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Electronic structures of superlattices under in-plane magnetic field
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The electronic structures of superlattices under an in-plane magnetic field are studied by the
method of expansion with sine functions. The electronic and hole magnetic energy levels are ob-
tained as functions of k„k~ and the intensity of the magnetic field. The density of states and the
magnetic-optical transition matrix elements are discussed. The variations of the binding energy of
the heavy- and light-hole magnetic excitons with the magnetic field and the well width are also ob-
tained. Finally, the electronic energy levels in the magnetic field along an arbitrary direction in the
yz plane are calculated.

I. INTRODUCTION

The electronic structures and the exciton states in su-
perlattices in the magnetic field perpendicular to the in-
terface have been investigated in many experimental and
theoretical works. ' In this case the cyclotron motion
of electrons is in the plane of the superlattice parallel to
the interface. The quantizations caused by the magnetic
field and the confinement of electrons in the growth
direction are independent, and the electronic magnetic
energy levels in superlattices are relatively simple. The
hole magnetic energy levels are more complicated be-
cause of the coupling between the heavy and light holes.
When the magnetic field is in the direction parallel to the
interface, the electronic cyclotron motion is in the
growth direction and the quantizations caused by the
magnetic field and the confinement of electrons overlap
so that the resultant quantum energy levels are deter-
mined by the magnitudes of the magnetic field and the
quantum well. This wiH produce a series of interesting
physical phenomena.

Experimentally, there have been Shubnikov —de Haas
magnetic-resistance measurements by Chang et al. ' and
magnetic-optical measurements by Belle et al. "and Ray-
nolds et al. ' In the magnetic-resistance experiments '
the effect of the parallel magnetic field on the quantum
oscillations has been observed. Ando' first calculated
the electronic quantum energy levels of superlattices in
the parallel magnetic field for explaining the experiment.
Maan' ' calculated and analyzed the quantum magnetic
energy levels and compared them with the magnetic-
optical experiment. " The recent magnetic-optical experi-
ment' measured the diamagnetic energy shifts of heavy-
and light-hole excitons as functions of well width and
magnetic field intensity. Lebens et al. ' studied the effect
of a parallel magnetic field on tunneling in heterostruc-
tures. Recently, 01iveira et al. ' calculated the electronic
energy levels in n-type modulation-doped quantum wells
by a self-consistent method. Fasolino et al. ' and Altarel-
li et al. ' extended the calculation to the hole magnetic
energy levels. They calculated the special case of the

component of wave vector along the direction of magnet-
ic field equal to zero.

In this paper we shall use an expansion method with
sine functions to study the electronic structures of super-
lattices in the parallel magnetic field. In Sec. II we
present the calculation method and the electronic mag-
netic energy levels. In Sec. III we discuss the hole mag-
netic energy levels, in Sec. IV the binding energy of mag-
netic excitons, and in Sec. V the electronic energy levels
of superlattices in the magnetic field along an arbitrary
direction between the parallel and perpendicular direc-
tions.

II. CALCULATION METHOD
AND ELECTRONIC MAGNETIC ENERGY LEVELS

A=(Bz,0,0) .

The electronic wave function can be written as

g(r)=e " ' q(z),
where y(z ) satisfies the equation

1 2—[p, +P (z+zo) ]+V(z) q&(z)
2&i

Rk
E , qr(z ), —

2m
(3)

eB
C

V(z ) is the potential of the superlattices.

In the following we shall assume that the growth direc-
tion of the superlattices is in the z direction, and the mag-
netic field is in the y direction. Let the vector potential of
the magnetic field be
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1/2

p(z)= — g c sin +2 . m&z m7T

2
(7)

which vanishes at z = I./2 and I—./2. Inserting Eq. (7)
into Eq. (3) with V(z)=0 and k, =k~=0, we can obtain
accurate Landau energy levels and corresponding wave
functions, depending on L and the number of expansion
terms in Eq. (7). For example, in the magnetic field
8=10 T and m*=0.067mo, if we take I =1000 A and
the number of expansion terms M =40, we can obtain 15
accurate Landau energy levels with energy E,4=251
meV; if I =2000 A and M=80, we obtain 45 accurate
Landau energy levels with E~ =770 meV.

