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The electronic structures of zero-dimensional quantum wells are studied with a spherical model
in the framework of the effective-mass theory. The mixing effect of the heavy and light holes is tak-
en into account, and the symmetry classification and the energy levels of hole states are obtained.
The energies of the donor and acceptor states are calculated. The difference between the shallow-
impurity states and the eigenstates for the small semiconductor sphere disappears. The selection
rules for the optical transition between the conduction- and valence-band states are obtained. The
An =0 selection rule is not followed strictly because of the mixing of the L- and (L +2)-orbital wave
functions in the wave functions of the hole states. The exciton binding energies are calculated for
the small GaAs spheres. The energy levels of the ZnSe spheres are given as functions of the radius
and compared with the experiments.

I. INTRODUCTION

In recent years semiconductor superlattices have
developed from two dimensional (2D) to one dimensional,
and even zero dimensional. Since the electronic move-
ment in the zero-dimensional superlattices (ZDS s) is
confined in all three directions, it is expected that there
will appear more obvious quantum size e6'ects, for exam-
ple they will have discrete quantum energy levels just as
in large molecules and the energy levels will be strongly
dependent on the size of the ZDS. At present there have
been some measurements of the optical and electric prop-
erties of ZDS's. ' There also have been attempts to use
ZDS's in microelectronics as memory devices by con-
structing a very regular array of ultrafine particles on sil-
icon. In the field of chemistry, small semiconductor
crystallites are used as catalysts and photosensitizers.
In the case of CdS and other cyrstallites, moderate
changes in electronic absorption and resonance Raman
excitation spectra have been reported. "'

There have been many reports on the electronic struc-
tures of the two-dimensional superlattices, while reports
on lower-dimensional superlattices are still few. Xia and
Huang' and Brum et al. ' calculated the electronic and
hole subband structures of one-dimensional superlattices.
Brus et al. ' ' calculated the energy levels and exciton
energies of small semiconductor crystalline spheres by
the efFective-mass approximation. In Ref. 12 they point-
ed out that for the hole the Baldereschi and Lipari Hamil-
tonian' should be used, and the mixing between the S
and D states, heavy- and light-hole states, and spin-orbit
splitting states may be important. Kayanuma' and Nair
et al. ' calculated the lowest energies of the electron-hole
pair states in the simple-parabolic-band approximation
by the variation and perturbation methods. In this paper
we shall use a spherical quantum-well model to simulate
the ZDS's and use the effective-mass envelope-function
method to calculate the electronic structures. For elec-
trons we use the simple-parabolic-band model, while for

holes we use the Baldereschi and I.ipari' spherical-model
Hamiltonian in the limit of strong spin-orbit coupling be-
tween the valence bands. Section II gives the calculation
method. Section III gives the results on electronic and
hole energy levels. Section IV gives the donor and accep-
tor energy levels. Section V deals with optical transition
probabilities and selection rules. Section VI presents cal-
culation of the exciton energies. Section VII gives the en-
ergy levels of the small ZnSe sphere as functions of the
radius, and compares them with the experiments.

II. CALCULATION METHOD

We assume a spherical quantum-well model: the elec-
tron and hole are confined in a spherical, infinite poten-
tial well. In the spherical coordinate system the equation
of the radial function f(r) for the electron is

d 2 d + l(l+1) f( ) Ef( )
r dr

where f(r) satisfies the boundary condition,

f(R)=0 . (2)

K„(R =p„( .

In this paper„we use the effective Bohr radius

A eoa*=0 m*e

and the eft'ective Rydberg

(4)

R is the radius of the sphere. Equation (1) has solutions,

f„t(r)= A„i1t(K„ir),
where n and l are the main and angular quantum num-
bers, respectively, jt(p) is the spherical Bessel function,
and A„& is the normalization constant. K„& is determined
by the zeros of jt(p),
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4Pl e
2A' e

as units of length and energy, respectively. eo is the
dielectric constant, and m is the effective mass. For
electrons m *=m,*, for holes m ' = 1/y ).

