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Calculated shallow-donor-level binding energies in GaAs-A1„Ga, „As quantum wells
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We numerically solve Schrodinger s equation for a single electron located in a GaAs-A1, Ga& „As
quantum well with a shallow Coulombic donor impurity either in the well or in the barrier, as a
function of well width, well depth, and impurity position. We calculate the binding energy of the
ground state and of the first two "s-like" excited states and also the binding energy of the lowest "p-
like" excited state. We compare our exact numerical results for the ground-state binding energy
with earlier variational calculations and show that they are nearly coincident with these calcula-
tions. We calculate the electronic charge density as a function of impurity position and show that
the asymmetry in the charge density peaks and then decreases as the impurity is taken from the
center of the well to the edge and then into the barrier.

I. INTRODUCTION

It is well known that when a shallow donor impurity is
placed in a bulk semiconductor, a bound electronic state
may form below the conduction band. This bound state
can be described as a superposition of the states in the
bottom of the band. ' When an electron is placed in a
quantum well, however, the band structure is broken into
a set of discrete subbands by the confinement in the z
direction (perpendicular to the well interfaces). In this
case the character of the resulting impurity bound state
changes. The potential no longer possesses, even approx-
imately, spherical symmetry. In addition, the binding en-
ergy, which is now defined as the energy one must supply
in order to free the electron for effective-mass-like motion
in the plane parallel to the well (that is, to place it in the
lowest subband of the well) is found to increase from the
bulk binding energy. The binding energy continues to in-
crease as the well is made narrower but peaks and turns
over for very narrow wells ( =50 A).

Photoluminescence studies and electronic Raman
scattering have recently been used to determine the ener-

gy levels of shallow (silicon) dopants in GaAs-
Al Ga& „As multiple-quantum-we11 structures. These
results have shown good agreement with variational cal-
culations of the energy levels of shallow donors with
hydrogeniclike trial wave functions. Experiment and cal-
culation have both examined the variation of binding en-

ergy with well width, well depth, and impurity position.
In this paper we present an exact numerical solution of

Schrodinger's equation for a single electron and a single
shallow Coulombic impurity in a GaAs-Al Ga& As
quantum well. This solution follows Vinter's treatment
of the impurity in a silicon metal-oxide-semiconductor
(MOS) structure. We compute both the energy spectrum
and the associated eigenfunctions as a function of well
width, well depth, and impurity position. We find that
our binding energies of the ground state are nearly coin-
cident with those of the variational calculations. We also
show that the charge distribution varies markedly with

impurity position and that for an impurity located far
(approximately two well widths) into the barrier the
charge distribution is very nearly symmetric about the
well center. One significant result of our exact numerical
calculation is that it substantiates the accuracy of the
simpler variational calculations for obtaining shallow-
donor ground-state energies in quantum wells.

II. DESCRIPTION OF THE CALCULATION

where Vo is the well depth (which is related to the alumi-
num concentration in the barrier), a is the well width, Z
is the impurity charge which we will henceforth take to
be +1 zo is the distance of the impurity from the center
of the well, ~ is the lattice dielectric constant, and m * is
the effective mass. We have thus made the standard
effective-mass approximation for the band structure,
which is known to be valid for GaAs. We use scaled
atomic units wherein A=e /2~=1, the unit of length is
the Bohr radius a*=~/m*e =98.7 A, and the unit of
energy is the e6'ective Rydberg W* =m *e~/2tc2 =5.8
meV.

We write H =Ho+H& where

Ho(z) =—82
, + V,e(tz~ —a/2),

z

a' 1a
R M

1

R Be

[g &+(z —z ) ]'r

In cylindrical coordinates with the z axis through the
impurity and normal to the well interface, our Hamiltoni-
an is

Z 2

H = 7 + V e(~z~ —a/2)—
2m' tc[R +(z —zo) ]'
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Solving the one-dimensional Schrodinger equation for Ho
we get the usual complete set of subband wave functions
Hog„=E„g„. We use this set to expand the total wave
function:

