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The Green’s function in a proximity-contact superconducting-normal (S-N) finite double layer
with a spatially varying pair function and with finite reflection coefficient R at the interface is dis-
cussed in the clean limit. We first obtain a solution of the Gor’kov equation in a form including a
quasiclassical evolution operator that can fully describe the spatial variation of the quasiclassical
Green’s function. Then we perform analytically the averages of the Green’s function over rapidly
oscillating phase factors due to the quantum interference effects in the finite double layers. The
averaged results of the Matsubara Green’s function and the density of states are written in terms of
elliptic integrals. The effect of finite R is illustrated on the tunneling density of states. The applica-
bility of the present theory to S-N superlattice is mentioned. We show that the conventional nor-
malization condition of the quasiclassical Green’s function does not hold in the double-layer system

with finite R.

I. INTRODUCTION

The proximity-contact superconducting-normal (S-N)
double-layer system as depicted in Fig. 1 has been inten-
sively studied theoretically and experimentally.! Theo-
retical treatments so far reported?~* are, however, mostly
based on the ideal model.>® In the ideal S-N double-layer
model, the pair function A(z) in the S-side is assumed to
be constant. In the N side, the electrons are assumed to
have the same Fermi momentum py and the same Fermi
velocity vy as in the S side but be free from the pairing in-
teraction. Thus the S-N interface is assumed to have an
electron transmission coefficient of unity. In actual S-N
double-layer systems, however, the Fermi velocity of the
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FIG. 1. Typical S-N geometry. A self-consistent pair poten-
tial in the S side is plotted by the solid curve in the case where
the S side is a pure superconductor with bulk transition temper-
ature T, with the width 27T,Ls/vf=1, the N side is a pure
metal without pairing interaction with the width 2#T,Ly/
v#¥=1 and the reflection coefficient at the interface is R =0.5.
For comparison, the constant pair function of the correspond-
ing bulk superconductor is also plotted by the broken line. See
the discussion in Sec. VII of the text.
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N side is not necessarily equal to that of the S side. Even
if one can assume that the wave functions can be connect-
ed smoothly at the interface, the difference in the Fermi
velocity yields a finite reflection coefficient

N_,S |2

Vp —UF
v +vs

(1.1)

Moreover, the pair function cannot be constant, because
it is depressed near the interface due to the proximity
effects. In particular, in the R =0 ideal model, the order
parameter near the interface shows a rapid variation
which depends on the cutoff energy of the pairing interac-
tion.®

Recently, some attempts”® to treat more general mod-
els have been reported. They are based on the quasiclas-
sical Green’s-function method®!® which is known to be
able to treat the spatial variation of the order parameter
even at low temperatures. Zaitsev’ introduced a
sufficiently general interface model, though the transla-
tional symmetry along the interface is assumed, and ob-
tained boundary conditions at the interface for the
quasiclassical Green’s function. He showed that the
boundary conditions at the interface are characterized by
the reflection coefficient R and also showed that at finite
R the order parameter is discontinuous at the interface in
contrast to the assumption so far made in the treatments
within the Ginzburg-Landau equation approach.!! Millis
et al.® generalized Zaitsev’s formulation so that a magnet-
ically active interface can be incorporated. The boundary
conditions equivalent to Zaitsev’s have been derived also
by Ashauer et al.,'? Kieselmann,'® and Nagai and Hara'*
by slightly different methods. Kieselmann succeeded in
obtaining a self-consistent pair function in a semi-infinite
system with finite R where a normal metal film is ad-
sorbed on a semi-infinite superconductor.

In finite double-layer systems, however, the conven-
tional quasiclassical technique cannot be directly applied,
because of the presence of the quantum interference
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effects due to the finite width of the layers. The conven-
tional quasiclassical formulation consists of the Eilen-
berger equation for the quasiclassical Green’s function g
and the normalization condition which is given in the
present notation as

gr=—1.

g (1.2)

In Zaitsev’s derivation’® of the boundary condition for g,
the conventional normalization condition of Eq. (1.2) is
taken for granted. In semi-infinite systems, one can
prove that Eq. (1.2) holds.”!* Hara and Nagai'® proved
that, in single-layer systems, Eq. (1.2) is also valid for g
averaged over the rapidly oscillating phase factor that
comes from the quantum interference effects. In double-
layer systems with finite R, however, the g averaged over
the two rapidly oscillating phase factors does not satisfy
the conventional normalization condition as we shall
show below.

In this paper, we present a formulation to solve the
Gor’kov equation in the double-layer system with
Zaitsev’s interface’ under a given general pair function.
We follow closely Zaitsev’s prescription.” But we do not
try to obtain the boundary conditions for g, instead we
directly solve the boundary problem at the Gor’kov equa-
tion level. This is possible if one introduces an evolution
operator U which generates the spatial evolution of the
quasiclassical Green’s function. The evolution operator
can fully describe the effects by the spatial variation of
the pair function. We obtain a closed expression for the
Green’s function written in terms of the evolution opera-
tor U and the parameters which characterize the bound-
ary conditions. The expression is general enough to in-
corporate even the magnetic active interface proposed by
Millis et al.® The Green’s function thus obtained still
contains rapidly oscillating phase factors due to the quan-
tum interference effects. We show that one can explicitly
take the averages over the rapidly oscillating phase fac-
tors. Once the equation of the evolution operator is
solved for a given pair function at the quasiclassical level,
our final formulas give the desired averaged Green’s func-
tion in a closed form. The averaged Green’s function in-
cludes only the reflection coefficient R and does not de-
pend on the phases of the reflection and transmission am-
plitudes at the interface. It also does not depend on
whether the boundary condition at the layer ends is the
fixed end condition or the free end condition.

|
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where §n=p2/2m *—u, m* is the effective mass, and

~ ip (z—2')
A(p,z,z')= 3 Alpf,z)e”*”
p,>0

+ S Alpp,2e T
p, <0
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This paper is organized as follows. In Sec. II we show
that the quasiclassical Green’s function is intimately re-
lated to the Andreev approximation!’ in solving the
Bogoliubov—~de Gennes equation. We introduce the evo-
lution operator U. In Sec. III boundary conditions at the
interface and at the end walls are discussed. Zaitsev’s in-
terface model’ is discussed rather in detail. We obtain a
formal solution of the Greens’ function in the double-
layer system. In Sec. IV we consider the Green’s func-
tion with Matsubara frequency. We show that one can
explicitly take the averages over the rapidly oscillating
phase factors due to the quantum interference effects.
The averaged results can be written in terms of the ellip-
tic integrals. In Sec. V we discuss the density of states.
The averaged density of states is also written in terms of
the elliptic integrals. In Sec. VI some applications of the
present formulation are presented. As limiting cases, the
half infinite systems and the finite double-layer systems
with a constant pair function are considered and the re-
sults are compared with previous work. The applicability
of the present theory to the S-N superlattice is discussed.
The final section is devoted to summary and discussion.
Throughout this paper, we use the units i=kp=1.