On the assumption of the isotropy of the hole energy
bands (y2=y3), the effective-mass Hamiltonian of the
hole is'

2 ~(P(2) g(2))
9

where I" ' and J' ' are the second-order irreducible ten-
sor operators of the momentum and angular momentum
corresponding to spin —,', respectively,

2y2

and y, , y2, and y3 are the Luttinger effective-mass pa-
rameters. ' From Eq. (7) we see that the hole behaves
like a particle with spin —„and the second term in Eq. (7)

4&(P, /~)=f, (r)(, 1, ,', ,', F—,—&, (9b)

4(P3/2)=f2(r)il, ,', ,', F—,&—+g2(r)i3,3, —,',F, &, (9c)

~'(P5/3) =f3(r) I 1,-'„—'„F,&+g3(r) I3, —,', —,',F.&, (9d)

C&(D~/2)= f4(r)i2, —'„—'„F,&+g~(r)i4, —'„—'„F,&, (9e)

@(D7/&)=f3(r)12, -'„-'„F,&+g, (r)i(4, '„'„F,—&,-(9fl
where the functions )(L,J,F,F, & are eigenfunctions of the
total angular momentum in the I.-J coupled scheme and
the four figures represent the eigenvalues of the operators
L, J, F, and F„respectively. The radial functions f, (r)
and g;(r) can be proved to be solutions of the following
set of differential equations:

corresponds to the spin-orbit-coupling term. The total
angular momentum is F=I +J. The spin-orbit term
couples only hydrogenlike states for which L =0,+2;
thus the general forms of the hole wave functions can be
written as

4(S3/3)=f()(r)i0 2
I' F &+go(r)i2 ——F & (9a)

L(L+1)

d
C2

dr
2L+1 d L (L +2)

dr r

—(1+C) ) +-
dr r dr

d 2 d—(1—C)) +-
r dr

(L +2)(L +3)

d + 2L+5 d + (L+1)(L+3)
2 r dr r2 f, (r)

(„) =0, (10)

where the constants C, and Cp for the various states in

Eq. (9) are listed in Table I.
To solve Eq. (10) one can expand f; ( r ) and g; ( r ) in

terms of the spherical Bessel functions (3). But for sim-
plicity we would rather use the expansions

' 1/2
1 2 . nor

f, (r)= —— g a„sin
r R „ i

" R
1/2 (11)

1 2 . nor
g, (r)= —— g b„sin

r R „ i
" R

which satisfy the needed boundary conditions; moreover,
the corresponding matrix elements of the Hamiltonian
can be written as the sine and cosine integrals.

III. ELECTRONIC AND HOLE ENERGY LEVELS

From Eqs. (1) and (10) we see that the energies of the
electronic and hole energy levels are all inversely propor-

. tional to the square of the spherical radius. Therefore we

shall only discuss the energy levels for a square of radius
R =ao. The energies of the electronic energy levels are
given by the zeros of the spherical Bessel functions,

2
Enl Pnl (12)

The energies of the hole energy levels are obtained by
solving Eq. (10); the variations of the S3/2 P3/2 and D3/z
energy levels with p are shown in Figs. 1 —3. The I'5/z
and D7/2 energy levels are similar to that of I'3/2 and

D5/2, respectively, and hence not shown here. The ener-
gies of the I'j/2 energy level are the same as that of the
electronic I' state, only the effective mass m in the
effective Rydberg (6) should be replaced by 1/(y, +2y2).

Froms Figs. 1 —3 we see that when p approaches 1, all
the energy levels approach zero, which is associated with
the fact that for )((,= 1 one valence band (heavy-hole band)
becomes Aat. ' In the range of p from 0 to 1 the interac-
tion between the L, state and 6+2 state composing the
hole wave function (9) is obviously seen in the figures,

TABLE I. CoefBcients in the hole equation of movement (10).

S3/2 P 1 /2 P3/2 P5/2 D 5/2

Cl

C2

p
0

~p

~p

~p
2 +6p

7P
—,'+5p
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FIG. 1. Hole energy spectrum of the S3/2 states as a function
of p.