Then, we consider the superlattice potential V(z). For
each V(z ) and 8, we choose L and M so that the highest
accurate Landau energy level is much higher than the
quantum energy levels of the superlattice without mag-
netic field. In this case the V(z) can be considered per-
turbation, and the convergent quantum energy levels can
be obtained with wave functions (7). For the superlat-
tices GaAs-Alo zGao 8As, the conduction-band offset is
150 meV, which is much smaller than the Landau energy
level E44=770 meV in 8=10T; thus, taking L =2000 A
and M =80 is enough to obtain the convergent quantum
energy levels. It is noticed from Eq. (6) that L ~ I/&8.

In this paper we shall calculate the magnetic energy
levels of the superlattice GaAs-Alo 2Gao 8As; the energy-
band parameters used in the calculation are the electronic
effective mass m *=0.067mo, the Luttinger parameters
of the valence band, y&=6. 85, y2=2. 1, y3=2. 9,
~= 1.2, and q =0, ' the band offset of the conduction and
valence bands, AV, =150 meV and AV& =100 meV, and
the widths of the potential well and the potential barrier,
100 and 50 A respectively.

Figure 1 shows the electronic magnetic energy levels as
functions of zo for a magnetic field of 10 T. From Fig. 1

we see that there are two kinds of quantum energy levels:
one is relatively "Aat" and independent of zo, such as the
energy levels at 30 and 110 meV. They are associated
with the quantum energy levels in the superlattice
without magnetic field. The other type has larger energy
dispersion with zo, and are associated with the parabolic
potential arising from the magnetic field.

From Eq. (3) we see that the efFect of the magnetic field
on electrons is equivalent to addition of a parabolic po-
tential, whose origin is at the center of a potential well for
k =0. If we do not consider the superlattice potential
V(z) at the moment the quantum energy levels become
Landau energy levels, the corresponding wave functions
will be the harmonic-oscillator wave functions. The
cyclotron-orbit radius depends on the magnetic field 8
and Landau quantum number n as

I /2

R„= (2n+ 1)
Ac

eB

Beyond the range of R„, the wave function vanishes.
Thus we take a large L so that L &)2R„ for certain
n & N, and expand the wave function y(z) in terms of
sine functions,
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FIG. 1. Electronic magnetic energy levels as functions of zo
for a magnetic field of 10 T.

Figure 2 shows the variations of magnetic energy levels
(zo =0) with the magnetic field. From Fig. 2 we see that
most of the energy levels rise quadratically with magnetic
field. The energy levels associated with the energy levels
in the superlattice without magnetic field, including the
ground state, increase slightly with magnetic field.

In order to calculate the density of states, we define the
electronic energy as approximately

2~zo I kyE =E —E cos +
pl nO (&)

where the second term represents the energy dispersion
with zo (k„), which is a periodic function of the superlat-.
tice period I. From Eq. (8) we obtained the density of
states of the n th energy band,
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FIG. 2. Variation of the electronic magnetic energy levels
(zo =0) with intensity of the Inagnetic field.
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1/2 2E„o1 e8 2Ptl

E —E„+E„p
E)E„+E„pE —E„+E„p

1/2n(E)= '

1 e8 m

c E„p

E—E„+E„o
2E„0

En Enp —E (En +E 0

(9)

1 e8 2m'
c E—E„

1/2

(10)

Therefore, in the case of the parallel magnetic field the
magnetic-optical spectra will exhibit complicated charac-
ter of both two- and one-dimensional densities of states.

where K(x) is the complete elliptic integral of the first
kind, which diverges at x =1. Hence the density of states
(9) diverges at E=E„+E„o.The variation of n (E ) with
E is shown in Fig. 3. For E(E +E p the density of
states has a step form like the two-dimensional density of
states, and for E)E„+E„oit decreases as I/V'E, like
the one-dimensional density of states. The sharp peak in
the density of states is the character of a two-dimensional
energy band at the saddle critical point
zo=l/2(k„=Pl/2A') and k =0, as discussed by Van
Hove. If E„p approaches zero, the density of states will
be reduced to the one-dimensional density of states,