II. QUASICLASSICAL GREEN’S FUNCTION

In this section, we show that the quasiclassical Green’s
function®!® can be reconstructed from the solutions of
the Bogoliubov—de Gennes equation within the Andreev
approximation.!” For more details, we refer the reader to
Refs. 7, 14, and 16. We introduce the evolution operator
which generates the spatial evolution of the quasiclassical
Green’s function. Discussion of the present section can
be applied to either side of the double layers and is
relevant to singlet as well as to triplet superconductors.

We consider a geometry as shown in Fig. 1. The
widths of the layers Lg and Ly are assumed to be still
much longer than the Fermi wavelength 1/pg, but not
necessarily longer than the coherence length & The in-
terface and the boundaries are assumed to have transla-
tional symmetry in the x,py plane. The momentum com-
ponent parallel to the boundary is, therefore, a conserved
quantity. For a given parallel momentum p, the
Bogoliubov—de Gennes equation for the four-dimensional
Nambu amplitude WV is written as

¥Y(z')=EWY(z), (2.1)

r

with A(pF,z) the position-dependent pair function at the
Fermi momentum py. In Eq. (2.2), we have defined two
Fermi momenta p;} and py associated with the parallel
momentum p, as depicted in Fig. 2. Throughout this pa-
per cosO and py, =pg cosO are defined to be positive.
When the pair function A(p#,z) varies smoothly on the
scale of the coherence length, one can solve Eq. (2.1)
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FIG. 2. Fermi momenta pf and py associated with the
momentum p parallel to the interface and to the walls. Note
that throughout this paper pr, and cos are defined to be posi-
tive.

within the Andreev approximation!’ to find

V()= 3 ®ylz)e T, 2.3)

a=x1
where pp, =ppcosO is the z component of the Fermi
momentum py. The slowly varying amplitudes @, satis-
fy the Andreev equation!’
—aivg,d, A(p%,z)

®,=ED, , (2.4)

AT(p‘;,z) aivg,0,
where vy, =vgpcos@=ppcosd/m*. The slowly varying

amplitudes are expected to form a complete set in a sense
that

pr, dp, eipz(z—z’)

2.
Ty (2.5)

S @, (2)®),(z')=58(z —2')=
1

The tilded 6 function plays the same role as the § func-
tion on the length scale much longer than 1/pj.

The Gor’kov Green’s function can be constructed from
the Nambu amplitudes as

W, (2)¥](z")
G(z,ze)= ————— .

2.6
> —=F, (2.6)

Substituting Eq. (2.3) into Eq. (2.6), one finds that the
Gor’kov Green’s function is decomposed as
G(z,z',e)=G ,(z,2") explipp,(z —2')]
+G_ _(z,z')exp] —ipp,(z —2z')]
+G ., _(z,z") explipg,(z +2")]

+G_(z,z")exp[ —ipp,(z +2')], (2.7
where
, @, (2)®F(2")
GaB(Z’Z )= 21 ——?_TE—,I'—— (2.8)
which satisfies the equation
—aivp,d, A(p%,z)
= | At/na . Gop(2,2")
A'(pF,z)  aivg,d,
=8,0(z—z") . (2.9
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1t is useful for later use to introduce the notion of “direc-
tional space”® which is a two-dimensional space spanned
by a==x1. From Eq. (2.9), one finds that the diagonal (in
the directional space) elements G, and G_ _ have a
jump at z =z’, i.e,,
G oz +0,2)— G go(z —0,2) = —i-Z
Vp;

but off-diagonal elements have no jump. Here p; is a
Pauli matrix in particle-hole space.

Now we define quasiclassical Green’s function §,4(z)
by

8op(2)Ei(¥3) 0= —20g,p3G o5(2£0,2) , (2.11)

where v ; is a Pauli matrix in the directional space. From
Eq. (2.9) it follows that

V50,805 = —le— A, )ps8 g+ 8opBle—Aplps ,
(2.12)
where
0 A(p%,2)
A*(p%,z) 0

~

(2.13)

a

Equation (2.12) for the diagonal elements is nothing but
the Eilenberger® equation. Usually, the Eilenberger equa-
tion is solved under the conventional normalization con-
dition §2, = —1. As was emphasized in Refs. 14 and 16,
however, the normalization condition depends on the
boundary condition of the problem under consideration.
We shall show below that the normalization constant is
not always equal to —1 in the present double-layer sys-
tem.

It is convenient to introduce an evolution operator U,
which satisfies

vg,d,Uylz,2") = —ale—R,)pyU,(z,2") , (2.14)
and
U,(z,z)=1. (2.15)
The evolution operator U has an important property
detU,(z,z")=1, (2.16)

which can be proved from Egs. (2.14) and (2.15). We can
obtain a formal solution of Eq. (2.12) to be

£.5(2)=Uo(2,20)85(z0)Ug ! (z,2,) . 2.17)

This is important because solving the Eilenberger equa-
tion has been reduced to solving Eq. (2.14) with the initial
condition Eq. (2.15).