FIG. 3. Hole energy spectrum of the D5/2 states as a function
of p.

with the result that the variation of the energy levels with

p is not monotonic. The energy of the S3i2 ground state,
especially, is nearly a constant over a large range of p.
The result of the P»2 states is not shown in the figure,
which energy levels vary according to the linear relation
1+p and therefore do not approach zero when p ap-
proaches 1. It is associated with the other valence band
(light-hole band), which remains parabolic for p = 1.

From the above results it is remarked that if we had
not taken into account the mixing of the heavy and light
holes, but used the simple parabolic band model, the cal-
culated hole energy levels would vary according to 1+@
and 1 —p, respectively, which is clearly not correct.

IV. DONOR AND ACCEPTOR ENERGY LEVELS

Assume that the impurity is located at the center of the
sphere. Since the impurity center carries electric charge,
the dielectric polarization energy produced by the dielec-
tric small sphere must be taken into account in the calcu-

C)

o
teal

I

0-
CL

UJ

0.2 0.4 0.6 0.8 I 0

FIG. 2. Hole energy spectrum of the P3/2 states as a function
of p.

Vp(r„r2) =P(r] )+P(r2) P~(r], r2),
where

(13)

rP(r)= g a„ R

2'
e

2R
(14)

(eo —1)(n + 1)a„=
eo( eon + n + 1 )

e2rnrl2
1 2PM(r„rz)= g a„,P„(cos8) ." R 2m+1

(1S)

(16)

P„ is a Legendre polynomial and 0 is the angle between r,
and r2. The minus and plus signs before PM in Eq. (13)
correspond to opposite and same electric charges, respec-
tively.

For an impurity located at the center r] =0, P(r] ) and
PM(r„r2) are all zero except the n =0 term. The n =0
term in P(r, ), P(r2), and PM(r„r2) cancel each other.
As a result the polarization energy in the impurity prob-
lem is

V~(r)= g a„ r
R

2n
2e

R
(17)

where r is the radial coordinate of the electron or hole.
Figure 4 is the variation of the donor s state energies

with the sphere radius R. For clarity the ordinate is tak-
en as the energy E multiplied by the square of the radius.
Then when R approaches zero the limiting value of ER
does not diverge, and the values of ER at R =0 are just
the eigenenergies without the impurity. The dashed and
solid lines are the results without and with the polariza-
tion energy included, respectively. From the figure we
see that unlike in the bulk material where the impurity
produces a series of binding states below the band bot-
tom, in the small semiconductor sphere the impurity only

lation of the impurity energy levels. If two charges of
magnitude e exist at positions r, and r2 inside the sphere
the additional polarization energy is'
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TABLE II. Squared angular parts of the optical-transition-matrix elements 3 =
i ( lm ip ~FF, ) i' in units of P'

Transition Transition F,

S-S3n A
Px

P Pln Pz

Px

P-P3r2 Pz

3
2

3
2

1

2

1

2

3
2

3
2

3
2

1

2

1

2

1

2

1

2

—3
2

2
3

1

2

1

6
2
9
1

9
1

4
1

36
1

18
4
15
2

45
16
45
3
10
1

5

4
45

1

90
1

15

d-D3Z2 Pz

1

2

1

2

—3
2

1

2

1

2

—3
2

2
5

2
5

1

5

1

2

1

5

1

20
1

20
1

10
1

10
4
15

2
15
4
15

1

10
1

5

1

5

1

15
1

30
1

15

The electronic wave function is given by

e, =f, (r) Im ) iso ), (19)

where f, (r)~lm ) is the orbital wave function, iSa. ) is the
Bloch wave function at the conduction-band bottom, and
o. is the spin component. Thus the optical-transition-
matrix element

(@,Ipl@„)= f dr r f, (r)f~(r)

X y (lm LM, &&s~~p~', M, )
Ml, M2

X(LM, —3M~ ~L ,'FF, ) . —(20)

Because of the orthonormality of angular momentum
eigenfunctions (lm ~LM, ) =5iL 5 M, there is only one

1

term in the hole wave function (9) contributing to the ma-
trix element (20). We call the first part in Eq. (20) the
overlap integral and the second part the angular part of
the transition-matrix element

