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Resonating-valence-bond state with fermionic charges and bosonic spins: Mean-field theory
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We consider a representation of the Hubbard model, in which the charge carriers are fermions
and the spin carriers are bosons. We show that there exists a mean-field solution with a conden-
sate of spin singlets and we characterize the low-temperature behavior of the quasiparticles. Fi-
nally, we calculate the tunneling spectrum for a normal-metal-resonating-valence-bond (RVB)
state tunnel junction and suggest the tunneling experiment as a probe of the statistics of the RVB
quasiparticles.

where in contrast to the Zou-Anderson work we choose
the e's and d's to be fermions and the s's to be bosons.
The introduction of these operators will bring us out of the
physical subspace. This is defined by the requirement

e;te;+ s;tfs; f+ s;tfs; f+ d;td; (2)

since we will interpret e;~ as a creation operator for an
empty i site, d; as creating a doubly occupied i site, and
s; as creating a spin aron sitei. It is easy to show that in
the physical subspace the electron operators will satisfy
the usual commutation relations.

The Hubbard-Hamiltonian in the large-U limit will
take the form

H- —t g s;t~;e,'s,. Jg b;,'b;, , — (3)
i j,cr (.i j&

(J 4t /U). Here the first term describes the hopping of
electrons, where the presence of e; and e~t makes sure that
the site to which the electron is hopping is really empty
and that the site it is leaving becomes empty. In the
second term the operator b;~~ creates a pair of spins on the

It has been suggested by Read and Chakraborty' that
the charge carriers of the resonating-valence bond (RVB)
model are fermions and that the spin carriers are bosons.
This is in contrast to the commonly held view, first pro-
posed by Kivelson, Rokhsar, and Sethna, where the situ-
ation is just the opposite: bosonic charges and fermionic
spins. Read's and Chakraborty's argument is that in or-
der to get the lowest energy of a hole in a RVB state (us-
ing the prescription of Sutherland to choose the relative
phases of the singlets) it is necessary to assign to each hole
a "vortex" in the gauge field, so that the self-overlap of
the state is unchanged by the presence of the hole. It
turns out that the interchange of two holons gives a factor
x in the overall phase.

We will use the "slave boson" approach to derive a
mean-field theory for this particular choice of statistics.
The basic idea is that with this method the correct statis-
tics for the quasiparticles can be brought in from the start.

Our starting point is analogous to that of Zou and An-
derson (see also Kotliar and Liu ) who introduce a new
set of operators

c;f e; s;f+s;fdi, r c;f e; s;t —s;fd;,

b;jtb;j —S"S + —,
'

n;n (5)

where n; =n; t +n;~. We will use the first form because it
is the singlets that are important in a RVB state.

Consider next the partition function

Z Tr(e P "P), (6)
P is an operator that projects onto the physical subspace.
Since the Hamiltonian will never take us out of this sub-
space ([P,H] -0), we will only need this one P. Mathe-
matically, P is represented by a set of Kronecker-deltas:

~~&ij dPX;P Q exp[ipX;(e; e;+s;fs; f+s'fs'f 1)].
; 4 —~/'~ 2z

(7)
(Being in the large-U limit, the states with double occu-
pancy, i.e., the d s, can be neglected. ) With this repre-
sentation the partition function can be written

t. itt dPg;Z-Q„, , 'Zu.„.. . , ~ ), (8)
1

with

Z(zf, . . . , Xtv) =Tr(e ""),
and

H, tt H jtN —i gA.;(e;te;+s;—tfs;f+s;tfs;f —1) . (10)

The strategy is now to do a conventional Hartree-Fock
factorization on the effective Hamiltonian, and after self-
consistency has been obtained to do the A, ; integrals in a
steepest descent calculation, i.e., to find the minimum of
the free energy, F —I/PlnZ(ki, . . . , k&). In this last
step we will assume that the minimum is obtained when
all X; are identical and purely imaginary, i.e., X; =ik. In
this way A. will act as a chemical potential.