H=-- 1

2mp

P, +3k'P»

Q* P2+Ap» 0

P2 —A'p»

0

where

P) =(y, +yz)[p, +P (z+zo) ]

+(y, —2y~)vari k

P2=(yi y2)[p +P (z+zo) ]

+ ( y )+2y~)R ky,

Q = 2&3y—3Ak [ip, +P(z+zo )],
R =V'3

I y2[p, —P (z +zo ) ]
—2y3[P(z+zo )ip, ]—y3AP j .

0

P, —3fiP»

(12)

III. HOLE MAGNETIC ENERGY LEVELS In deriving Eq. (11), we have assumed that q =0 and the
hole wave function to be

Transforming the coordinate system (x,y, z) in the
Luttinger Hamiltonian of the hole in the magnetic field
to the new coordinate system (z,x,y), the hole Hamil-
tonian can be written as

'y((z) '

y2(z )

g(r) = ik x+ik y

y3(z )

y4(4)

(13)
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FIG. 3. Density of states of the electronic magnetic subbands
for three values of E„o (defined in the text).

As in the case of the electron [Eq. (7)], we expand each
yj(z) in Eq. (13) with sine functions, and thus the hole
magnetic energy levels can be obtained.

Figure 4 shows the hole magnetic energy levels as func-
tions of zp for a magnetic field of 10 T. From Fig. 4 we
see that, similar to the electronic magnetic energy levels,
there are two kinds of energy levels: one is relatively Hat
and associated with the hole energy levels without mag-
netic field. In Fig. 4 the lowest and excited energy levels
(7 and 19 meV) are associated with the heavy- light-hole
energy levels (6.85 and 18.2 meV), respectively. The oth-
er type of energy level has larger energy dispersion with
Zp ~

Vfe also calculated the dispersion of the subbands
along the k» direction (zo=0) for a magnetic field of 10
T; the results are shown in Fig. 5. From Fig. 5 we see
that, as k is larger than 2m/l (!is the period of the su-
perlattice), the subbands approach parabolic bands, and,
as k~ is smaller than 2m!l, there is strong interaction be-
tween subbands, and the hybrid bands are formed.

Figure 6 shows the variations of hole magnetic energy
levels (zo =0 and k =0) with magnetic field. For clarity
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FIG. 4. Hole magnetic energy levels as functions of zo for a
magnetic field of 10 T.

FIG. 6. Variation of the hole magnetic energy levels
( k& ky 0 ) of the group J~ = 2, ——' with magnetic field.

only one group of energy levels J =—'„——,') is shown.
From Fig. 6 we see that the hole magnetic energy levels
rise (actually descend) quadratically with magnetic field,
except for the ground state and the excited states associ-
ated with the heavy- and light-hole quantum states
without magnetic field.

Having known the electronic and hole energy levels
and corresponding wave functions, we can calculate the
optical transition matrix elements. According to the
effective-mass theory, the true electronic and hole wave
functions should be Eq. (2) multiplied by the wave func-
tion of the conduction-band bottom, u (r) (o =+), and
Eq. (13) multiplied by that of the valence-band top,
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0.00 0.24 O. 48 0.72 O. 96 1.20
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FIG. 5. Hole magnetic energy levels (z&&=0) as functions of
k~ for a magnetic field of 10 T.

u (r) (j=—'„—,', —
—,', —

—,'), respectively, where o is the spin
component and j is the component of the angular
momentum J=—',. The squared optical transition matrix
element is

Q..= l~ &@,Ipl@g, &I',
mp

(14)

where e is the unit vector of the electric field direction.
For the electric field polarizations e+ =e, +ie„,
e =e, —i e, and e, it can be proved that

2PQ„„(. )= [(&q, i~„&)'+-,'(&~, l~»&)'],
Pl p

Q„„( ) = [(&y, lq„, &)'+-,'(&q, Ip„,&)'],
mp

2P
Q„„(e,) = —,

' [( & p, I q, & )'+ ( & g, I q, & )'],
ill p

where qv, and y&~ are the electronic and hole wave func-
tions in Eqs. (3) and (13), respectively. P=&s~P„~X&; S
and X are the orbital wave functions of the crystal
conduction-band bottom and valence-band top, respec-
tively.