& lm IplFF, &
= g (S~ipi —',M, &(lm ,'M, ~l ,'FF, ) .—(2—1)

Table II gives the values of i ( lm ip~FF, ) i
calculated

from Eq. (21), in units of P =
i (Sip„iX ) i, where S and

X are the Bloch wave functions of the conduction-band
bottom and valence-band top, respectively. In Table II
we have the transition selection rules from the

~
lm ) state

to the FF, ) state. For simplicity we only list the results
of the Sf) state; the results of iSJ, ) state are the same
but the signs of F, reverse. The results of the p transi-
tion are the same as that of the p„ transition; only the p

TABLE III. Overlap integrals of the radial wave functions in various possible transitions for hole
parameter @=0.7.

s-S

1-1 0.833
1-2 0.543
2-1 0.333
2-2 0.577
3-3 0.680
3-8 0.414
3-9 0.588
4-4 0.683
5-6 0.690

p-P

1-1 0.987
2-2 0.934
2-5 0.308
3-3 0.940
3-9 0.322
4-4 0.939
5-5 0.364
5-6 0.873

p-P

1-1 0.574
1-2 0.746
1-3 0.318
2-1 0.431
2-2 0.403
2-5 0.331
3-3 0.571
3-9 0.765
4-4 0.604

d-S

1-1 0.439
1-1 0.602
2-3 0.713
2-9 0.556
3-4 0.704
4-6 0.700
5-7 0.708

d-D

1-1 0.954
1-2 0.267
2-2 0.890
2-6 0.376
3-3 0.910
3-9 0.291
4-4 0.913
5-5 0.881
5-6 0.266
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TABLE IV. Binding energies of the lowest three (s,S3/2) exciton states as functions of R. The
second rows are the results without including the polarization energies. The energies are in units of

0
meV, the R are in units of A.

(1-2)

(1-3)

40

36.94
55.00
16.00
44.27
18.20
49.53

80

18.92
27.66

8.90
22.27

8.28
24.65

120

12.93
18.55
6.50

14.94
5.00

16.36

160

9.93
14.00
5.28

11.28
3.39

12.20

200

8.14
11.28
4.48
9.08
2.46
9.71

transition results are listed. Because of the spherical
symmetry, although the individual transition probability
and selection rule are different for the p, and p transi-
tions, the summation of the transition probabilities of all
the possible transitions is equal and independent of the
electric polarization direction.

The overlap integrals of the radial wave functions in
Eq. (20) for the possible transitions in the case of iu, =0.7
are listed in Table III. Since the hole equation (10) cou-
ples the orbital wave functions with different L and n, the
optical transitions do not follow the selection rule An =0
strictly. For example, for the s-S3/2 transition the elec-
tronic n =1 level can make the transition to both hole
n =1 and n =2 levels, and besides the electronic s state,
the electronic d state can also make the transition to the
hole S3/2 state.

where 4 „(r, ) and 4kj(rk ) are the wave functions of elec-
tronic and hole eigenstates, respectively. Putting the
wave function (23) in the Schrodinger equation, we obtain
the secular equation,

iHj. ,j,—E5...5,, i
=0,

where the Hamiltonian matrix elements

Hij, i'j' (~0 )ij,i'j '+ (H 1 )ij, ij'
(H0)j; J =(E„+m,*y,E„)5;;5jj

2 + V~(r„rk )
reh . 'J~& J

(24)

(25)

The integration of the Coulomb interaction is calculat-
ed by using

VI. EXCITON STATES
Qo Ic

rf Vk(rl r2)pk(cos~) Vk( 1 r2) k+1k=0 r&
(26)

If we take the electronic effective Bohr radius ao and
effective Rydberg Ro as units of length and energy, the
exciton Hamiltonian is

where I'k are the Legendre polynomials, 0 is the angle be-
tween r, and r2, and r ( is the lesser and r & the greater of
r, and r2. By use of the theory of angular momentum
coupling it can be proven that

H=p,'+m,"y, p„' —j."—(p„"'Z"')—2 + V~(r„rk) .
r,h

(22)
(

1
3)3„(S,S3/3) 3)3,'„(s,t3/3))

reh

=V0(r„rk)lgf, + V0(" "k)lf + —'
The exciton wave function can be written as

4,„=g c;.4„.(r, )4kj(rk ), (23) 1
@,„(p,P1/2) @,'„(p,p, i2) = V0(r„rk )~f freh p

(28)

TABLE V. Binding energies of the lowest three (p, Pl z2) exciton states as functions of R. The ener-
0

gies are in units af meV, the R are in units of A.

