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The effect of carrier-impurity interactions on luminescence- and excitation-spectroscopy line

shapes and the Landau-level spectral density in a strong quantizing magnetic field is examined in
modulation-doped semiconductor quantum wells. The line-shape function is obtained by summing
the "ladder diagrams, " extending our previous "one-rung" approximation. Apart from yielding a
line broadening, the carrier-impurity interaction is found to induce off-diagonal transitions (ODT)
(n ~n', n'Wn) between the Landau levels in the conduction and valence bands, breaking the usual
n ~n selection rule. Here the first and second integers indicate the Landau quantum numbers in

the conduction (valence) and valence (conduction) bands, respectively, for luminescence (excitation),
for example, in an n-type system. The Landau-level spectral density (essential for obtaining the
line-shape functions) is investigated by a self-consistent Born approximation which includes inter-
Landau-level impurity scattering. The theory is applied to an n-type strained In Ga& As/GaAs

quantum well, where optical transitions arise between the conduction band and the strain-split in-

plane "light-hole" band. For excitation spectra, the theory predicts that ODT introduce lines below
the usual nF~n+ threshold transition as well as satellite lines between the usual main n —+n lines
above the threshold (i.e., n ~ nF). Here nF is the quantum number of the lowest-lying empty or par-
tially filled conduction-band Landau level. The luminescence line shape is dominated by ODT
1,2, . . .—+0 (in addition to the main 0~0 transition) at low temperatures and by the usual n —+n

transitions at high temperatures. The accuracy of the "one-rung" approximation is assessed.

I. INTRODUCTION

Excitation and luminescence spectra yield rich infor-
mation about electronic structure, doping configurations,
and scattering dynamics in doped semiconductor
quantum-well structures. ' It was shown recently that
Coulomb interactions between the carriers and ionized
impurities (i.e., donors or acceptors in the doping layers)
explain the low-temperature photoluminescence and
magnetoluminescence line shapes in high-quality
modulation-doped single-quantum-well In Ga, „As/
GaAs samples with negligible fluctuations in the well
width and a small inhomogeneous broadening. ' A
"single-rung" approximation was employed for the self-
energy part of the photon propagators (responsible for
the luminescence line shape). Recently Bauer and Ando
calculated luminescence line shapes in
GaAs/Al Ga& As quantum wells, using a ladder ap-
proximation. While the ladder approximation is in prin-
ciple superior to the single-rung approximation, in the
absence of an external magnetic field it was necessary to
assume 5-function potentials for carrier-impurity interac-
tions in order to sum the ladder series. On the other
hand, the one-rung approximation is more convenient in
the sense that rea1istic potentials can be treated. ' For
magnetoluminescence, Bauer and Ando summed the
ladder series for arbitrary interaction potentials in the ex-
treme quantum limit (i.e. , with only the ground Landau
level occupied) at zero temperature.

The purpose of this paper is threefold. First, we estab-

lish a formalism for the line shape of magnetolumines-
cence by summing the ladder diagram exactly for arbi-
trary carrier-impurity potentials with an arbitrary
Landau-level filling at finite temperatures in strong mag-
netic fields. Our results yield a new class of optical tran-
sitions which are absent in the extreme quantum limit.
Second, we use this result to calculate the effect of
carrier-impurity interactions on the excitation spectra.
In this paper the excitation line shape is defined as the
photon-absorption rate as a function of the photon ener-

gy, with the photons being absorbed as a result of creat-
ing electron-hole pairs. We predict some new features
which are induced by carrier-impurity interactions and
propose an experimental verification of these effects.
Third, we assess the accuracy of the one-rung approxima-
tion as compared to the ladder approximation. We find
that the one-rung approximation is fairly accurate for
both luminescence and excitation spectra. We also calcu-
late the Landau-level spectral broadening and tailing
(essential for obtaining the line-shape functions) by em-
ploying a self-consistent Born approximation which in-
cludes inter-Landau-level impurity scattering.

In our model, optical transitions occur between the
conduction band (assumed to be degenerate with
n-type-doping and with only the ground sublevel popu-
lated) and in-plane "light-hole" (i.e. , g, +—', ) ) band. The
in-plane "heavy-hole" (i.e., g, +—,

'
) band is assumed to be

far away from the band edge due to biaxial strain arising
from lattice mismatch and is not considered.