Physical quantities of interest such as current, order
parameter, etc. are obtained from the position diagonal
elements of the Gor’kov Green’s function

Py Py 2.
G(z,z,e)=— ——1——p3[g++(z)+g+_(z)e Pre?
ZUFZ

+5_.(2)e PE4g  (2)].
(2.18)
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Since the middle two terms have rapidly varying part
exp(+2ipg,2), they do not contribute as long as the slowly
varying quantities are concerned. For instance, the gap
equation is written in a form

Alpp,2)=—nT 2 Ml fo”/ 2 sin0'd 0"

X
2 v,

'Fa(g\aa(z))OD ’
a=x1

(2.19)

where N (0) is the density of states at the Fermi surface,
vy i the pairing interaction, and (§)op is the off-
diagonal (in particle-hole space) element of the quasiclas-
sical Matsubara Green’s function. Thus the diagonal ele-
ments £, , (z) and §_ _(z) are relevant quantities. This
is the reason a lot of efforts”®!27!* have been made to
find boundary conditions which are closed within the di-
agonal elements only. In order to treat the boundary
problem, however, it is useful to treat all the elements on
equal footing.

III. BOUNDARY CONDITIONS

In this section, we consider first the boundary condi-
tions for the Nambu amplitudes in the double-layer
geometry as shown in Fig. 1 and then transform them to
those for the Green’s functions. Formal solutions for the
Green’s function are obtained. We use a superscript or a
subscript N (S) to denote the quantities in the N (S) side.
The N side is not necessarily a normal metal but can be

|

PO exp(—if,) V'R exp[i(6;,—6,)]
~ VD |VR exp[—i(6,—6,)] exp(ify)
where D=1—R=1—|r]%, r=|r|exp(if,), and d

=|d| exp(i8,). The boundary condition does not depend
on the low-lying energy states according to the spirit of
the Andreev approximation. It is worth noting that the
phases 6, and 6, are rapidly varying functions of the in-
terface position. As we shall show below, the interface
effect on the Green’s functions is characterized only by
the reflection coefficient R and does not depend on the
phases 6, and 6, when appropriate averages are taken
over rapidly oscillating phase factors.

Recently Millis et al.® discussed that the magnetically
active interface can also be treated by generalizing the
matrix M. For the particle current to be conserved at the
interface, the general M should satisfy®

vs=My M7, (3.5)

where 7 ; is a Pauli matrix in the directional space.

Let us turn to the boundary at the left end z =—L,,.
From the demand that there is no net current across the
boundary, it follows that
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another kind of superconductor than the S side.

Let us first consider the N-S interface boundary located
at z =0. We follow closely the prescrxptlon proposed by
Zaitsev.” The proximity interface is assumed to be
confined within a narrow range —8 <z <§, where § is of
order of 1/pg. It follows that the Nambu amplitudes ¥~
and WS given in the preceding section should be the
asymptotic solution of the interface problem. Since the
interface process is a high-energy (~ Ey) and short-range
(~1/pg) process, it is governed by the rapidly varying
part of the Nambu amplitudes and is consequently com-
mon to both the superfluid and the normal phases. The
interface process is, therefore, characterized by the two
independent asymptotic solutions ¥, and ¥, at the Fermi
surface:

exp(+ipfz)+rexp(—ipfz) forz<—8

Yi= 14 exp(+ips,z) forz>8, (3.1)
d exp(—ipfz) forz <—38

v,= .S .S (3.2)
exp( —ipp,z)+7 exp(+ippz) forz>8,

where r and d are the reflection and the transmission am-
plitude, respectively, and d=dv} /vy, F=—r*d/d*.
Noting that the Nambu amplitudes W~ and ¥ are given
by appropriate linear combinations of ¥, and ¥,, we ob-
tain the boundary conditions of the form

VEoNo)= 3 M\ 05 @50),
B==1

(3.3)

where M is a 2X2 matrix in the directional space given
by

, (3.4)

=

N (—Ly)exp(—ipfLy)

+ exp(iny )®Y(—Ly)explipflLy)=0. (3.6)

The phase 77 is arbitrary. When exp(iny)=1, one has a
fixed end condition and when exp(iny)=—1 one has a
free end condition. The averaged Green’s function, how-
ever, does not depend on 7, (see below). In the same
way, we have a boundary condition at the right end
z=Lg:

exp(ing)P%(Lg)explipy, Lg)

+®5 (Lg) exp(—ips,Lg)=0 (3.7

Now we discuss how the above boundary conditions
are converted to those for the Green’s functions. Let us
start from the S- interface. From the definition and the
boundary condition Eq. (3.3), we find that
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oY, (0)0N(—0)
(8 M0)+iy3)ep=—208psG N5(0,—0)= =20 p, 3 —° E_;{
1
—— <« M, ®5,000)/(—0)
=—2V/oflos 3 = 5%
e—E,;
M, ®5,00)05/(—0)M | :
=—205,p; 3 r —E . =(p,Mp,[g s(0)+iy3]ﬂ T)aﬁ . (3.8)
Ji 1
Since p31@ p3=ﬁ and 73 =M hﬁ T, we obtain a simple result
gro=MgSom?, (3.9)
which has been obtained by Zaitsev’ and Millis et al.®
At the left end z = — Ly, we find from Eq. (3.6) that
(EM—Ly)—iv3)ep= —20£,p3G §p( — Ly, — Ly +0)
oY (—Ly)®Y(—Ly+0)
——2Yp, 3 al N/Ppi N
7 3 € ‘—EI
&Y (—Ly)@Y (—Ly+0)
=20}p; 3, ! N8 N exp(aijy)
1] € ~EI
=—(EM—Ly)—iv;)_qgexplaify) (3.10)
I
where 7y =2pf, Ly +ny. Thus V=N (—Ly)=8~ _(—Ly) (3.16)
EY (—Ly)+i=gN (—Ly)+i=—e "™g¥ (—Ly), and
@.11 hS=g% (Lg)=§% _(Lg) . (3.17)
BN (—Ly)—i=g"N (—Ly)—i=—e WNAN+( —Ly).  Then, using Eq. (2.17) and Egs. (3.11)—(3.14), we find
hN —(hN+i)
' (3.12) §N(0)=0N _(hN_l) hN ﬁN-1 (3.18)
In a similar way, we find the boundary condition at the
right end of the S side: and
B L) +i =85 (Lg)+i=—e g5 (Lg), (3.13) s —hS=i)| .o
£50)=0° (hsJ”) ps 057, Ga9)
£5 (Ly)—i=g5 _(Lg)—i=—e""g5 (L), (3.14)
s where
where g =2pp, L +15. .
For semi-infinite systems (Ly=o or Lg= w), the UY e My /2
Green’s functions take bulk values at some infinity. In O¥N= —inosn |
that case, the quasiclassical Green’s functions satisfy the UN e W
conventional normalization condition _ (3.20)
US e —ifg/2
£%.(2)=g% _(z)=—1 for any z . (3.15) A
. s _ing/2
Zaitsev’ and Millis et al.® obtained a set of boundary con- Ule™
ditions at the interface for the diagonal (in the directional ;i1 N = UN©,—Ly) S =ys i
~ o i ) + +1\V, N and Uj: Ui(o,Ls )- Combin-
space) elements of & by ‘ehmmatmg the ‘oﬁldlagonal 'ele- ing Eqgs. (3.18) and (3.19) with Eq. (3.9), we find
ments from Eq. (3.9) using the conventional normaliza- )
tion condition.'” Their results can be applied only to  [ANy,+iy,)+iy,M=M[hSy;+iy,)—iy;], (321
semi-infinite systems. In the case of finite double layers,
the normalization constant on the right-hand side (rhs) of ~ Where
Eq. (3.15) is not known at the beginning. N—1 PO
In contrast to previous work, here we directly solve the M=0 M0 = .§O mivi - (3.22)

