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Coherent and sequential tunneling in double barriers with transverse magnetic fields
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Coherent and sequential processes in resonant tunneling through a double barrier are theoretical-
ly analyzed by means of a magnetic field parallel to the interfaces. The use of a simple model for
describing scattering effects and a generalized transfer Hamiltonian method allow us to conclude
that presently available experimental information is restricted to the sequential regime. %'e show
that, for systems with- barriers narrower than the ones used in the published experiments, coherent
tunneling becomes dominant on the sequential mechanism.

Tunneling of carriers through double-barrier potential
involves two physically different phenomena: an elastic
coherent part including virtual transitions to we11 states
and a sequential process in which the elastic tunneling
through the first barrier is followed by some inelastic
event in the we11 before the elastic tunneling through the
second barrier takes place. Some efforts have been devot-
ed to clarify the role of these two mechanisms in resonant
tunneling' " but we presently lack a system in which
their relative importance can be controlled. Since the
characteristic length of coherent tunneling is the width of
the two barriers plus the well, while that of the sequential
process is the width of each barrier, the main require-
ment for a comparative analysis is the ability to modulate
the spatial localization of the states so that differences are
introduced between the two processes. The best way to
change the carrier localization is to apply a magnetic field
8 parallel to the barriers allowing the control of the
wave-function extension in the direction perpendicular to
the barriers, in a given sample. Little light is thrown on
this matter by the available experimental information,
where the general trend is that the peak resonance ap-
pearing in the current for 8 =0 shifts to higher energies
and is monotonously quenched when the field is turned
on and increased. Since no particular features appear, it
is not straightforward to draw any information about the
tunneling mechanism. Theoretical efforts on this prob-
lem are scarce and devoted to just a part of the
phenomenon. ' The aim of this paper is to perform a
theoretical analysis of both coherent and sequential tun-
neling through a double barrier with an applied bias and
a magnetic field perpendicular to the current (i.e., parallel
to the barriers). The theoretical difficulties are difFerent
in each process. In the sequential case, tunneling
through each barrier can be computed using previously
developed transfer Hamiltonian methods' and the prob-
lem is to include the inelastic scattering in the well. For
the coherent case virtual transitions are involved so that

the problem is to calculate the transmission probability
by means of a generalized transfer Hamiltonian (GTH)
scheme. "

A system like this one of a double barrier in which
both coherent and sequential ways are possible behaves
like a circuit with two resistors in parallel. Each resis-
tance is proportional to the inverse of its transmission
probability, T, and T, for the coherent and sequential
channels, respectively. " Then the total transmission
probability is given by

T=T.+T.
where all three magnitudes are taken at the same ener-
gy. As will be discussed below, in our problem, a
discrete set of tunneling channels exists and some care
must be taken when mixing coherent and sequential pro-
cesses.

Let us briefly sketch the way we use the GTH scheme
for computing transmission probabilities. In order to de-
scribe the time evolution of wave packets the total Ham-
iltonian H is separated" into two spatial regions, left and
right, in a way such that

H=HL+ VL =H~+ V~,

where H =HL (IIIt ) in the left (right) side. ~L ) and ~R )
are the eigenstates for the left and right Hamiltonians
with energies EL and Ez, respectively, and the wave
functions NL (r)=(r~I. ) and @z(r)=(r~R ) are the
wave packets of the actual problem. We take the double
barrier and the applied bias in the z direction, and the
magnetic field 8 along the x direction. By considering
the gauge A=(0, Bz,O) the left and righ—t electronic
spectra are obtained by solving the Schrodinger equation
for HL and Hz, respectively, by means of a finite-element
method. ' ' Gnce the electronic spectrum is obtained,
one calculates the coherent transmission probability be-
tween an initial state @1(r) and a final one &bz(r) with
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the same energies EL =E„by means of"

Tc —
I tL,z I

with

tl ~ = (L
~ Vl + Vl (EL H—+P~ V~ ) 'P V~ ~R ), (4)

P~ being the projection operator on the state ~R ) and
P = 1 —P~. The first term in the matrix element gives the
direct transition usually described by the transfer Hamil-
tonian method while the second one includes all the vir-
tual transitions producing the resonance. In our case we
have checked that a good approximation for the latter is
to substitute (EI H+P~—Vz )

' by the Green function
6, of a central Hamiltonian H, (i.e., only the well)
corrected by a self-energy" X= V~+ V&G, Vz, where Vz
is H —H, —P~ V~.

