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Ground-state and low-lying excitations of the Heisenberg antiferromagnet
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Monte Carlo methods are used to determine the exact ground-state energy of the spin-2
Heisenberg antiferromagnet on two-dimensional square periodic lattices up to size 32X32. The
extrapolated ground-state energy for infinite lattice size is —0.33459~0.00005. In addition,
splittings between the ground state and the lowest spin-1 and -2 excitations are determined as a
function of lattice size. The scaling of both the ground-state energy and the gap are in agreement
with that predicted by spin-wave theory over a wide range of lattice sizes. In particular, numeri-
cal results demonstrate convincingly the lack of a gap for infinite systems, and that the gap for
finite systems scales with the inverse volume of the lattice. Finally, we present results for the
ground-state spin-correlation function. Our approximate results for larger lattices indicate that
the staggered magnetization is 0.34 0.01 in units where the saturated value is 2 ~

I. INTRODUCTION

The two-dimensional Heisenberg antiferromagnet is the
subject of much current theoretical interest, and many
analytical and numerical studies have examined its low-
temperature properties. We have employed a method
closely related to Green's-function Monte Carlo'
(GFMC) to determine the low-energy states of this Ham-
iltonian. GFMC and related methods have proven to be
very successful in determining ground-state properties of a
wide variety of quantum many-body systems, including
solid and liquid helium, one-dimensional Hubbard mod-
els, and atomic and molecular systems.

We have used GFMC to study the ground state on rela-
tively large lattices, obtaining the exact ground-state ener-

gy of lattices from size 4x 4 to 32x 32. In addition to this
S 0 ground state, the lowest-energy spin-1 and -2 excita-
tions can be determined by calculating the ground states
in the S, 1 and 2 sectors. These energies are obtained as
a function of lattice size in order to compare with scaling
predictions of spin wave and other analytic theories.

Finally, we present results for the spin-correlation func-
tion for a variety of lattice sizes. Results for the spin-
correlation function are not exact, as they are based upon
a linear extrapolation from variational results. The neces-
sity and accuracy of this extrapolation are discussed
below. Our results, however, do indicate the possibility
that larger lattices are necessary for an accurate extrapo-
lation to infinite volume, and that the staggered magneti-
zation is somewhat larger than previously believed.

II. METHOD

Green's-function Monte Carlo methods solve for the
ground state by iterating the equation

] - [% TF(H)% T ]4 T% "j .

F(H) can be any function of the Hamiltonian which pro-
jects out the ground state, +T is a trial or importance
function which is used to guide the random walk, and + is

the true ground-state wave function. For the Heisenberg
antiferromagnet, H-g&;~&s; s~, with the sum running
over all nearest-neighbor pairs.

The wave function for the Heisenberg antiferromagnet
may be written in the basis of definite third components of
spin on each lattice site: +=QA[cr,']Sg[cr,'], where A
represents the amplitude for a particular spin con-
figuration g, and the sum runs over all possible spin
configurations. For the ground state, only terms with an
equal number of up and down spins contribute, and
Marshall has shown that the amplitude A has a positive
or negative sign, respectively, if there are an even or odd
number of up spins on one of the sublattices.

It is trivial to show that if we absorb this sign into the
definition of the basis g, the operator —(a;"af+oga J)
has purely positive off-diagonal matrix elements between
different states on the lattice. It is possible to absorb the
signs in this way only for a bipartite lattice, and here we
limit ourselves to square lattices. A variety of evolution
operators F(H) project out the ground state, including
F(H) -I —tH for a small time step t. This choice of F
avoids any time step error, since the Hamiltonian enters
only linearly. We have chosen to use an approximate evo-
lution operator which has a finite, but small, time-step er-
ror

F(H) =S

+exp�(

Ars; s, ), —
(i,j &

where S indicates a symmetrization over all orderings of
noncommuting spin pairs. This propagator allows one to
perform an explicit sum over all nearest-neighbor pairs,
which may limit the statistical errors associated with the
branching of the population. In addition, it may be useful
for "forward walking" or "shadow" wave functions, which
can, in principle, be used to obtain exact results for all ex-
pectation values. This evolution operator differs from the
true exp( Hhr) by terms of third —order in hr, which
produce very small finite time-step errors, as is demon-
strated in Sec. III.