Let us start with the holon sector, which is the part of
the mean-field Hamiltonian describing the e fields. It is
given by

Hh. i =g t g e "pe+ j +X
'

ek ei, .
k

sites i and jwhich are in the singlet combination

bij (s& f sj l si fsj f ) .
2

This last term can, in turn, be rewritten in the more con-
ventional Heisenberg form
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pr Z (Si crsi + rcr) ~ (i2)

Here z represents the nearest-neighbor directions. p, is
the Hartree term for the bosons

i.e.,

6'-(e; e;& - —gnF(ek —iuF) .1

As we shall see below this term is negative, independent of
r, and with an absolute value less than unity. This results
in a band for the fermions which has a minimum for
k=(0,0). With the definitions ek —2tp [2 —cos(k„)—cos(k»)] and pF = —(4tp +p+X, ) we write Hh, i

=gk (ek pF)ekek
We now turn to the spin sector and use the definition of

an RVB state as a condensate of singlet pairs, correspond-
ing to a nonvanishing value for (b;~) Wit.h the introduc-
tion of the mean fields

The holon hopping amplitude obeys

p, (e;+.~i& g [cos(k„)+cos(k»)]nF(ek—cuF) .
2N

(20)
In the spin sector we must have that the total number of
spin sites should be given by the number of sites with no
holons, i.e., N(1 —b),

r

1 —b 2(s;~; &
—g [2nB(Ek)+1]—1

1 k ga
N k Ek

A, =J(b;;+,&, p
F -(e e;+,), (i3) (2i)

the mean-field Hamiltonian for the spin sector becomes

Hspcn g (&k PB )Skcrskcr
k, e

The equation for the spin hopping field p, is

pr 2(SI+ rcrsicr)
B~

g (Ak Sk fs —kJ +Aks —

kiosk

f ) r

k

where we have introduced the dispersion

(i4) [cos(k„)+cos(k» )] [2n B(Ek ) + 1] .
2N k Ek

(22)

cok = [2tp + (J/2) p ] [2+cos (k„)+cos (k» )],
and the eA'ective chemical potential

iuB 2[2tp +(J/2)p ]+(J/4)(l —8) —k.

The two chemical potentials pF and pg for the charges
and the spins that we have introduced can be varied in-

dependently, since they are built out of the two indepen-
dent parameters A, and the chemical potential p for the
electrons. The k-space order parameter Ak is given by

gA, sin(kz) .
2 t

(is)

This is nonvanishing because the real-space order-
parameter 5,, satisfies h, —,= —h, , which is easily seen
from (13). In this paper we will study the case where

h~ and discuss other choices of relative phases in a
later publication.

The spin Hamiltonian H,p;„can be diagonalized by a
Bogoliubov transformation. The quasiparticles, i.e., the
spinons, are created and annihilated by the operators yj
and yk, which are given by

~k~ =&k3'k~+Uk3' —k& Uk Xi~+ uk 7—k l

where the quasiparticle energies are

Ek =[(~k —PB)' —
I t4 I'] '",

and the coherence factors are uk - —,
' [(tok —pB)/Ek+ I]

and Uk = —,
'

[(cok pB)/Ek —1]. Fin—ally, there is a con-
densation energy, so that the diagonalized spin Hamiltoni-
an has the form

Finally, we have the gap equation for the spinon conden-
sate. It is calculated by forming the combination
(b,„*+6» )/2 Ao to obtain

[sin (k„)+sin (k» ) ]
2nB Ek +1 . 23

2N

Equations (19)-(23) determine the unknowns: iMF, pB,
p„p„andho. The physics of these equations is dominat-
ed by the gap in the spinon spectrum. The minimal value
for Ek is found to be

' 1/2

(24)
g 2+ 2g2

where tB 2tp +J/2p From th. is expression it is seen
that there exists a maximal value for the spin chemical po-
tential, and Es will approach zero as pB approaches this
maximal value from below.