system of equations for the Green’s functions. Let us first
put

Expanding Eq. (3.21) in terms of the Pauli matrices y;’s
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in the directional space, one finds
h¥=i(my—m;)m;+im,)"! (3.23)
and
hS=i(my+im,) Y myg+m,) . (3.24)

Although the above results are valid for general inter-
face matrix M, they can be much simplified in the non-
magnetic interface considered by Zaitsev.” After some
manipulations, we find

eVt 4
hN=(—i)—; , (3.25)
e N_AN
idg
e °+4
BS=(—i)—— (3.26)
e S"—'AS
where
Qse‘i‘ﬁs_‘/E
AN*—'—(UX)*l——_:'—"‘_—i&—‘UJX , (3.27)
1—VR Qge S
e +Vv'R
AS=(US_)“‘—————__—_[Q(;V s, (3.28)
Oy+VRe ¥
oy=UN(U¥)1, (3.29)
Qs=US(US )T, (3.30)
éy=2pF cos@yLy+ny+6, , (3.31)
and
bs=2p5cossLg+ns—6,+20, . (3.32)

The phases ¢, and ¢ are rapidly varying functions of
layer sizes Lg and Ly and also of the polar angles of the
Fermi momenta. We are not interested, however, in the
size accuracy of order 1/pr and in the accuracy of the
polar angle of order 1/ppL. Apart from the correction of
order 1/ppL, therefore, the physical quantities of interest
are obtained from the diagonal (in the directional space)
elements of the quasiclassical Green’s functions averaged
over the phases ¢, and ¢g. Moreover, in actual systems
the phases 0,, 8;, 1y, and g will be random variables
reflecting the microscopic irregularities at the interface
and at the walls. It follows that the averages over the
phases ¢, and ¢g can be performed independently in
spite of the fact that the polar angles of the N and S sides
are connected by the parallel momentum conservation
condition p{siny =p5sinfs. As a result, the averaged
Green’s function do not depend on the phases of the in-
terface reflection amplitudes but are determined only by
the reflection coefficient R. They do not depend on
whether the boundary conditions at the layer ends are
fixed end conditions or free end conditions.

Since the evolution operators include no rapidly oscil-
lating phase factors, the averaged quasiclassical Green’s
functions at arbitrary positions are given by

ASHIDA, AOYAMA, HARA, AND NAGAI
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LN (2IN=UN(z, —L\){hy WU (z,— L)1 1,
(3.33)
UESL2IN=US(2, L) hg W[US(2, L)1, (3.34)

where (( )) means the double average over ¢ and 5.

IV. MATSUBARA GREEN’S FUNCTION

In the rest of this paper, we confine ourselves to the
proximity effects, where the N side is a pure normal metal
with no pairing interaction and the S side is a pure singlet
superconductor. The pair function in the S side varies
spatially due to the proximity effect. In this section, we
consider the Matsubara Green’s function in which
e=iw, and show that the Green’s functions averaged
over the phases ¢y and ¢g can be expressed in terms of
the complete elliptic integrals.

In the case of the singlet superconductor, we have only
to treat the 2X2 matrix in particle-hole space. For the
Matsubara frequency e=iw,, the evolution operator in
the N side is given by
o, LN e Fry/2
F—5 P

VF;

UY = exp = , @)

tuy /2
e N

where ky=2w,Ly/vf. In the S side, the evolution
operator is parametrized by two complex numbers

a=a'+ia" and B=p'+iB’ with the relation
a’BI+aIIBI’=1:
s a ia”
U+ - iﬁ" BI 9 (42)
S =1/ 778 \T— o  —ip”
(U_) (U+) __l-an Bl Iy (4.3)
_ 'a[2 _i(atﬂn_auﬁ:) (4 4)
QS_ i(arB;I_aHBl) IBIZ ’ .

where Egs. (4.2) and (4.3) can be derived from the struc-
ture of the evolution equation and the property
detUS =1. Once the evolution equation with the initial
condition Eq. (2.15) is solved, one can obtain an analytic
expression for the averaged Green’s function as we shall
show just below. The present approach is more useful
than the conventional quasiclassical approach in which
one should solve the Eilenberger equation with compli-
cated nonlinear boundary conditions.”® Moreover, as we
shall show below, the conventional approach cannot be
generally applied to the double-layer system.