We begin with a set of spin configurations drawn from
the square of a trial wave function. We then iterate Eq.
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(1), diagonalizing the operator s; sj and sampling the
new spin configuration s' from the original configuration
s and the importance transformed kernel O'T(s')
xexp( —Ass; sl)+T '(s). Weights are introduced as re-
quired, and branching techniques employed to retain a
finite variance for large total propagation times i. The
procedure is repeated as necessary to ensure convergence
to the ground state. The energy can be obtained from a
mixed estimate E
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or a growth estimate Eg„

exp( h, rEs, )—&O'"+'
I
+T&/&+" I +T&. (4)

40 (32) (16)

0.0 2.0

In order to obtain accurate results, it is important to
choose a good trial function @T. In addition to its direct
value in minimizing the variance of the mixed estimate, an
accurate trial function will greatly reduce the population
fiuctuations. We use the wave function given by Huse and
Elser in Ref. 7:

FIG. l. Ground-state energy vs (10/L) for LxL lattices.
The line is a linear fit to the results of the numerical simulations,
which are indicated by points with error bars. The inset shows
results on small lattices, larger lattices are also indicated in the
main figure.

A [cr,'] +exp[ —u (r J )s,'sf],i(j
where u(r;1) =u~ for ij nearest neighbors, and k/rl.
otherwise. The variational parameters are u~, k, and I.
This wave function has the advantage of simplicity and
accuracy, yielding a variational ground-state energy of—0.3319(1). A disadvantage of this trial function, how-
ever, is that it is not an eigenstate of the total spin S. In
particular, the expectation value of o,"oj"+o(of shows
long-range order, but cr,'o1' does not. This property may
limit the accuracy of results for quantities other than the
energy, especially for the spin-correlation function.

Ground-state expectation values other than the energy
are extrapolated from the variational and mixed estimates
(+IOI%)=2(~T I 0 I%& —(% T I 0 I+T&. This extrapo-
lation is accurate to first order in the difference between
the trial and exact wave functions. Other techniques, such
as forward walking, are available to estimate these quanti-
ties, but are subject to a comparatively large statistical er-
ror.

III. RESULTS

Figure 1 plots the results obtained for the ground-state
energy per bond for lattices from size 4x 4 to 32x 32. It is
possible to determine the 4 x 4 ground-state energy
without resorting to stochastic algorithms, and we have
used the eigenvalue ( —0.35089) (Refs. 8 and 9) to check
our method. In Fig. 1, the energies are plotted versus
(10/L), where L is the length of one side of the lattice.
Spin-wave theories (and related arguments' ) predict a
finite-size scaling of this type.

Our results for the ground-state energy confirm this
scaling, with no statistically significant deviations from
32x 32 down to 4x4 lattices, an extremely small system.
The straight line in Fig. j. is a fit to all of the energies of
the form E(L) E(ee)+c/L, with the infinite volume
limit E(~) being —0.334 59, and the linear term

c —1.043. This value of c corresponds to a spin-wave
velocity of 1.45 according to the analysis of Neuberger
and Ziman, ' with an uncertainty of approximately 7%.

In order to determine the errors associated with these
results, we must examine the finite time-step error as well
as the statistical error. The latter alone is indicated in
Fig. 1, but the time-step error inay be examined by using
larger time steps hi. For the 32x 32 lattice, the resulting
ground-state energies are shown in Table I. The leading
error in the kernel is of order Ar, corresponding to an er-
ror of order Ar in the ground-state energy. Equating our
propagator to the exponential of an approximate Hamil-
tonian and evaluating the anticommutators in the propa-
gator to third order in hr, one obtains

H -H+ (&i'/48) (12&s; sj &NN
—8&s;. si)D —4&s;. sj &L, ) .

TABLE I. Time-step dependence.

0.05
0.10
0.20

—0.334 59 (2)
—0.33458(3)
—0.334 34(8)

Eg,
—0.334 90(2)
—0.335 80(3)
—0.338 69 (11)

E„+(0—0)
—0.33457(3)
—0.33448(5)
—0.33341(20)

The first term in angular brackets is the nearest-neighbor
correlation, and D and L stand for diagonal and linear
sites connected by two links, respectively.