We will first consider the half-filled band case, where
0, at very low temperatures. Here we only need to

consider the spin sector. At half-filling the mean-field
(s;+,~; ) vanishes. This is in agreement with the physical
fact that in this case a spin cannot hop without violating
the constraint (2), all sites having exactly one spin. Con-
sequently, tok is zero. However, the spinon quasiparticles
can still move because Ek has dispersion. In Eqs. (21)
and (23) the temperature-dependent part of the k sums
will be totally dominated by the region in k space around
the gap, which in this case is located at the k points
(iz/2, iz/2) and ( —iz/2, —iz/2). Setting iuB equal to its
maximal value, i.e., iLtB

—24260, the temperature-
dependent k sums can be eliminated from the two equa-
tions and we finally obtain the solution for ho,

H pi X [Ek )'kcr3kcr (tok '&B Ek)/2] .
k, a

We can now write down the self-consistency equations.
' First the number of holons should be equal to the doping,

~o JJ2' 1 Z 1
I

2%

0.8188J .

r 2 1/2 ~

sin (k„)+sin (k» )
2

(2s)
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B 0
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treatment is expected to be best.
To calculate the tunneling current we use the standard

tunneling Hamiltonian scheme. The result for zero tem-
perature is

g [Uk e(eV Et, )—dI e gFgN I T I'

k

+.ge(-ev E, »-, (29)

I I I I I I I I

—125.00 —75.00 -25.00 25.00 75.00 125.00

ev (mev)

FIG. 5. The diff'qrential conductance for a tunnel junction be-
tween a normal metal and a RVB state.

Fig. 4 and compared to the full numerical solution. The
zero temperature solutions for ho and ttt is used in the cal-
culation of Eg.

The separation of the charge and spin degrees of free-
dom in the RVB state and thereby the departure from a
Fermi-liquid state necessarily has physical significance.
The clearest example is the current-voltage (I—V)
characteristic for a normal-metal to RVB state tunnel
junction. ' The consequences of the previously proposed
representation of the RVB state, i.e., bosonic holons and
fermionic spinons, is an asymmetric I—V characteristic.
More precisely an Ohmic behavior for one particular po-
larity of the bias voltage and a current growing quadratic
with voltage for the opposite polarity. The latter is due to
the extra phase space available when a particle is tunnel-
ing from the normal-metal to the RVB metal and the en-
ergy of the incoming particle can be distributed between
two particles. But this phase space is only present in one
tunneling direction because at low temperatures the
holons, being bosons, are practically monoenergetic. The
reversed situation, i.e., the representation where the
holons are fermions and the spinons are bosons, results in
a more symmetric characteristic because for both tunnel-
ing directions a spinon quasiparticle is injected and in
both electrodes the charge carriers are fermions. This
may provide a way to distinguish experimentally between
the two diH'erent realizations of the RVB state.

We now calculate the tunneling current for a tunnel
junction using the representation for the RVB state con-
sidered above. The experiment directly probes the density
of states and the energies involved are in the large voltage
limit of the order J. It is in this limit that the mean-field

assuming a constant holon density of states we have in-
tegrated out the holons. gF and g~ is the density of states
for holons and for the normal-metal electrons, respective-
ly. ~

T ( is the tunneling matrix element and Ek is given
by Eq. (17). The result of the numerical integration of
Eq. (29) is shown in Fig. 5 and for both directions it ex-
hibits an increasing conductance with increasing voltage.
The conductance is symmetric for small voltages, but be-
comes asymmetric for larger voltages. It should be no-
ticed that the rise in the conductance only persists up to
voltages comparable with the spinon bandwidth (-4ttt).
In the calculation the parameters ho and ttt from the T 0
mean-field solution are used.

Recent experiments on single-crystal samples or epit-
axially grown thin films all show characteristics with in-
creasing diII'erential conductance for increasing bias volt-
age while the asymmetric background seen in the early ex-
periments seems to disappear with better samples.

In conclusion we have derived a mean-field theory for a
RVB state with spinless charge carriers and chargeless
spin carriers. We have shown that there exists a conden-
sate of singlet pairs consisting of two bosons, for a wide
range of parameters. The equations have been solved for
the simplest choice of the symmetry of the order parame-
ter.

During the completion of this work we became aware of
a similar work by Yoshioka, ' who solves the mean-field
equations for the half-filled case, and find the same result
[Eq. (25)]. The choice of symmetry of the condensate or-
der parameter is also discussed by Yoshioka and in accor-
dance with our findings the diA'erent mean-field solutions
for the half-filled case are not equivalent, the choice used
in the present work being the best. This issue and the lo-
cal gauge transformation invariance for the half-filled
case of the large-U Hubbard model in the bosonic repre-
sentation will be studied in a forthcoming publication.
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