A. N-side Green’s function

Let us first consider the average of A" over ¢ ;

i¢N
1 e "+ Ay
hN [ —_—)—_
(h™) y zﬁfdﬁbzv( l)ew”—AN
_ 1 1zt 4Ay
5 $dz(—i- i 4.5)
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where the integral over z is along a unit circle in the com-
plex z plane. One can prove that

|detdy|=1. 4.6)

It follows that one of the eigenvalues of A4 is located in-
side the unit circle and the other is outside. Now we per-
form the z integral using the residue theorem. For that
purpose, it is convenient to rewrite

AN=§N‘:{N > 4.7)

Sy="— —'e”'d’s e (4.8)
(1—VRgq,e “s)1—VR gse s)

Ay=(UY)"[2VR cosps—(Qs+RQs HJUN 4.9)

where g, g, are the eigenvalues of the matrix Q¢ with
q919,=1. Noting that A, is a Hermite matrix for
e=iw,, we can evaluate the z integral to obtain

AN ltrAN

W)= :
A" w [( tr Ay )?— det Ay ]2

(4.10)

where the sign in front is so chosen that it should recover
the sign at the normal limit (w, >>T,). At this stage, we
note that (k") satisfies the conventional normalization
condition, i.e.,

(<hN)N)2="—

This agrees with Hara and Nagai'® who proved that in a
slab geometry the quasiclassical Green’s function aver-
aged over rapidly varying phases satisfies the convention-
al normalization condition. The present double-layer sys-
tem can be taken as a slab system in which the righ-hand
boundary has an internal structure (superconductor).
However, (A¥)y still contains another rapidly oscillat-
ing phase factor which comes from the quantum interfer-
ence effects within the S side. When the second average
over ¢g is taken, the averaged Green’s function no longer
satisfies the conventional normalization condition. It im-
plies that the conventional quasiclassical formulation in-
voking the conventional normalization condition cannot
be applied to the present double-layer system. Exception-
al cases occur when R =0 and R =1 where (h"), no
longer depends on ¢5. When R =0, there is no reflection
at the interface; therefore the double-layer system may be
regarded as a single-layer system with the walls at
z=—Ly and at z=Lg. This corresponds to the slab
geometry considered by Hara and Nagai.!® On the other
hand, when R =1 each layer may be regarded as indepen-
dent system without any proximity.
Now we evaluate the second average over ¢g.

4.11)

((hN)N)s=%T- f02ﬁd¢s(hN>N(cos¢s)

_1
== 1

Using Egs. (4.1) and (4.4), the explicit form of the in-
tegrand of Eq. (4.12) is given by

(hV) y(x (4.12)

2)1/2
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ax —b ic
(V) ()= —it—te —tex D) (4.13)
N'X ! [(ax _b)2+c2]1/2 ’ :
where
a=2VR sh(ky) , (4.14)
2 2
b=(1+R>'i’|—;”—|ﬁLsh(xN)
2_|pl2
+<(1—R)'a—|—2—|él‘~ch(KN) , (4.15)
=(1—R)a'B"'—a"B’) (4.16)

The result of the second average is written in terms of the
complete elliptic integrals:

2 X icY
(BN ) s=—i—= 5 |—icYy —x 4.17)
where
X = a2—b22-;c2+DK(k)_ a2+b22-’;c2+DH(v’k)
4.18)
Y=K(k), (4.19)
D =[(a*+b%+c?)?—4a?h?])"? . (4.20)

Here K is the first kind complete elliptic integral and II is
the third kind complete elliptic integral defined by

dx
(v, k)= , (4.21)
v fo (1+vx)[(1—x2)(1—k2x?)]1/?
where
2_32_ 2
2_a"—b"—c’+D
k B (4.22)
_a*+b*+c¢*—D
= D . » (4.23)

Here we consider the two special cases R =0 and R =1.
The R =0 system has been considered in the literature.
In this case, one finds that k =v=0, consequently
II=K =m/2. Thus we find from Eq. (4.17) that

—b ic
—ic b
(b2+c2)1/2

(M) ds=—i (4.24)

which can be also obtained directly from Eq. (4.13) by
putting R =0. The R =1 case sometimes occurs when
the Fermi momenta pj and p}Y are different, consequently
the parallel momentum conservation law pjsinfg
=pPsindy does not hold at some polar angles. For
R =1, the Green’s function takes a bulk normal system
form, i.e.,

(V) yds=isgn(w,)p; . (4.25)
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B. S-side Green’s function

First we consider the average of h5 over ¢.

uﬁs
+4
<h5>s———fa'¢s —z)—-——s
+4
=L fa -t =2 (4.26)
_AS

Noting that | det Ag| =1, we can evaluate the z integral in
the same way as for the N-side Green’s function to obtain
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As=¢sds (4.28)
_i¢N
= . _we o, (4.29)
(1+VRe™e ""M)Y(1+VRe e '*V)
Ag=[2V'R cosdy+(1+R)chlky)US )" US
+(1—=R)sh(ky (US )" 1p,US . (4.30)

In the rhs of Eqgs. (4.27), the sign in front has been chosen
in the same spirit as in the N side.
Now we evaluate the average over ¢:

(5 x=5 [T dn(hS)s(cosy)

(h®) As—jurds (4.27)
— ~ 2 , ) _1 s
ST (At ds P — det Ag]'72 ~['a 2)m(h Ye(x), (@31
where where
|
(hSygyi | 2 REHUHRIh(N) |Re(o? =) | _ Im(a®=p)
s [2VRx +mP+n®]" | o g P = P
(1—R)sh(xy) Re(a®+p%) _ Im(a®+p?) 4.32)
[(2VRx +mP+n’] 2 | |l2—p 72 a—p P* ||’ '
with
4 4
_(1+R)ch(KN)+(1—R)sh(KN)Ilalz ;flt , (4.33)
2 Im(a’B*?)
n=(1—R) sh(xﬁ—%{— (4.34)
The integral over x is again written in terms of the complete elliptic integrals. We finally obtain
s . Re(a’—p*)  Im(a*—p%)
((h®)g)y=i|[X+Y(14+R)ch(ky)] 25 P3 gy P
+¥(1-R)shiey) | REQEHE) , _ Ima’+57) ) 4.35)
N Te2=pl P =l P ‘
where 2) 2__p2
Re(a®—?) Im(a”—pB°)
((rS)g)y=i p3—
2 2 S/N 2 2 3 2__ @2 P2
-2k +”’2r:" D, k-K (0], 436 la* = la* =57l
) (4.41)
Y= K (k) .
VD ( “.37) In particular, when the pair function A(z) is spatially
D =[(4R +m2+n2?—16Rm?]'/? (4.38) ~ comstant, :
2_ 4R —m?—n?+D s 3 1 io, A
k 2D , (4.39) ({(hn )S)N—W —A —io, (4.42)
24,2
_AR+m°+n°—D ) (4.40)

2D

Finally we consider the two special cases R =0 and
R =1. The R =0 result can be directly obtained from
Eq. (4.32) by putting R =0. When R =1, from Egs.
(4.35)—(4.40) we find that

V. DENSITY OF STATES

In this section we consider the Green’s functions for
real frequency €e=w and discuss the density of states
defined by
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ng(w,2)=S 80—E)®,(2)®),(2)
!