(1-2)

(2-1)

40

13.56
43.87
12.15
44.75
12.10
44.63

80

7.02
21.97
6.23

22.44
6.17

22.31

120

4.84
14.66
4.26

14.99
4.20

14.87

160

3.75
11.01
3.28

11.28
3.20

11.15

3.09
8.82
2.69
9.05
2.62
8.92



8506 JIAN-BAI XIA

TABLE VI. Energy band parameters of ZnSe and GaAs, m,*, mz*, m&, and m z are effective masses
of the electron, heavy hole, light hole, and hole of the

split-off

ban (in units of mo); 6 is the spin-orbit
splitting energy of the valence band (in units of eV),

ZnSe
GaAs

0.160
0.067

0.780
0.475

0.145
0.087

0.200
0.133

4.089
6.800

1.404
2.347

0.430
0.340

8.300
12.530

where

Vo(rp&rh)lf fo= J Jfs("e)fo("h)~0(re&rh)

Xf,'( r, )fo(r& )r, dr, r~ drh, (29)

VII. ENERGY LEVEI.S OF ZnSe
CRYSTALLINE SPHERES

etc. Equations (27)—(29) are equally applicable to calcu-
lation of the matrix elements of the polarization potential
pM(r, r~) lEq (16)]

We calculated the exciton binding energies (the exciton
energy minus the energies of corresponding electronic
and hole eigenstates) in the GaAs small spheres; the ener-

gy band parameters are given in Table VI. The binding
energies of the (s,S3/Q) and (p, P, &z) excitons as func-
tions of R are given in Tables IV and V, respectively,
where the second rows are the results without including
the polarization energy. The dielectric polarization of
the small sphere decreases the exciton binding energies,
especially for the case of small radius. The binding ener-
gies increase rapidly with decrease of R; that of the
(s,S3&z) ground-state exciton increases most obviously,

0
reaching 37 meV at R =40 A. The binding energies de-
crease with increase of the excited-state energies.

increases with decreasing ZnSe cluster size. In Table VII
we give the calculated energies of the electronic 1s, hole
1S3/Q and split-oft' 1s states at some values of the sphere
radius, pIus the energy gap 2.58 eV; we obtain the transi-
tion energies as functions of R, compared with the experi-
mental values. '

From Table VII we see that the small sphere (ZnSe, A
or 8 in Ref. 12) corresponds to a radius R =17 A, and
the moderate one (ZnSe, C) corresponds to R =25 A
(shown by arrows in Fig. 7). It should be indicated that
there is no experimental value of the split-oft' hole
effective mass m&,' the m& =0.2mo in Table VI is fitted
from this experiment. If mz is larger than 0.2mo, the
splitting of the two transitions will be smaller; if mz is
larger than 0.2mo, the splitting will be larger. Therefore,
by comparison of the experimental and theoretical results
we obtained the radii of the spheres, and in the meantime
the split-o8' hole effective mass. Besides the 1s-1S3/p
transition, there can also be a 1s-2S3/p transition due to
the S-D mixing. In the case of @=0there is no S-D cou-
pling, the first state is an s state, and the second one is a d
state, as shown in Fig. 1. At p=0. 7, there is stronger S-
D coupling, from Table III we see that the overlap in-
tegrals of the radial wave functions are 0.833 and 0.543
for the 1s-1S3/z and ls-253/Q transitions, respectively.
Thus the transition probability of the 1s-1S3/g transition
is 2.4 times that of the 1s-2S3/p transition. Because the

As an illustration of the above calculation results we
consider the energy levels of the ZnSe crystalline spheres.
ZnSe has a zinc-blende structure and a larger spin-orbit
splitting in the valence bands; furthermore, it has been in-
vestigated experimentally. ' In Table VI we give the en-
ergy band parameters of ZnSe and GaAs (Ref. 23) used in
this paper. It is noticed that the band parameter p [Eq.
(g)] for ZnSe and GaAs are nearly 0.7, so that the results
in Secs. IV and V (Fig. 5 and Table III) are applicable to
these two materials.