Table I presents the growth and mixed estimates for the
ground-state energy on a 32x32 lattice as a function of
the time step Ar. The finite time-step error may be exam-
ined by looking at the difference between the mixed esti-
mate and the sum of the growth energy plus a perturba-
tive estimate of (H —H). Measuring the spin-correlation
function, we have calculated a perturbative contribution
of 0.00033(1) for Ar 0.05. Adding this result to the
growth estimate produces the best growth approximation
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to the energy, given in the last column of Table I.
A more accurate extrapolation can be obtained from

the mixed estimate alone. It is apparent from the first
column of Table I that the statistical errors are larger
than the finite time-step errors in this simulation. Com-
bining the uncertainty of the extrapolation with the sta-
tistical errors, we obtain E(ee) —0.334S9~0.00005.
Recent resonating-valence-bond (RVB) variational calcu-
lations" give an upper bound of —0.3344 for trial func-
tions which incorporate long-range bonds.

The results for the energy gap as a function of lattice
size are shown in Fig. 2. The total energy difference be-
tween the lowest spin-1 or spin-2 state and the ground
state is expected to scale inversely with the lattice size L .
Our results support this conclusion; in particular, the fact
that there is no gap for infinite lattices. The scaling does
not seem to extend to very small lattice sizes, however, as
the spin-1 4X4 state shows significant deviations from
scaling. The gaps obtained in these simulations range
from 0 to 0.6 while the total energies range from —11 to
approximately —170.

Finally, we present results for the spin-correlation func-
tion in Figs. 3 and 4. Figure 3 shows the variational and
GFMC results for the 16X16 and 32X 32 lattices, demon-
strating the reduction in correlation obtained with
GFMC. The diagonal and on-axis correlations at L/2 are
nearly identical on the 32X32 lattice. Figure 4 recasts
these results as a function of 1/L; the correlation functions
at L/2 for a variety of lattice sizes are indicated by open
symbols and the results on the 32&32 lattice by closed
symbols. The results on the 32X32 lattice are in good
agreement with the predicted' ' linear extrapolation in
1/L. The results for the correlation at L/2 as a function
of lattice size seem to imply that the scaling region is not
reached until L —16, however. This is consistent with a
conjecture by Huse' that lattices with more than 100
sites are necessary for accurate extrapolations.

Our results for the diagonal (L/2, L/2) correlation on
smaller (8 x 8 and 12 & 12) lattices appear to be statistical-
ly consistent with those of Reger and Young. ' However,
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FIG. 3. The staggered spin-correlation function
—1

I+ ~ Is;. sJ. Both variational and extrapolated GFMC re-
sults &see text) are shown for two lattice sizes. Unless otherwise
indicated, the displacement direction is along the x or y axis.

our results for larger lattices imply an infinite volume lim-
it of 0.117(5) for the spin-correlation function at large
distance, while their extrapolation yields approximately
0.09. The difference may result from the fact that we
have disregarded any results on small lattices (L ~ 8) in
our extrapolation.

This value of the long-range correlation implies a stag-
gered magnetization of 0.34(l), somewhat larger than
previous numerical work' and results of spin-wave theory
and other analytical estimates, ' which predict a value in
the range of 0.30 to 0.31. Some of this discrepancy could
be due to our extrapolation method, but the best RBV
variational results" also predict a higher magnetization,
-0.33. One could hope to obtain more reliable results for
the correlation function by employing forward-walking
techniques, which attempt to evaluate an expectation
value through
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FIG. 2. The energy gap as a function of 1/L for spin-1 and
spin-2 states. The open squares and solid circles give the simula-
tion results for the spin-1 and spin-2 excitation energies, respec-
tively. The solid lines are linear fits to the L 6 points.
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FIG. 4. The staggered spin-correlation function vs the inverse
of the displacement along one axis. Open symbols indicate the
results at a displacement of L/2 for various L, while solid sym-
bols present results for the 32x 32 lattice.
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Experiments with small lattices indicate that the statisti-
cal errors are quite large, however.

In summary, we have been able to obtain very accurate
energy expectation values for the low-lying states of the
Heisenberg antiferromagnet on large lattices. These re-
sults oft'er dramatic evidence of the accuracy of the scal-
ing predictions of spin-wave theories and other analytic
theories. Our results also suggest the necessity of looking
at large lattice sizes in order to accurately determine the
infinite volume limit of the spin-correlation function.

Note added in proof. Manousakis (private communica-
tion) has recently obtained a variational wave function
with more accurate long-range correlations, which should
allow more reliable determinations of the staggered mag-
netization.
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