4'(R, g, z) =e' ~ g g„(z)f„(R),

where the azimuthal symmetry of the problem gives the
simple P dependence with m, the azimuthal quantum
number, an integer. We expand the radial functions
above in Bessel functions and integrate the resulting
differential .equation from the origin to a midpoint Ro
and from a suitably chosen "infinity" in to Ro. The
matching of the wave function at that point provides a
set of linear equations which depends upon the energy
and the boundary values of the components of the wave
function at zero and infinity. A determinantal condition
on the energy. is then obtained and the integration pro-
cedure is- iterated until a zero of the determinant is found.
The details of this procedure are well presented in
Vinter's paper and we will not repeat them here.

time. The physical assumptions of the model are (i) the
effective-mass approximation (as already noted); (ii) an as-
sumption that the dielectric mismatch between GaAs-
Al Ga& „As is negligible. We expect this to affect the
energies by considerably less than 1%; (iii) single elec-
tron, single impurity, single well with no overlap between
adjacent wells. The accuracy of our computation is limit-
ed by two factors. First, we can obviously only expand
the solution in a finite number of subbands. We can vary
the number of subbands, though, to check the accuracy
of any given choice. Second, we must cut off the integra-
tion procedure at some finite R,„. This cutoff effectively
sets the impurity potential to zero outside R,„. Again
we can vary R,„ to test the sensitivity of the results to
the cutoff. Generally, the deep-lying states are insensitive
to a choice of cutoR', but the states near the lowest sub-
band are more significantly affected. Thus, the percen-
tage error for weakly bound states can be appreciable.
For both the subband and integration cutoff the effect
will always be to underestimate the binding energies.
Hence, our quoted binding energies are lower bounds.

III. APPROXIMATIONS AND SOURCES
OF INACCURACY

Within the confines of the model we can achieve essen-
tially arbitrary accuracy given sufficient computation

IV. RESULTS
j

To facilitate comparison with experiment we present,
in addition to several plots described below, a table of
selected results (Table I). The principal division in the

TABLE I. Impurity binding energies. (a) shows binding energies for an impurity centered in the well with a varying well width
and two well depths, 2M' and 50% . (b) shows binding energies with varying impurity position, a fixed well depth of 55.67%*,and

0
three well widths, 100, 250, and 400 A. The number in parentheses following a datum represents the numerical uncertainty in the
final one or two digits of that datum, as described in the text. The uncertainties in- the excited states have not been estimated. All en-
ergies are in%'*.

State 25 A SO A
(a) Binding energies vs well width
100 A 150 A 200 A 300 A 400 A 600 A 800 A

VQ =25%* 1s
2$
3s
1p

2.180(0)
0.358
0.0846
0.430

2.270(0)
0.364
0.142
0.433

2.057(0)
0.351
0.139
0.429

1.845(0)
0.338
0.0742
0.421

1.810(0)
0.327
0.0679
0.413

1.543(11) 1.403(0)
0.310 0.297
0.0527 0.0499
0.396 . 0.376

1.218(0)
0.278
0.0459
0.353

1.1'i 3(54)
0.265
0.0435
0.331

VQ =50%* 1s
2$
3s
1p

2.S24(0)
0.378
0.0947
0.438

2.457(0)
0.375
0.0931
0.438

2.145(0)
0.357
0.0844
0.432

2.081(0)
0.342
0.0764
0.423

1.823(0)
0.330
0.0695
0.414

1.574(12)
0.312
0.0530
0.397

1.415(0)
0.298
0.0502
0.381

1.234(0)
0.280
0.0459
0.354

1.130(43)
0.274
0.0462
0.331

State zp =0 1
ZQ

(b) Binding energies vs impurity position
1 =3 —1 =3

ZQ ZQ Zp ZQ zp= Zp 2

a=100 A 1s
2$
3s
1p

2.156(0)
0.356
0.0937
0.432

2.103(20)
0.352
0.0840
0.429

1.939(41)
0.339
0.0818
0.422

1.697(38)
0.319
0.0748
0.411

1.464(20)
0.297
0.0633
0.398

1.157(4)
0.263
0.116
0.372

1.011(20)
0.238
0.109
0.347

0.7723{5)
0.174
0.090
0.271

a=250 A 1s
2$
3$

1p

1.688{0)
0.319
0.131
0.407

1.616(21)
0.315
0.130
0.399

1.408{4)
0.298
0.125
0.379

1 ~ 113(14) 0.854(6)
0.263 0.235
0.118 0.106
0.352 0.326

0.608(4)
0.198
0.093
0.282

0.500(3) .

