed into the condensate. In more detail, this process is an
injection of a pair of quasiparticles decaying over a length
g'( T). For E (b, the solution to the Bogoliubov-de
Gennes equations has an imaginary part

Im(k) =hUF/b(T),

The effect of heating in the contact is to change the
scattering amplitudes, 2, B, and C, through the
temperature-induced suppression of the gap parameter.
To find this gap suppression we first calculate the temper-
ature profile in the contact area. We model the contact
as a three-dimensional cone. Tinkham et a/. have stud-
ied the heating effects in a hyperbolic neck and explicitly
included the boundary scattering. Without any detailed
knowledge of the actual point geometry, we have adopted
some of their results since we are only interested in the
effects of the heating at some distance from the neck,
where the details should be of no importance.

If size effects are taken into account, the effective con-
ductivity is position dependent:

p( r ) =pii( 1+1/r ),
where I is the electronic mean free path, r is the distance
from the center of the neck, and po is the bulk conductivi-
ty. The power dissipated in the volume a (r' (r is

P(r) =0f dr'r' p(r')i(r') (7)
a

where a is taken to be the radius of the neck. The tem-
perature gradient may then be found from

gives an equation for T(r). Tinkham et al. used the
normal-state conductance as given by the Wiedemann-
Franz law

(k~/e) T/p .
3

(10)

a, (E)f dE — E Ns '(E)/C 0

3
3 b

k, T

X f

ding(g

—1)' sech (gb, /2k' T), (12)

where cr is defined as r,iU~N(0)e . This result for s is
in fact identical to the expression derived by Kadanoff
and Martin' based on a full Green's function calculation.
We see that at very low temperatures ~ decreases ex-
ponentially. When b. =0, Eq. (12) reduces to Eq. (10). In
Fig. 2 the heat conductance, as given by Eq. (12), is plot-

0.5

0.0

The K —T dependence is a good approximation near the
critical temperature where the quasiparticle population is
large [f(E)-f(s)], but at low temperatures the conduc-
tance is poor since only the excitations contribute to

Since we are interested in the detailed positions
of the SGS peaks, we need to use a better value for ~. %'e
will use the relaxation time approximation of the
Bolzmann equation to evaluate the thermal conductivity.
The energy current is given by (neglecting thermoelectric
efFects)

jz =N(0) f dE f(E)U(E)E

= —~ V'T,S

with the usual notation

E (E2+ iii2)1/2

We get for ~

0.0 0.2 0.4 0.6
and hence the temperature dependence of the reAection
and transmission coefficients 2 (E), 8 (E), and C (E) via
b, (T) is determined by T = T(g). Octavio et al. showed
that the suppression of the subharmonic energy gap
structure scales like P/g(T), which is consistent with
these arguments.

With the use of Eq. (9), integration of Eqs. (7) and (8)

FICk. 2. Electronic thermal conductivity in the superconduct-
ing and normal phases (normalized to the conductivity at T, ) vs
T. The dashed curve is the approximation a -(T/T, ) used in
our model.
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ted versus the reduced temperature T/T, . We used the
following approximation, also shown in the figure,

x (T)=~ (T, )(T/T, )', (13)

to integrate Eq. (8).
We assume that the contact is in the Sharvin limit, i.e.,

I & a, which is consistent with the fact that many
medium- to low-resistance point contacts exhibit excess
current. The magnitude of the excess current corre-
sponds to low values of Z, indicating a relatively clean
metallic contact. For a low ohmic contact (but still satis-
fying R& & pl /4a, the Sharvin resistance limit for
Z =0), a low value of Z is an indication that the contact
is in the l & a limit.

Integration of Eq. (8) with the use of Eqs. (6), (7), and
(9) yields (for r »a)

2.0
O

1.8

1.2

1.0

0.8—

0

GD4
006
008

0.15
020
O25

RN =240

(~) - RN = 620

T(r) = To 1+
6e T,R~I, ,Po

+2k~2 or T40
(14) 06

where we have used

RN-2po(1+I /2a )/Qa .

0.4
0.0 0.2 0.4 06 0.8 1.0

Tc

Using

g= g'o/+1 —T/T,

2

Ql —T(g)/T,
60

and I„,RN= V, Eq. (14) becomes
' 4

T(g}=To I+a(R~)
To

1/4

FIG. 3. The temperature dependence of the 2A structure for
different values of the heating parameter a. Experimental data
are plotted in order to determine a for the two contacts shown
later in Fig. 5. We take +=0.20 for the R& =24 Q contact and
a=0.06 for R&=62 Q.

and a is then

where a(R~)=2.24 Q/R~ . (20)

'2
~o 6Poa(R~}=

m g'oQR~
(16)

We have solved Eq. (15) numerically under the condition
that e V=26,(T). This gives the deviation from the equi-
librium gap, b,Bcs(T},due to the efFect of heating, at the
e V=26, (T) structure in the I-V curve. This is illustrated
in Fig. 3.