Table I gives the squared optical transition matrix ele-
ments at k =k =0 for a magnetic field of IO T, taking
2P /ma=18. 71 eV. For clarity, only Q larger than 2
eV are listed in the table. From the table we see that
there are two kinds of transitions: one has comparable in-
tensities for polarizations e+ (or e ) and e . The other
only has strong intensity for polarization e+ (or e ), but
weak intensity for e . The former are transitions to
heavy-hole states and the latter are transitions to light-
hole states. It is noticed that in the case of perpendicular
magnetic field the transitions to light-hole states are only
of polarization e, (polarization in the direction of the
magnetic field). Therefore, by means of the transitions of
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TABLE I. Squared magnetic-optical transition matrix elements (in units of eV). The energy (in
parentheses, in units of meV) is given for each energy level. a and b represent the two groups of the
hole energy levels. +, —,and y represent the electric field po1arizations 6+, E, and 6'y respectively.

Valence n

10

13

14

(7.17)

{7.17)

(12.71)

(12.75)

(14.58}

(14.70}

(18.75)

(20.03)

(20.04)

(21.97)

(22.50)

(22.55)

(22.93)

(23.27)

1

(29.36)

4.749 (+)
4.411 (—}
9.363 (y)

4.682 (+)
3.934 (—)

8.822 (y)

13.483 (+)
2.958 (37)

13.447 ( —)

2.43 (y)

Conduction n

2
(57.44)

5.162 ( —)

10.324 (y)

4.836 (+)
9.673 (y)

8.864 ( —)

8.942 (+)

3
(58.01)

5.195 ( —)
10.389 (y)

4.738 (+)
9.477 (y)

8.975 ( —)

9.025 (+)

different polarization, we can distinguish the transitions
to heavy- or to light-hole states. The letters a and b in
Table I represent two groups of hole energy levels at
k =0, corresponding to J =—,', —

—,
' and J~= —,', —

—,', re-
spectively. Except for the ground states, the electric Geld
polarizations are different for transitions to the states of a
and b groups: for heavy-hole states they are e+ and e
and for light-hole states they are e and e+, respectively.

IV. MAGNETIC EXCITONS IN SUPERI.ATTICES

) Ph(zll )G(I z ) (16)

where y, (z, ) and gi, (zz ) are the electron and hole wave
functions at k„=k~=0, and G(p, z) is the exciton en-

In the case of perpendicular magnetic Geld, there has
been much work on the magnetic exciton. ' ' ' Howev-
er, in the case of the parallel magnetic Geld there seems to
be no work on the magnetic exciton. Here we use a
method similar to that of Greene and Bajaj, ' assuming
the exciton wave function as follows,

where H, and H& are the Hamiltonian of electron and
hole in the superlattice, respectively.

We further simplify the hole wave function yl, (zz).
The calculation found that for the ground states of the
heavy and light hole (the first and second and seventh and
tenth states in Table I), the hole density distribution func-
tion calculated from Eq. (13) is nearly the same as that
calculated with a simple parabolic model, in which the
heavy and light holes have the effective mass

Alp
Ply =

+ 2/2
(18)

respectively. Hence we use Eq. (3) to calculate the hole
wave function with efFective mass mh* [Eq. (18)].

velope function. p, z are the components of the relative
coordinate r=r, —

r& in the xy plane and z direction, re-
spectively. The exciton Hamiltonian is

2

H,„=H,+H~—
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Assume that the exciton envelope function G(p, z) is a
combination of Gaussian functions,

8.0

—u —P z
G(p, z)= gc;Je (19) 7.2-

Substituting the exciton wave function (16) and Eq. (19)
into the exciton equation, we obtain the secular equation,

fa...,,, —ES...", f
=0.

where S;;.' and H,"; ' are the overlap integrals and
Hamiltonian matrix elements, respectively.