The condition EI =E~ reduces the possibility of tun-
neling to a discrete set of channels. ' ' The physical
meaning is very simple. In the dispersion relation of the
total problem shown in Fig. 1, there is a set of anticross-
ings. One state at one anticrossing has weight in the two
sides of the double barrier, while other states are local-
ized in just one side. Therefore the anticrossings consti-
tute the tunneling channels. In the GTH formalism these
anticrossings become crossings of the dispersion relations
of HL and Hz as shown in the inset of Fig. 1. On top of
the energy conservation, in Eq. (4) all the potentials are
just functions of z so that the transmission coefficient is
only nonzero for states ~L) and ~R ) with the same k„
and k, implying that crossings (and, correspondingly,

anticrossings in the dispersion relation of the total Ham-
iltonian) are the tunneling channels. When one state lo-
calized in the well (i.e., eigenstate of H, ) is close in ener-

gy to a crossing with the same k, the virtual transition is
very intense and coherent resonance exists. Due to the
complicated structure of channels shown in Fig. 1, it can
be expected that by varying the bias, centerlike states
(i.e., with wave functions in the well) scan many possible
channels giving rise to a lot of narrow resonances. This is
shown in Fig. 2(a) for a double well n+ GaAs-100 A
Gao. 6Al0. 4-70 A GaAs-100 A Gao. 6A104As-n+ GaAs.
There, the current density is calculated from coherent
transmission probabilities by means of'

j= g fdkdkTc
tl, PPl

x [6{EF—E,„(k,) }—B(E —E„(k,) )]

X5(EI„(k ) Eg (k—y)),
where EL and Ez are the Fermi levels of the left and
right contacts, respectively, and n, m are indices running
over magnetic levels of HL and Hz, respectively. Since
in the reported I-V experimental curves ' no evidence of
several peaks exists, one can conclude that coherent tun-
neling is not the dominant mechanism in such cases.
Therefore, the next step in the analysis is the study of the
sequential mechanism.

Sequential tunneling can be visualized as a three-step
process. First, the carrier tra verses the left barrier,
second it spends some time in the well losing memory of

(a)
COH.

E

E

~0T
r/ I

20—
100A

E
E
~ 10—
E

C IT]

ky

0
0.0 O.l

v{v)
0.2 0.3

FIG. 1. Dispersion relation (solid line) of the total Hamil-
tonian describing a double barrier (dashed line) with a magnetic
field B parallel to the barriers. The inset shows the dispersion
relations of H& (solid line), HL (dashed-dotted line), and H&
(dashed line) for a tunneling channel (anticrossing of the total
H).

FIG. 2. (a) Logarithm of the coherent current density (in
mA/mm ) as a function of the bias (in V) for the double barrier
shown in the inset for three different values of B. (b) Total (in
this case almost equal to sequential) current density (in
mA/mm ) as a function of the bias (in V) for the double barrier
shown in the inset for three different values of B.
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Ts '=exp[a(l hk ) ](TLC'+T~~'), (6)

where I is the magnetic length and Ak is the difference
in k between the left and right channels. The parameter
a depends on the mechanism producing the memory loss
and is typically of the order of the unity. ' ' In our
problem there are several channels for which Ak„ is
much smaller than 1/l so that they have an exponential
factor of almost 1 for any reasonable value of a and no
special care need be taken for this parameter. It must be
pointed out that in Eq. (6) TI c and Tc~ are transmission
probabilities taken at difFerent energies (ELC and Ec~ in