In a strong magnetic field 8, the carriers are quantized
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FIG. 1. Solid and dashed arrows connecting electron and
hole Landau levels (horizontal lines) indicate DT and ODT for
luminescence (directed downward) and excitation (directed up-
ward). The Fermi level is at the electron level n =1, which is
half filled.

into several discrete low-lying Landau orbits (n =0, 1,
. . . ). As a result, various interband optical transitions
and their mechanisms can be more conveniently
identified and investigated than in the continuum situa-
tion (i.e., in the absence of the field). For example, Lyo,
Jones, and Klem recently demonstrated the existence of
the impurity-induced line-shifting and -broadening mech-
anism (i.e., indirect processes) proposed for photo-
luminescence phenomena' by presenting evidence of
breaking of the usual selection rule for magnetolumines-
cence: They showed, in an n-type strained
In Ga, „As/GaAs quantum well (where only in-plane
light holes are present due to strain-induced
heavy —light-hole splitting), that the off-diagonal transi-
tions (ODT) between the low-lying Landau levels
n =1,2, . . . in the conduction band and the ground level
n =0 in the valence band give (together with the main
0~0 transition) major contributions to the magneto-
luminescence line shape at low temperatures. At high
temperatures, the line shape is dominated by the usual
direct (i.e., n~n) transitions (DT). This temperature-
dependent crossover arises from the fact that at a
su%ciently high magnetic field all the holes are in the
ground level at low temperatures (and at low laser
power}, while higher levels are populated at high temper-
atures.

ODT occur through higher-order processes: For ex-
ample, the 1~0 transition, illustrated by a dashed arrow
pointed downward on the left side in Fig. 1, utilizes the
fact that the initial electron level n = 1 (hole ground level
n =0) is admixed with the electron ground level n =0
(hole level n =1) through impurity-electron (hole) matrix
element. As a result, the initial electron (hole) state has a
small component which overlaps with the initial hole
(electron) state, yielding ODT. These processes are
schematically illustrated in Fig. 2. Electron-hole recom-
bination processes representing ODT and DT are illus-
trated in Fig. 1 by dashed and solid arrows pointed down-
ward, respectively. In this paper we assume that the first

~
initial electron

0

virtual
intermediate
state

0
~ initial hole

~ virtual intermediate state

FIG. 2. Schematic illustration of ODT arising from the one-
rung correction. In channel I {II), the initial electron (hole) is
admixed, through electron (hole)-impurity scattering denoted by
a solid (empty) circle to an intermediate state which has a full
overlap with the initial hole (electron) state. The vertical ar-
rows with wiggly curves attached denote coupling with the pho-
ton field and the broken arrow the resonant photons.

electron Landau level (n, =1}is half filled at zero tem-
perature for illustrations and applications. The simple
one-step-admixing picture for ODT corresponds to a
one-rung approximation. Multilevel-admixing efFects
are considered by employing a ladder approximation.

Also, photons with energies corresponding to ODT are
emitted in DT processes. In the 0~0 transition [Fig.
3(a)], for example, a majority of the resonant photons
have the energy corresponding to the energy di6'erence
between the ground-state conduction- and valence-band
Landau levels, because the spectral densities have pri-
mary peaks at the ground levels. However, the spectral
density of the ground electron level (n, =0) has smaller
but nonvanishing evanescent peaks at neighboring levels
as is illustrated in Fig. 3(a). Of particular interest in the
example in Fig. 3(a} is the secondary peak at n, =1 which
allows emission of photons (indicated by a downward
dashed line) with the energy corresponding to the 1~0
transition. This kind of process arising from spectral-
density tailing efFects will also be defined as ODT and will
be discussed in more detail later. ODT originate in a
similar way in excitation spectroscopy.

We find only an insignificant difFerence between the re-
sults of the ladder and one-rung approximations for both
luminescence and excitation spectra. For luminescence
spectra, we obtain the behavior consistent with the data
explained above. For excitation spectra, our result pre-
dicts new ODT-induced lines below the threshold transi-
tions (corresponding to nF~nz transitions) and satellite
lines (also induced by ODT) between the main n~n
lines above the threshold. Here nz denotes the lowest-
lying empty or partially empty conduction-band Landau
level. Excitation processes corresponding to ODT and
DT are illustrated in Fig. 1 by dashed and solid arrows
pointed upward, respectively. The 1~1 transition is the
usual excitation threshold.
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where q =(ql) /2, V is the q Fourier component of the
impurity potential for a band, q the wave-vector transfer
and L„"(x) is the associated Laguerre polynomial. The
quantity n & (n& ) denotes the lesser (greater) of n and
n' (=0, 1, . . . ) and b, n =n& n—&. In (3a) V is given by