Figures 7 and 8 are the exciton binding energies as
functions of well width in magnetic fields of 2, 10, and 20
T, for the heavy- and light-hole excitons, respectively.
From the figures we see that when the well width in-
creases the binding energies first increase, reach a max-
imum, and then decrease, approaching limited values.
For the larger magnetic field the binding energy is larger,
and the well width at which the binding energy reaches
maximum is smaller. The binding energies of the light-
hole exciton are smaller than those of the heavy-hole ex-
citon.

The results in Figs. 7 and 8 are for the potential barrier
width 8 =50 A, which results in a strong penetration be-
tween the wells in the case of weak magnetic field. Fig-
ures 9(a) and 9(e) are the heavy-hole densities in the well
width 8'=100 A, barrier width 8 =50 A, and magnetic
fields 8 =2 and 20 T, respectively. In the strong magnet-
ic field the hole is mainly confined in the central potential
well, and the maximum binding energy occurs at smaller
well width. In the weak magnetic field the holes are dis-
tributed in the central and neighbor potential wells, re-
sulting in a decrease of the exciton binding energy. As
the well width increases to a certain value, so that the
holes are mainly distributed in one well, the binding ener-

6.4—

I 56-

4.8-

a 1 s I s I a I a4 A
~ M

0 80 160 240 320 400~I ~1DTH ~Ai

FIG. 8. Variation of binding energies of the light-hole exci-
ton with the well width for three values of the magnetic field.
The barrier width is 50 A.

gy reaches a maximum.
We also calculated the heavy-hole exciton binding en-

ergies in the isolated quantum wells with 8 =200 A; the
results are shown in Fig. 10. From Fig. 10 we see that
the maximum exciton binding energies occur at smaller
well width and are independent of the magnetic field. At
larger well widths the binding energies are different for
di6'erent magnetic field. Figures 9(b) and 9(f) are the
heavy-hole densities at 8'=100 A, 8 =200 A, and mag-

0.5

12.0
0

10.8-

9.6-

&05.
cf

~ 0

~~0.5
LU

m 0

7.2-

6.0
0 80 160 240 320 400~ i S)0TH (A)

50 l00 l50 0 50 IQO )50
z(A)

FIG. 7. Variation of binding energies of the heavy-hole exei-
ton with the well width for three values of the magnetic field.
The barrier width is 50 A.

FIG. 9. Density distribution of heavy and light holes in the
potential well of width 100 A. (a)—(d), 8 =2 T; (e)—(h), 8 =20 T.
(a), {b), (e), and (f), m+ =0.3774m p (e), (d), (g), and (h),
mI,*=0.0905mo. (a), (c), (e}, and (g), 8=50 A; {b), (d}, (f), and
(h), B=200 A.
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2

(23)
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9.6- (24)
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Introducing the creation and annihilation operators,

at=, (k +ik ),
(2A'P, )'~

a=, (k„ik—),1

(2irip, )'i

the electronic Hamiltonian (22) becomes

H= [2fiP, (a a+ —,')+P~(2', )' (a+a )z
l

(25)

FIG. 10. Variation of binding energies of the heavy-hole ex-
citon with the well width for three values of the magnetic field.
The barrier width is 200 A.

netic fields B=2 and 20 T, respectively. Comparing Figs.
9(b) and 9(f) we find that the hole densities are nearly the
same for magnetic fields of 2 and 20 T, and hence the ex-
citon binding energies are independent of the magnetic
field. As the well width increases, the hole density will be
different in the parabolic potential arising from different
magnetic fields, resulting in the difference of the exciton
binding energy.