The heating parameter a is given by the material pa-
rameters [Eq. (16)]. Inserting Q=2m and typical values
for dirty Nb,

and

2b, /kosT, =3.8 (17)

Po=7 X 10 (18)

go= 11 nm, (19)

in 0 m, measured, and using the reduced coherence
length as given by

1/go = I /go, .i...+ I /

with I = 15 nm from the Chambers's relation

pl =1X10 ' 0 m

we get

For two of the contacts in Fig. 1 this estimate yields
a=0.09 (for the R&=24 Q contact) and a=0.04 (for
R& =62 Q). However, in the following we have chosen to
determine a (and Z) by a more realistic fitting procedure.

First an a value is obtained from an eV(2b, ) versus T
curve (Fig. 3). The order of magnitude for the best fit for
a is in agreement with Eq. (20), although this result is not
expected to be quantitatively correct. Second, with fixed
a, Z is obtained from the measured excess current. In
the 1D model all elastic scattering is assuined to take
place at the interface. The model is here applied to a 3D
contact with elastic volume scattering. We therefore re-
gard Z as a purely phenomological parameter. Figure 4
shows I„, versus temperature for different values of Z,
and this gives for the R&=24 Q contact Z=0.65, and
Z =0.60 for R& =24 Q. In this way the two free parame-
ters a and Z are determined from the experimental data,
i.e., from the normal-state resistance R&, the excess
current, and the gap suppression. The quantitative com-
parison with theory for the two contacts is shown in Figs.
5(a) and 5(b). The theoretical data in these figures are
calculated on the basis of the OBKT theory combined
with the gap suppression found from b,Bcs(T) with the
temperature given by Eq. ,(15).

There is an overall good agreeInent in the magnitude of
the gap structures as seen in the dV!dI versus I curve
and also in their voltage position. The shape of the struc-
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tures is well reproduced by the theoretical curves. How-
ever, the subharmonic structures are dominated by the
background "lift" of the difFerential resistance due to the
Josephson effect. In the resistively shunted junction
model (with zero capacitance) the dynamical resistance is
given by

dV/dI=R~[1+(ICR~/V) ]'

and this is roughly in agreement with the experimental
dV/dI versus V curves in Fig. 5 for V&A'/er;„, &-200
pV. To deal with the Josephson effect the following
difFerential equation should be solved:

(b)

3

VOLTAGE
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q 2e dt

(21)

and found improved agreement with the experimental
data at low voltages (using the measured critical current).

We have not succeeded in making a Gt to the point
contact in Fig. 1(a) which has a low resistance (R~=1.3
Q). This contact is representative of the low-resistance
contact data. The contacts with R& larger than 5 0,
however, typically exhibited characteristics like the ones
shown for the two contacts in Figs. 5(a) and 5(b).

The model presented here seems adequate to account
for the heating efFect on the SOS at low and medium volt-
ages. However, with increasing voltage the temperature
in the neck rises, and when T, is reached the normal re-
gion expands. Consequently, the region where the gap is

where I is only known numerically. Since I difFers only
a little from I =(R~ ) V, we have tried to use the above
expression multiplied by the calculated d V /dI:

dV/dI=(dV/dI )[1+(I (R &/V)']'"
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FIG. 5. Experimental data for two of the point contacts in
Fig. 1. Theoretical curves (dashed) based on the OBKT theory
with the heating model presented here are shown (at the select-
ed temperatures).
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probed by the incident quasiparticles moves out into the
electrodes. This leads to a better cooling of that region.
When a balance between the heat production and this
effect of self-heating is reached, the excess current will be
constant. The experimental I-V curves indicate that the
heating effects saturate for voltages above the 2b, /e struc-
ture. The expansion of the normal region could be in-
cluded in the model without introducing any new param-
eters. Instead of g(T) in Eq. (15) we would have a new
effective distance, g,s, over which the gap is probed. As-
suming that a ((g, we have

g, tt( T)=g( T)+ r;„,( T),
where r;„,(T) is the distance from the center of the con-
tact to the interface. Using Eq. (14), this distance is given
implicitly by T(r;„,)=T, . Since we are here mainly in-
terested in the details of the SGS we have not carried this
idea through explicitly.

IV. CONCLUSION

We have compared typical experimental dI/dV V—
curves of niobium point contacts (at various tempera-

tures) and the theory of SOS developed by OBKT. The
theoretical d V /dI versus V curves have qualitative
features like the experimental data for contacts with R
larger than 5 Q presented in this paper and also experi-
mental data for micro-constrictions reported in the litera-
ture. "' We have included the effect of heating in the
theoretical model in the case of a point contact. With
this improvement, which takes into account the fact that
the electronic heat conductance decreases very rapidly
for temperatures below T„we are able to explain in a
simple way the suppression of the energy gap for all tern-
peratures. There is, however, room for further improve-
ment of the model: The Josephson effect and the
voltage-dependent expansion of the normal region could
be included.
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