= —-—¥—7p3[§aa(w+iO,z)—é\w(a)—-iO,z)] .
4mivg,

(5.1)

For the real frequency ¢ =w, the evolution operator in
the N side is given by
+iky /2
ia)LN e o
+ N P3
52

UN = exp , (5.2)

Fidy/2
e N

where Ay=2wLy/vf. In the S side, the evolution
operator is parametrized by two complex numbers ¥ and

& with the relation |y |2—|8]?=1:

vy 8

US =g el (5.3)

_ _ y —8*

(US) I=[(US)*1 = 5 g | (5.4)
2 2 * *
y*—98 —y8*+y*d

Q5= | 5o _yus  yor_gw 5.5

The density of states defined above still contains rapid-
ly oscillating phase factors. We take averages over ¢y
and ¢5 and show that the averaged density of states can
be also expressed in terms of the complete elliptic in-
tegrals. We discuss the average in the N side and in the S
side separately.

A. N-side Density of states

Let us first consider the average over ¢, of the density
of states at the left end z = —Ly:

'(n(a),—LN))N=<n+(co,—-LN))N=(n_(a),—LN))N
= 4va2 (WMw+i0)—hMw—i0))y
= 47:'3;}{}; Zd: 1 =[rMw—+i0)
—hMw—i0)], (5.6)
where
z+ Ay(0=£i0)
hN(wiiO)Z(—i)z—_sz—m , 5.7
Ay=¢yAy, (5.8)
Ey="— s e (5.9)
(1—-VRgie "*)1—VRgye %)
Ay=(UY)"'[2V'R cosps—(Qs+RQs HIUY . (5.10)
Let the eigenvalues of 4y be 4, and 4,. Then we find
from | det Ay|=1 that
4,11 45]=1, (5.11)
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and

|A1|—\/| |A21“\/| Ay/4,|,

where A, and A4, are the eigenvalues of 4.

The integral over z can be evaluated by use of the resi-
due theorem. The density of states becomes nonzero in
the following situation. When e=w—i0, one of the ei-
genvalues of Ay, say 4., is located just inside the unit
circle peripheral and A4, is just outside: At the same
time, when e=w+i0, A4, is located just outside the unit
circle peripheral and A4, is just inside. Since 4, and 4,
are analytic functions of €, the above situation occurs
only when |4,]=|4,|=1 at e=w. The eigenvalues of
Ay are the roots of the second-order equation

x2—trdyx + detAy=0.

A,/4,|, (5.12)

(5.13)

When €e=w, one can show that Eq. (5.13) has real
coefficients. For the condition |A4,|=|4,|=1 or
| 4,1=|4,] to hold, Eq. (5.13) should have complex con-

jugate roots, namely, the discriminant of Eq. (5.13)
should be negative:
D=(Lltrdy)*—detdy<0. (5.14)

This is the desired condition for the averaged density of
states to be nonzero. By use of the residue theorem, we
obtain

py Ay—ytrdy
vV —D ’

27TUFZ

where the explicit forms of the rhs are given from Eqgs.
(5.5) and (5.10) by

pi Ay —Ltrdy)=—i[(u cosps—v)—wp,], (5.16)
D =w?—(u cosps—v)?, (5.17)
where p, is a Pauli matrix in particle-hole space and
u =2V'R sinAy , (5.18)
v =(1+R)sinAy Re(y*—58?%)
—(1—R)cosAy Im(y?2—8?) , (5.19)
w =(1—R)Im(2y8*) . (5.20)

The sign in the rhs of Eq. (5.15) can be fixed by the fol-
lowing observation. From the definition Eq. (5.1), the
density of states is a positive definite Hermite matrix. On
the other hand, one finds that the rhs of Eq. (5.15) can be
diagonalized by the orthogonal matrix

1 1
1 —1

1

=3

(5.21)

From the requirement that the n diagonalized through
the transformation T should be positive definite, we final-
ly obtain
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def
(m%)y = 2m} 'T(n(w,—Ly))5T
lu cosp,—v —w|

|u cospg —v +w
212

[(u cospg—v)*—w
(5.22)

Now we take the second average over ¢g. The special
cases R =0 and R =1 are trivial. When R =0, we find
that

v +wl

lv —wl

2_..2
D w2 for v°—w*>0

((mN>N)S==

(5.23)

and when R =1, the density of states becomes just the
normal bulk form, i.e.,

((mMyy)s=1. (5.24)

<n(w’Ls)>s=<"+(ﬂ”Ls)>s=(”~(a’aLs)>s

40

For general R, we should consider the integral

Ix _‘)\v+|
1 pi [x —A_|
((mMyyds=— dx ,
W=7l [(1—x2)x —A 4 )(x —A_)]'2
(5.25)
where
+

A= ”;“’ . (5.26)

The integral over x can be again expressed in terms of the
complete elliptic integrals of first kind and third kind, but
it depends on the relative positions of A.. The details are
discussed in Appendix A.

B. S-side density of states

Let us first consider the average over ¢¢ of the density
of states at the right end z =Lg:

=P (hS(o+i0)—hS0—i0)s=—P2— 6 FZ L1y5ti0)—nSw—i0)] . (527)
4mivg, 4mivg, 27i z
The same argument as in the N side yields
I ]12VRx —A |
def ‘ [7_|[2VRx —A_|
(mS)g = 2703, 'T(n(w,L,))sT= e for D <0, (5.28)
s = SR OEslls [I.1_(2VRx—A,)(2VRx —A_)]?
0 otherwise ,
where
D=—1,I_(2VRx—A,)2VRx—A_), (5.29)
x = cosdy , (5.30)
I.=Im(y+8)?, (5.31)
R, =Re(y+3)? (5.32)
and
.. Ry
AJ_r=—(1+R)cos7tN+(l—R)sm7xN—I— . (5.33)
+

When R =0 and R =1, m no longer depends on cos¢y. For general R, we should take the second average over ¢, .