Figures 9(c), 9(d), 9(g), and 9(h) are the corresponding
results to 9(a), 9(b), 9(e), and 9(f) for the light hole. Com-
paring these Ggures, we see that the light holes spread
over a larger region than the heavy holes. Therefore the
exciton binding energies of light holes are smaller than
those of heavy holes.

+P z +p, ]+V(z) . (26)

The first term in the square brackets of (26) gives rise to
the magnetic energy levels of 8„ the third and fourth
terms give rise to the magnetic energy levels of 8, and
the second term represents the coupling term of 8, and
B.

We take the wave function to be

g(r)= g c„u„y (z),
n, m

where u„and q& (z) are the wave functions of the B, and
B magnetic energy levels, respectively. Substituting (27)
into the Hamiltonian equation (26), we can calculate the
magnetic energy levels in the magnetic field along an ar-
bitrary direction.

Figure 11 shows the electronic magnetic energy levels
as functions of 0, the angle between the magnetic field

V. ELECTRONIC MAGNETIC ENERGY LEVELS
IN THE MAGNETIC FIELD ALONG

AN ARBITRARY DIRECTION
IN THE yz FLANK

Chang et al. designed a geometry in which the mag-
netic field could change the direction in the yz plane in
their magnetic-resistance measurement. Using the above
method, we can also calculate the electronic inagnetic en-
ergy levels in this case. Let the vector potential of the
magnetic field be

0.053

0.048

0.043

0.038

A= B,y B,x
2 ~ ' 2

+8 z, , 0 (21)
0.033

where 8, and 8 are the components of the magnetic
field along the z and y directions, respectively. The elec-
tronic Hamiltonian can be written as

0. 028
0 18 38 54 72 90

ANGLE (deg l

where

[(k +P z) +k +p, ]+V(z),1

m* (22) FIG. 11. Electronic magnetic energy levels as functions of
the angle between the magnetic field direction and the z axis, for
a magnetic field of 10 T.
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and the z axis, for a magnetic field of 10 T. From Fig. 11
we see that when the magnetic field deviates from the z
(or y) axis by a small angle, say 8=10' (or 80'), a band of
sublevels is split out of the originally degenerate magnetic
level n = 1 associated with the magnetic field with 8=0
(or 90') by the small B (or B,) component. When the
magnetic field deviates from the z (or y) direction consid-
erably, the variations of the energy levels exhibit compli-
cated structures. Some higher energy levels show a ten-
dency to converge to the n =2, 3, . . . excited states at
8=0 or 90'.

VI. SUMMARY

In this paper we proposed an expansion method with
sine functions to study the electronic structures of super-
lattices in the magnetic field parallel to the interface. We
studied the magnetic energy levels, optical transition ma-
trix elements, magnetic exciton states, etc., and obtained
the following main results.

(1) In the superlattices there are two kinds of magnetic
energy levels for electrons and holes: one basically does
not vary with zo (k„) and is associated with the energy
levels of superlattices without magnetic field. The other
has a larger energy dispersion with zo. The hole magnet-
ic energy levels also exhibit energy dispersion with k
The density of states shows characteristics of both the

two- and one-dimensional energy bands.
(2) Magnetic-optical —transition selection rules are

different for transitions to the heavy- or light-hole states.
For the heavy-hole states the transitions have comparable
intensities for the electric field polarizations e+ (or e )

and e . For the light-hole states there are only transi-
tions of e+ (or e ). There are two groups of hole energy
levels at k =0; the transition selection rules are also
different for the two groups of hole states.

(3) The binding energy of the magnetic exciton in-
creases with increasing magnetic field. When the well
width increases, the binding energy first increases,
reaches a maximum, then decreases, and approaches a
constant. The well width corresponding to the maximum
binding energy decreases with increasing magnetic field.
The binding energy of the light-hole exciton is smaller
than that of the heavy-hole exciton. The penetration be-
tween quantum wells in the case of small barrier width
and weak magnetic field obviously decreases the exciton
binding energy.

(4) When the direction of the magnetic field changes
from the z axis to the y axis, the variation of the electron-
ic magnetic energy levels with angle exhibits a complicat-
ed structure.
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