0.175
0.084
0.248

0.497(1)
0.121
0.056
0.170

0a=400 A 1s
2$
3$
1p

1.417(0)
0.298
0.125
0.382

1.364(8)
0.298
0.126
0.372

1.203(4)
0.284
0.122
0.344

0.896(9)
0.245
0.111
0.309

0.634(1)
0.202
0.095
0.277

0.430(1)
0.164
0.079
0.228

0.346(0)
0.142
0.067
0.195

0.244(0)
0.095
0.033
0.116
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table is between binding energies versus well width, with
well depth fixed and the impurity centered in the well on
the one hand [Table I(a)], and binding energies versus im-
purity position, with well depth and well width fixed, on
the other hand [Table I(b)].

We also quote numerical uncertainties in Table I. The
number(s) in parentheses following the datum represent(s)
the uncertainty in the final digit(s) of that datum. Thus
1.318(43) is equivalent to 1.318+0.043. As described in
Sec. III, expanding the solution in a finite (as opposed to
infinite) number of subbands and cutting off the integra-
tion at a 6nite R „cause the principal uncertainty in the
numerical results. The quoted uncertainties represent the
difference between the given datum and the same datum
recalculated with one subband fewer or with R,„de-
creased by 25%, whichever difference is larger. %'e have
only quoted uncertainties for the ground-state binding
energy. Since the excited states are close to the free-
particle continuum it is difficult to determine the accura-
cy of the absolute size of the binding energy. Thus we
present these data with the caveat that only the trends
with impurity position or well width should be taken seri-
ously and that the absolute value of the binding energy
should be viewed with some caution.

Note that, in contrast to the excited states, the uncer-
tainty in the ground-state binding energy is never more
than 3% and is often substantially less.

We note that the azimuthal quantum number (m) for
an impurity in a well is not equivalent to the angular-
momentum quantum number (I) for a hydrogen atom.
Indeed, it is the quantum number for the z component of
angular momentum, just as m usually is in hydrogen no-
tation. The hydrogenic angular functions characterized
by l are Legendre polynomials (or spherical harmonics).
For the impurity in a well the angular functions charac-
terized by m are simply exp(imP)'s None. theless, many
authors in the literature use hydrogenic notation, 1s, 2s,
2p, etc., to denote the bound states of impurities in quan-
tum wells. Note, however, that if the letter (s,p, d, f, . . . )

is to signify the I quantum number, there is no prohibi-
tion in this case against a lp state (or ld, or lf, etc.).
Therefore, it is actually misleading to omit 1p in analogy
with the hydrogen atom. Physically this arises because
angular momentum is not conserved when a hydrogenic
atom is subjected to a z-dependent potential. The z com-
ponent of angular momentum, however, remains a good
quantum number. The physics is made more clear when
we present a simple perturbative calculation of a hydro-
genic impurity in a Uery wide quantum well. In the limit
of infinite well width the states are just the hydrogenic
impurity states. As the well walls move in from infinity,
states of difFerent n and I are mixed by the wall perturba-
tion. Mixture does not occur between states of difterent
m. Symmetry under inversion demands the existence of
one more quantum number, the parity. This is evidenced
by the fact that the perturbation does not mix all states of
diAering I, but only mixes states for which hl is even.
(Contrast this with the Stark effect where, since the per-
turbation is odd in z, only b, l odd mixing occurs. )

Figure 1 presents the results of such a perturbation cal-
culation where we have subjected the m=0, n= 1, 2, and
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FIG. 1. Three-dimensional hydrogenic energy levels subject
to the perturbation of a wide quantum well, as a function of well
width. The well depth is 25% . The levels shown all have
m =O. At the right (wide well limit) 3s, 3p, and 3d are degen-
erate as are 2s and 2p . At the left the n=2 levels are still de-
generate but the n=3 levels have been split as shown. The ket
notation in the figure is the standard n, I, m hydrogen-state nota-
tion.

3 states of a hydrogenic impurity to a wall perturbation.
The principal result is that, for a well depth of 25%*, the
splitting of the n=3 level becomes comparable to the
spacing between the n =2 and n =3 levels for a well width

0
of about 5500 A. The n =2 level splits a compar-
able amount for a well width around 2000 A.