According to the energy e =w, two cases occur.

Case A. 1,.1_ >0 propagating regime. In this case, the energy states of interest are propagating states in the S side.
The average over ¢ takes a similar form to the second average in the N side, i.e.,

(T4 /T_DV2x =y |

I_ /T D2 |x —A_|

CmSshy=— [ dx

[(1—=x2)(x —A )x —A_)]'? ’

(5.34)

where AL =A./ 2V'R. This integral can be evaluated in the same way as in the N side second average. For details, see
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Appendix A.
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Case B. I,.1I_ <0 damping regime. In this case, the energy states of interest are damping states in the S side, but
there occurs finite density of states due to the proximity effects. The average over ¢y, in this case, takes a form

(| =T /T_DV?x =2 |

(|=T_ /T DV*x —A_|

UmS)g)y=

SHES
—
by

The integral again depends on the relative position of A_..
The details are given in Appendix B.

VI. SOME APPLICATIONS

In this section, we discuss some applications of the
present formulation. First, we consider a half infinite
model and show that the conventional quasiclassical ap-
proach is valid in half infinite systems. Next, we discuss
the R dependence of the density of states which can be
“observed in tunneling experiments. We discuss finally the
application of the present formulation to the S-N super-
lattice.

A. Half infinite system (Lg = o)

We consider the Matsubara Green’s function in the
case where a finite width normal metal film is adsorbed
on a sufficiently large width superconductor [Lg>>&g
=pS/A(T)]. In this case, the order parameter depres-
sion due to the proximity effect will be confined near the
interface and the pair function A(z) will tend to the bulk
value A for z>>£&;. We can expect, therefore, that the
evolution operator US,. can be written as ‘

’ > 1

a

a w,p3tAp,
I‘BII Bl

S S|
UF; ]

(6.1)

=W exp

U3 (0,Lg)= [

where W is a finite matrix and independent of L. It fol-
lows that a and B will contain a divergent factor s
ks =2(0? +AH2Lg /v3,].

Now we consider the (A7) given by Eq. (4.13). Since
b and c will diverge as ¢"S but a is finite, we find that
—b ic
—ic b

<hN>NLS:)w—i

(6.2)

which is independent of cosgg and satisfies the conven-
tional normalization condition. We can also show that,
when Lg— o, the {h5)¢ of Eq. (4.32) becomes just the
bulk form as is expected. It implies that for half infinite
systems the conventional quasiclassical approach can be
safely applied. In fact, Eq. (6.2) completely agrees with
the result by Kieselmann!3 who treated the model within
the conventional quasiclassical formalism.

(5.35)

[—(1—=x2)(x —A ) x —A_)]2

B. Tunneling density of states

Here we consider the density of states at z=—Ly. An
ideal tunneling experiment is expected to observe the
density of states at the surface of the normal metal film
given by

N(@)=1trln(o,—Ly)» (6.3)

with cosfy =1 (note that the double average gives the
density of states averaged over the Fermi momentum
within the range p}|cos@y—1|S27/Ly). We assume
for simplicity A(z)=A, though not justified, and discuss
the R dependence of the density of states.

When the pair function is spatially constant, the evolu-
tion operator is given by

_opytilp,

R e L O
vF

U3 = exp

; wp3+iBp,
(Jo?— AZ[)172
where Ay =2Lg(|o?>—A%)'"2/v§ and
C=cos(Ag/2), S=sin(Ag/2) for w*>A?,
C = cosh(Ag/2), S =sinh(Ag/2) for w?<A?.

S, (6.4)

(6.5)
(6.6)

Substituting Egs. (6.5) and (6.6) into Eq. (5.3), we obtain
explicit expressions for the density of states. In Fig. 3, we
plot the N(w) for R =0 and 0.6. The R =0 case has
been already discussed by Entin-Wohlman and Bar-Sagi’
and by Gallagher.* We choose the sizes as 2LyA /vy =5
and 2LgA /v =2 so that the comparison with Gallagher
can be made. As can be seen in Fig. 3, the effect of finite
R cannot be neglected in the finite double-layer system.
In general, the finite R reduces the proximity effects and
makes the density of states have more features of the nor-
mal bulk system. For instance, the de Gennes-Saint-
James® bound state peak becomes considerably broad at
finite R. It is interesting to note that as R increases there
develop energy ranges in which the density of states is
just equal to the normal bulk value (see Appendix A).
The details of the R dependence of the compound reso-
nance effects shall be considered elsewhere.

C. S-N superlattice

The S-N superlattice can be formulated in a similar
way to that discussed in Sec. III. In particular, the
Green’s function for an ideal R =0 superlattice with lat-
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R=0.0

2nVeN (w)
N
T
1

4t R=0.6 |

2nVeN (w)

0 1 L 1
s} 1 2

w/A

FIG. 3. The tunneling density of states at the surface of the
normal layer in the case with the constant pair function A in the
S side is plotted vs energy at R =0.0 and 0.6. The vertical axis
is 2mvN (w) and the horizontal axis is @/A. The layer widths
are chosen as 2LyA /v =5 and 2LgA /v§=2.

tice constants /g and [, is given just by that of the present
R =0 double-layer system with Lg=1Ig/2 and Ly =1y /2.
Thus the density of states with R =0 in Fig. 3 just gives
the density of states of the normal layer at the interface
ofs' the R =0 superlattice with 2/yA /v =10 and 2IgA/
vp=4.

We briefly discuss this correspondence. In the super-
lattice, the Nambu amplitude is given by a Bloch wave
type

Y(z)=Y,  (z)e™, 6.7

where 7 is the band index and k is the Bloch wave num-
ber. When z is incremented by single period (Ig
+1y), the Nambu amplitude acquires a phase factor
explik (Ig+1y)]. The density of states or the quasiclassi-
cal Green’s function contains a sum over the Bloch wave
number k within 0 <k (Ig+1y)<27. On the other hand,
the Green’s function of the R =0 double-layer system
contains a phase factor exp[i(¢;+¢y)] as can be seen
from Egs. (3.25)-(3.32). The phase average taken over
¢s and ¢, corresponds to the sum over the Bloch wave
number k.