2&Ze s~

X(4 (z;)+(E —1)[@ (z, )

—[F,(q)/I'„(q)]@q(z; ) I ),
(3b)

FIG. 3. Schematic illustration of ODT. In {a) and (b), elec-
tron and hole levels are coupled via 0~0 and 1~1 DT by the
photon field (solid vertical arrows with wiggly curves attached).
Shaded regions denote carrier population. 1~0 photons
(dashed arrows) are emitted owing to impurity-induced tailing
of the spectral densities p,o and p„ in (a) and (b), respectively.
The mechanism in (c) is the same as that given in Fig. 2. II~ =exp( —

q )[L„(q )] D(eF ), (3c)

where e = I+sF„(q)q ', s, = —1 for electrons, and
s, =1 for holes. The quantities ~, Ze, and s =2me H /K
denote the dielectric constant, ionic charge, and the
screening constant in the random-phase approximation,
respectively. The quantity II is given by

II. FORMALISM

The line-shape function for luminescence is given by a
dipole-dipole correlation function given in Ref. 1, which
yields apart from a multiplicative constant

+(co)=ge(~)
X Re —p co — p

where D (e~) is the density of states of the majority car-
riers at the Fermi energy. The form factor is given by

F &(q)= I JP (z) Pii(z') exp( —q~z —z'~)dz dz' (3d)

and accounts for the finite extent of the wave function in
the growth (z) direction. Here P (z) is the confinement
wave function. Finally, the quantity @ (z, ) in (3b) is
given by

Xg & n
~ [L ( g i 0, co g+ i 0——)

nn'

@ (z; ) = J [gb (z)] exp( —
q fz —z, /

)dz, (3e)

L( g+ i 0—, co g+ i 0 ) j ~
n —' )d g

where g= I/(2+i ), l=(Pic/eB)'~ is the classical mag-
netic length, 6(co) the unit-step function, co the photon
energy minus the renormalized band gap, p, (p, ) the
chemical potential for electrons (holes) and
f(x)=1/[exp(x)+1]. The state vectors ~n ) represent
the harmonic part (normalized) of the Landau wave func-
tions in an asymmetric gauge and Re denotes the real
part. The excitation line shape is obtained from (1) by re-
placing the product of the Fermi functions by 1 —f(ro—

g
—p, ). The external-field vertex part L —=L (g

+iO, co g+iO) in (1) is g—iven in a ladder approximation
shown in Fig. 4 by

where z,- is the impurity position. The quantity in the
curly brackets of (3b) vanishes for electrons (a=c). For
holes (a =u ), it is small when electrons and holes have
similar density distributions (corresponding to a well-
confined situation) vanishing in the particle-in-a-box lim-
it.

+ ~ ~ ~

2 —=8—+8—U"8-+8—U"8—U"8-+ (2)

The diagrammatic rules for carriers in quantizing mag-
netic fields are established in Ref. 4. Each rung in Fig. 4
is proportional to the number of impurities %z and the
product of electron-impurity and hole-impurity poten-
tials averaged over the impurity distribution [denoted by
angular brackets in (3a)]:

FIG. 4. Ladder diagrams contributing to luminescence and
excitation. Directed solid lines denote electron (left side) and
hole (right side) propagators and the wiggly lines the external
photon propagators. The solid and empty circles indicate
electron-impurity and hole-impurity interactions. The crosses
represent a single-impurity averaging.
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&n ~B
—~n'& =5„„G,„(g+iO)G,„(co g—+iO),

where 5„„is Kronecker's delta,

G„+iO= 1

g —e „—S«(g+iO)
—=R „(g)+iI „(g),

(4)

e „=(n+—,')enrico and co~=eB/(m*c). The spin splitting
is ignored. Here m, , is the efFective mass of electrons
and holes, S „ the self-energy part, and R „(I„) the
real (imaginary) part of the Green's function.

The external vertex function (2) is summed, yielding

I.—=(1—B*U") 'B* (6)

where the quantity 1 inside the parentheses indicates an
I

Each rung in Fig. 4 is also accompanied by a pair of
electron-hole propagators:

identity matrix and 8* and U" are square matrices
defined in (4) and (3a), respectively. The size of the ma-
trices can be chosen to be somewhat larger than the num-
ber of occupied levels for the luminescence problem. For
photoexcitation, it equals the number of levels participat-
ing in the transitions in a given photon-energy range. An
arbitrary numerical accuracy can be achieved by increas-
ing the size of the matrices. The finite complex matrix 1—B*U'" in the denominator of (6) is readily inverted.
The final result is then given by (1) and Eqs. (3)—(6).