From Eq. (12) and Figs. 1 —3 we obtain the energy lev-
els of the ZnSe crystalline sphere as functions of the ra-
dius R, as shown in Fig. 7. For clarity only the S3/p
series of the hole energy levels are shown; the dashed
lines are the hole 1s energy level and the top of the split-
off band, respectively. Chestnoy et al. ' observed and an-
alyzed, for the first time, the second excited electronic
state of R =20-A ZnS and ZnSe clusters. They assigned
the two resolved transitions to the 1S(1 8) and 1S(I 7)
transitions. From Fig. 7 we see that this is the only possi-
ble explanation, because the splitting of the two transi-
tion peaks, i.e. the difference between the first S3/p hole
energy level and the 1s split-off hole energy level, slightly

2
O
—l-

~~0

-2.

lo 20 30 40
R(A)

50

FIG. 7. Energies of electronic and hole states of ZnSe
spheres as functions of radius A. The dashed lines are for the
split-off valence band.
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TABLE VII. Calculated energies of the electronic 1s, hole 1S3/2 and split-off'hole 1s states of ZnSe spheres for some radii {relative
to the conduction-band bottom and the valence-band top, respectively) and corresponding transition energies. Experimental transi-
tion energies are also given (all in units of eV).

R (A)

1$

1S3y2

1sq

Is-1S3/2
1s-1s&

16

0.918
—0.502
—1.164

4.000
4.662

17

0.813
—0.445
—1.080

3.838
4.473

0.725
—0.397
—1.010

3.702
4.315

Expt.

3.874
4.428

0.408
—0.223
—0.756

3.211
3.744

0.376
—0.206
—0.731

3.162
3.687

0.348
—0.190
—0.708

3.118
3.636

Expt.

3.179
3.647

energy of the hole excited states approaches that of the
split-o6' valence band as the sphere radius decreases,
there may be some resonance between the I 8D states and
the I 7S states, which is not considered in our strong
spin-orbit coupling approximation.

VIII. SUMMARY

In this paper we studied the electronic structures of
spherical ZDS's by the Baldereschi and Lipari'
spherical-model Hamiltonian in the limit of strong spin-
orbit coupling. The mixing effect of the heavy and light
holes is taken into account, and the symmetry
classification and energies of the hole energy levels are
obtained. It is found that the hole energy levels are ap-
parently different from that obtained by the simple-
parabolic-band model. When the radius of the crystalline
sphere decreases, there appears a series of quantum size
effects. The distinction between the shallow impurity
state and the eigenstate disappears; the impurity
Coulomb potential only causes the lowering of the ener-
gies of eigenstates. For R =ao and p=0, the binding en-
ergies of the S, P, and D acceptor (and donor) ground

states become about 4.5, 11, and 18 times those in the
bulk materials, respectively. They decrease as 1/R and
approach the limiting values in the bulk materials as R
increases. The optical transition probabilities and the
selection rules between the conduction and valence states
are obtained. Because of the mixing of the L and L +2
states in the hole wave functions the An =0 selection rule
is not followed strictly. The s and p excitons in the GaAs
small sphere are also calculated. The dielectric polariza-
tion of the small sphere decreases the exciton binding en-
ergies, and this effect is especially obvious in the case of
small radius. The exciton binding energy increases rapid-
ly with decrease of R; as R =40 A, the binding energy of
the (s,S3/2) ground-state exciton reaches 37 rneV. The
energy levels of the ZnSe crystalline sphere are given as
functions of the radius R, and compared with the experi-
ments.
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