Fig. 1). This implies, for the sequential transmission, an
approximation which is good when Aky «1/l, becom-
ing worse in the converse limit case. This is not an objec-
tion because the latter limit has very little weight due to
the exponential factor. In other words, the only process-
es playing an important role in sequential magnetotunnel-
ing are those corresponding to center states very close to
a crossing of EL„(k ) and E~ (k ), i.e. , to coherent
channels. Moreover, only crossings close enough to the
well give significant values of TLC and Tzz because now
there are no energy-difference denominators connected
with resonances. This implies a rather featureless
current, compared with the coherent case. Figure 2(b)
shows the total density current calculated with an expres-
sion similar to (5) by replacing Tc by the total T comput-
ed using Eqs. (1) and (6). From the comparison with Fig.
2(a) it is easily seen that the main contribution is due to
the sequential part of the tunneling while the coherent
one is negligible in this case. The behavior of j(V) for
different values of the magnetic field is qualitatively that
of the experiment so that one can conclude that sequen-

its previous state, and finally it traverses the right barrier.
Due to the memory-loss process, T, becomes proportion-
al to ( TI c'+ T~z') ', where TI c and Tc~ are the
transmission probabilities through the left and right bar-
riers, respectively. '" The first and third steps (TIc and
Tc„) can be obtained as was done for the coherent tun-
neling, including only the first term in the matrix element
of Eq. (4) because no resonance occurs. Since the argu-
ment for tunneling channels is applicable to these two
processes, it is evident from Fig. 1 that they take place
for different values of energy and k . Therefore, some in-
elastic process in the well is necessary to bring the carrier
from the left channel (first step, described by the crossing
of left and center states shown in the inset of Fig. 1) to
the right channel (third step, described by the crossing of
center and right states shown in the inset of Fig. 1).
Such memory relaxation is difficult to calculate in detail
so we opt for just using a weight factor to describe the
process taking place in contact with a reservoir and
whose probability is very small when the variation of the
quantum numbers of the channels is large. A good model
for the weight factor can be borrowed from the use of
path-integral methods to compute the impurity-induced
transitions between edge states at the two surfaces of a
narrow channel with a magnetic field. ' ' Then, we take
for the transmission probability of the sequential three-
step process

tial tunneling is that which is being experimentally ob-
served.

From the results discussed above a question clearly
arises. How can the relative intensity between sequential
and coherent mechanisms be changed? An obvious
answer is to vary the barrier widths. Figure 3 shows the
total current density as well as that computed including
only either the sequential or the coherent mechanism for
a system n+ GaAs-20 A Gao 6A104-70 A GaAs-20 A
Gao6Alo4As-n+ GaAs with B =6 T. Now the double
barrier is so narrow that all the crossings between
EI„(k ) and Ez (k ) take place close to the well, imply-
ing rather intense virtual transitions to well states. Then,
the coherent part is strongly enhanced with respect to the
sequential one and the two become comparable. The rich
structure of the coherent part then becomes clear in the
total current density. The comparison of Figs. 2 and 3
clarifies even more the relative importance of the two
parts of the tunneling. We do not know of any experi-
mental information comparing two samples with the
same wells and different barriers, but we hope that the
theoretical prediction presented here will soon be experi-
mentally confirmed, throwing much light on the two tun-
neling mechanisms.

In summary, we have used a magnetic field B perpen-
dicular to the current for studying theoretically the
coherent and sequential contributions to resonant tunnel-
ing through a double barrer. The coherent part is de-
scribed by a generalized transfer Hamiltonian method in-
cluding all the virtual processes. For the sequential
mechanism we propose a simple model to treat scattering
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FIG. 3. Total (dashed-dotted line), sequential (solid line), and
coherent (dashed line} current density (in mA/pm ) as a func-
tion of the bias (in V) for the double barrier shown in the inset
with B =6 T. Numbers in parentheses give the intensity of the
two peaks which are out of scale.
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effects. In the case of the samples where experimental in-
formation has been reported, sequential tunneling con-
trols the process. We present a case where coherent pro-
cesses should dominate so that a rich structure should be
observed in the current-bias curves.
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