In our notation, the leading number designates the
principal quantum number, the energy, and the letter
designates the m quantum number, which corresponds to
the angular exponential and to the order of the Bessel
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FIG. 2. Impurity binding energies as a function of well
width. The top curve represents both our ground-state binding
energies and those of the variationa1 calculations (Ref. 4); the
remaining curves, from top to bottom, are from our calculations
for the binding energies of the 1p, 2s, and 3s states, respectively.
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function in the radial wave function. The point of our
analysis here is that these states cannot be identified as
specific linear combinations of hydrogenic states, with
the exception of the 1s state, which remains unchanged
down to fairly small well sizes. The only thing one can
say is that a state of given m is a mixture of hydrogenic
states of the same m, and that parity is conserved.
Hence, the use of hydrogenic notation to denote impuri-
ties in quantum wells is not only misleading it is wrong.

In Fig. 2 we plot the impurity-centered binding energy
of the ground state and first three excited states
(lp, 2s, 3s) as a function of well width. Note that the lp
state is uniformly more tightly bound than the 2s state,
and so represents the first excited state. The well depth is
25%'. Assuming that the conduction-band discontinuity
is 55% of the band gap, this corresponds to an aluminum

concentration of x=0.12 in the barrier. Upon plotting
the variational calculations of Greene and Bajaj for the
same well depth we discover that the results are coin-
cident to within the limits of numerical accuracy. Thus,
the top curve represents both our results and those of the
variational calculations, as marked.

Figure 3 illustrates the variation of binding energies
with impurity position in the well for various well widths.
(Our choice of the rather odd well depth of 55.67K* was
made to facilitate comparison with some of the variation-
al results presented in Ref. 7.) The binding energy of the
ground state [Fig. 3(a)] falls off' quite rapidly from its
well-centered maximum. The curves then Aatten out as
the impurity is moved into the barrier. The binding ener-

gy remains finite for as large a distance between impurity
and well center as we computed (two well widths). In
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FIG. 3. Impurity binding energies as a function of impurity position, for various well widths. (a) shows the variation of the
ground-state binding energy with impurity position for (from top to bottom) 100, 250, and 400 A. (b) shows the binding energies of
the 2s and 3s states. The top three curves are the 2s energies for (from top to bottom) 100, 250, and 400 A. The bottom three curves
are the 3s energies for the same well widths in the same order. (c) shows the variation of the 1p energies for the same three well
widths which again occur in the same order. The edge of the well is indicated by an arrow in each plot. Note that the electron
remains bound when the impurity is inside the barrier for as far in as we chose to put it.
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Fig. 2(b) we see again that the fractional change in the
excited-state binding energies with changing impurity po-
sition is less than that of the ground-state binding ener-
gies; just as in the case of varying well width (Fig. 2).

In Fig. 3(c) we plot the binding energies of the 1p
states, for various well widths, as a function of impurity
position. These curves are quite similar in form to the ex-

cited s states and once again they are uniformly more
tightly bound than the 2s state (for the same well width
and impurity position).

One conclusion we can draw from the variation of im-
purity binding energy with impurity position concerns
the case of quantum wells doped sparsely but homogene-
ously through a range of zo values with hydrogenic im-
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FIG. 4. Contour plot of the electron charge density bound to
the impurity in the lowest state with the impurity: (a) at the
center of the well, (b) halfway from the well center to the well
wall, and (c) one full well width from the center of the well.
Contours are logarithmic with two contours per decade. Well
width is 400 A, depth is 55.67K*.

FICs. 5. Contour plots of the various typical excited states.
(a) shows a 2s state, (b) shows a 3s state, and (c) shows a 1p state.
For all three the well width is 400 A, the depth is 55.67%*, and

0
the impurity is located in the barrier, 400 A from the center of
the well.
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purities. Such doping trivially creates an effective band
of energies whose energy width is simply given by the
difference between the binding energies of an impurity at
the center of the well (or wherever doping begins) and
one at the outer edge of the homogeneously doped region.
To be concrete, if we dope a 400-A well homogeneously
with silicon impurities (such as we are considering here)
from the center of the well out to 800 A from the center
of the well (600 A into the barrier), then the range of im-
purity positions spanned by the abscissa in Fig. 3(a) is oc-
cupied by impurities. (The density with which the impur-
ities cover this range depends, of course, on the total
number of dopants which we use. ) Thus, all the corre-
sponding energies (on the 400-A curve) are available
single-electron energies. The bandwidth in this case is
given approximately by 1.35%" (well-centered impurity)
minus 0.25%* (outer-edge energy), or 1.137*=6.4 meV,
which can be taken as an effective impurity bandwidth
arising from homogeneous doping.