The superlattice with finite R includes a bit more com-
plicated situations. This shall be discussed in a forthcom-
ing paper.

VII. DISCUSSION

We have obtained a solution of the Gor’kov equation
in a double-layer system with Zaitsev’s interface’ under a
general pair function. The solution is written in terms of
the evolution operator at the quasiclassical level and the
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parameters characterizing the boundary conditions. By
decomposing the solution, we can extract the physically
relevant quasiclassical Green’s function which at this
stage still contains the rapidly oscillating phase factors
due to the quantum interference effects. We have shown
that the averages over the rapidly oscillating phase fac-
tors can be explicitly performed. The averaged Green’s
function is characterized solely by the reflection
coefficient R at the interface.

The averages can be regarded as averages over the lay-
er sizes within the range of order 1/pp or as averages
over the Fermi momenta within the range of order
1/Lys. Thus the initially assumed parallel momentum
conservation condition is somehow relaxed by the aver-
ages. We expect therefore that the present formulation
can be applied to a wide range of proximity-contact sys-
tems.

We have shown that the conventional normalization
condition does not hold in the finite double-layer system
with nonzero R. Our formulation, however, retains the
advantages of the quasiclassical theory in that the evolu-
tion operator U can carry all the information on the spa-
tial dependence of the pair function. Even in the case
where the conventional quasiclassical technique can be
applied, it is more easy to solve the evolution equation
(2.14) with the simple initial condition Eq. (2.15) than to
solve the Eilenberger equation® with the complicated
nonlinear boundary conditions.”® 12714

Using the present formulation, we can compute the
self-consistent pair function. In Fig. 1, we plot our pre-
liminary results of the numerical calculation of the self-
consistent pair potential in the case where the S side is a
pure superconductor with bulk transition temperature T,
with the width 27 T,Lg /vS=1, the N side is a pure metal
without  pairing interaction with the width
27T,Ly/vf¥=1 and the reflection coefficient R =0.5 at
the interface. Details of the calculations with various ap-
plications shall be reported elsewhere.

APPENDIX A

In this appendix, we discuss the integral of the form

1 1 Ix—)\'j;l
J,=— [ d . (AD
o f—1 TI=x2)x —Ay)x —A_)]72
CaseI. Ay >A_. (i) When 1<A_<A,,
2/ 2
J,= (A, +DII k|,
A —DA_+D]2 T A —1
(A2)
= 2/ (A_—DII |—2— &
[(Ap—1)A_+1)]2 A_+1
(A3)
with
2(hy —A_
pom 22t ) (A4)

(Ay—DA_+1D
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(ii) When —1<A_<1<A,,

J,= 2/m oy +0m | 2=k (AS5)
+—[2(}\.+'—A._)]1/2 + )\,+_l_’ ’
2/ A_+1 }
J_=—"""—"—(1—A_) 1 sk | —K (k)
[2(A,—A_)]'2 -2
(A6)
with
(Ap—1)A_+1)
2—
k 2 =) (A7)
(iii) When A_ < —1<1<A,,
J,=J_=0. (A8)
(iv) When —1<A_<A, <1,
Jo=J_=1 (A9)
(V) WhenA_<—1<A, <1,
2/
Jy=——""""—"—+(A,+1
+ [2(x+—x_)]“2( +D
A.+—
X (I k| —K(k) |, (A10)
2/m 1—A4
e=m——(1—A_) k (A11)
[2(A,—A_)]'"? ) Ay—A_ ]
with
Ay —1)NA_+1)
2=
k 2 =2 (A12)
(vi) When A_ <A < —1,
—2/m 2
J,= AL+DI ki,
M [(x+—1)(x_+1)]1/2( ++D) Ay—1
(A13)
—2/7 -2
o= A_—DII ,k
[(A+—1)(x_+1)]"2( A_+1
(A14)
with
‘ 2(AL—A_)
2=
k Ap—1UA_+1) ° (AL5)

Case II. A, <A_. In all the cases, J is equal to the
J_ in Case I with A, ,A_ interchanged and J_ is equal to
the J, in Case I with A ,,A_ interchanged.

APPENDIX B

In this appendix, we discuss the integral of the form
Ix - A’il

—(1=x2)(x —Ay Nx —A_)]"2

=1 r!
Ky=— f_ldx[ (B1)
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Casel. A >A_. (i) When 1<A_<A,,

K,=K_=0. (B2)
(ii) When —1<A_<1<A,,
2/m -
K e A S — — —
+ [2(7L+—7L_)]1/2(k+ nn k+—k_’k]’ (B3)
- 2/m — _
- [2(k+—)»_)]1/2(k—+1) I ) k| —K (k)
‘ (B4)
with
(A +1)X(1—A_)
2—
20 =2 (B3)
(ii)) When A_ < —1<1<A,,
2/ —2
K = )\. “1 r[ ,k »
* [(x++1)(1—x_)]1/2( +~D AL+l ]
(B6)
—2/m —2
_= A_+DIO | ———,k
[(7L++l)(1-—)»_)]“2( ) 1—A_ ]
(B7)
with
2AA L —A_)
2—
(1=A_)A,+1) (B8)
(iv) When —1<A_<A, <1,
' 2/
K,.= 1—A
* [<x++1)(1—x_)]‘/2( +)
}\.+_A._
X | _)\_Tl’k —K(k)|, (B9)
2/
_= A_+1
[<A++1)(1—x_)]‘/2( )
s |22 ki (B10)
Ar++l ’
with
2
AR TE N ST (B11)
(V) WhenA_<—1<Ai, <1,
2/
K,=—F——(1—A
+ [2(k+_x_)]l/2( +)
AL+1
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—2/%7 Ayp+1
K =—F——(A_+1)1 | ——,k (B13)
[2(A,—A_)]'72 A_—A,
with
(AL +1)1—A_)
2—
2he =) (B14)
(vi) When A_ <A, < —1,
K,=K_=0 (B15)
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Case II. A, <A_. In all the cases, K, is equal to the
K _ in Case I with A ,A_ interchanged and K _ is equal
to the K in Case I with A . ,A_ interchanged.
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