The variation of the probability densities ~% (R,g, z)1
with increasing impurity distance from the well center
(and, hence, decreasing binding energy) is shown in Fig.
4. When the impurity is centered in the well [Fig. 4(a)]
the probability density is naturally symmetric about the
well center. When the impurity is halfway from the
center of the well to the well wall [Fig. 4(b)], the probabil-
ity density is similarly displaced, although the wave func-
tion suffers some odd collisional effects with the wall.
The radial confinement also decreases in this case due to
the decreased binding energy. In Fig. 4(c) the impurity is
one full well width from the center of the well (i.e., one-
half of a well width into the barrier). Here we notice that
the electron has resumed its symmetry with respect to the
well center, while extending still further in the radial
direction. The symmetry of the electronic density distri-
bution for an impurity outside the well to one side is easi-
ly explained. The overall strength of the shallow impuri-
ty is small compared with the depth of the well. Typical
shallow impurities in bulk semiconductors have binding
energies of a few meV to a few tens of meV. Well depths
(conduction-band discontinuities), on the other hand, are
of the order of hundreds of meV. Since the height of the
well barrier is large compared with the depth of the im-
purity potential, the shape of the electronic density distri-
bution is determined largely by the effective potential
within the mell. In particular, the gradient of the effective
potential in the well decreases as the impurity moves
away from the well. Consequently, the asymmetry of the
density distribution decreases since the "Hoor" of the well
is becoming less tilted.

In Figs. 5(a), 5(b), and 5(c), we present contour plots
for typical excited states: 2s, 3s, and 1p, respectively.
The radial distribution of the s states acquires an addi-
tional lobe for each higher principal quantum level. The
1p state has a single density maximum. This maximum is
displaced from the symmetry axis and, in three dimen-
sions, the surfaces of constant density are toroidal.

Finally, in Fig. 6 we present contour plots for scatter-
ing solutions to Schrodinger's equation. Figure 6(a) is a
contour plot for an electron when no impurity is present.
Thus the solution displayed is just a plane wave associat-
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FICx. 6. Contour plots of scattering solutions to
Schrodinger's equation. The well width is 400 A and the we11

depth is 55.67% . (a) shows a free plane wave in the absence of
the impurity. (b) sho~s a scattering solution when the impurity
is at the center of the well. The electronic energy is 1%'*.

ed with the lowest subband expression in cylindrical
coordinates. We present this for comparison with Fig.
6(b), which is a scattering solution with impurity present.
The electronic energy here is 1%, which places it be-
tween the first and second subbands. For any energy
above the lowest subband the electron can undergo free
effective-mass-like transport in the plane parallel to the
well interface. Thus asymptotically, the given solution is
simply a phase-shifted cylindrical-coordinate equivalent
of a plane-wave solution. The phase shift of the wave
function inward toward the attractive scatterer can be
seen by comparing Figs. 6(a) and 6(b).

V. CONCLUSION

We have solved Schrodinger's equation for the
Coulombic electron bound to and scattering from a single
impurity embedded in or adjacent to an Al„Ga, „As-
CxaAs quantum well. We have found that the energy
spectrum of the lowest state agrees well with earlier vari-
ational calculations of the spectrum. This agreement ex-
ists for both the magnitude of the binding energies as well
as for the trends of those energies with well width and
impurity position. We have presented contour plots of
the electron densities both for bound states and for
scattering states. We have seen that the electron remains
bound to the impurity, albeit more extended in the radial
direction, even when the impurity is placed in the barrier
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of the well. Further, we have shown that the electronic
density reaches a maximum asymmetry as the impurity is
moved from the center of the well toward the edge, and
returns to a symmetric shape as the impurity moves fur-
ther into the barrier. This eftect is seen to result from the
large size of the well depth in comparison to the overall
strength of the impurity. Finally, we have presented con-
tour plots of characteristic excited states and scattering
states. For excited states we have seen an additional node
of the wave function for each increasing level of excita-
tion. For scattering states we have seen the harmonic
variation of the radial wave function and we have noticed
the inward phase shift of the wave function in compar-
ison with the plane-wave solution in cylindrical coordi-
nates in the absence of any impurity.
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