The present result constitutes an extension (as well as a
more complete analysis) of our previous single-rung ap-
proximation for multilevel systems to include the ladder
sum. A single-rung approximation corresponds to ex-
panding

(1 B+Ucv) —i l+B UcU

which inserted in (6) and (1) yields

+(~)=2ge(~)I f(g p„)f—(co g p, )— —

g 1„„(g)1,„(~—g)
n

+Qg 2U„" [R,„(co g)R„„—(g)I, (co g)I„—(g)+I,„(co—g)R„„(g)R, (co—g)I„(g)] dg . (8)

The functions R „and I „are defined in (5). The DT
contribution arises mainly from the first term in the large
parentheses in (8), while ODT comes from the same term
as well as from the second term in the square brackets
therein.

III. GREEN'S FUNCTION AND THE SPECTRAL
DENSITY

where

S „(g iO)= ,'(—g e„—+5«—+i+A „),
A „(g)=(r„„)—(g —e „—5 „)2,

and the spectral shift

(r„)'
5 „(g)=—,'g'

m e'am

(9c)

(9d)

with (I „)=4(n ~U ~m ). In (9d), the prime on the
summation symbol means excluding the diagonal term

In the formalism presented in the previous section, the
only undefined quantity is the self-energy part S „(gkiO)
of the Green s function G „(g+iO). This quantity is ob-
tained in the high-field limit by a self-consistent Born ap-
proximation which includes inter-Landau-level scatter-
ing. Contributions to the intensity come from the energy
domain of g and co —g, where the density of states is non-
vanishing [i.e., A 0 in (9)]. In this region we find (see
the Appendix)

S „(g—iO)=g (I „ /I ) S~ (g iO)e(A —), (9a)

m =n The res.ults in (9) are valid when the Landau lev-
els are well separated [i.e., g =(r~ /fj~ ) &&1]. Equa
tion (9) satisfies the normalization condition that the total
number of states ( =2g) per level is independent of the
level broadening (see the Appendix).

In (9a), the contribution from m =n arises from intra-
Landau-level scattering and the other terms from inter-
Landau-level scattering. For the spectral density of the
level n defined as

p „(g)=—I „(g)
1

(r„.„)-'e(~.„)Q ~.„
(r.„./r. .)2

+ ,'g' "-,e(~..)Q~.
(~ „—~ )'

(10)

the interlevel scattering transfers some states from the
main nth level to the neighboring levels [second term in
(10)]. The total integrated spectral density of (10) is unity
[see (A10) in the Appendix]. This tailing effect of the
spectral density is schematically illustrated in Fig. 3 for
the lowest two Landau levels of the conduction and
valence bands. The magnitude of the spectral density at
the secondary peaks at the neighboring levels is small
( ccg ) as compared to the main peak. The density of
states is obtained by summing p „(g) over all Landau lev-
els.

Spectral tailing into neighboring levels introduces addi-
tional contributions to ODT as was discussed in the In-
troduction. The first term of (8) [ ~ p„„(g)p«(co—g)] re-
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suits from a direct n~n coupling of the electronic sys-
tern with the photon field as is indicated by solid down-
ward arrows with wiggly curves in Figs. 3(a) and 3(b) for
0~0 and 1 —+1 coupling, respectively. In these DT the
majority of the photons emitted have energy close to
6 „+E' „+Eg p

These DT correspond to the solid arrows
directed downward in Fig. 1. The spectral-density func-
tion p, o (p„) in Fig. 3(a) [Fig. 3(b)] has a secondary peak
( ~ g ) at the level n,, = 1 (n„=O), allowing photons
(dashed lines directed downward in Fig. 3) to be emitted
at the energy c,I+c,,p+cg, p. This process corresponds to
the 1 —+0 transition. Although these processes originate
from a direct n ~n coupling with the photon field, they
will be defined as ODT since they emit ODT photons. A
similar inter-Landau-level scattering effect was noted to
induce subharmonics of cyclotron resonance earlier.
The ODT process in Fig. 3(c) corresponds to that in Fig.
2 and to the second term in the square brackets of (8). In
this process, primary spectral densities (p, &

and p, o) at
the levels n, = 1 and n„=O are utilized unlike in Figs. 3(a)
and 3(b) but the admixing impurity matrix elements (see
Fig. 2) are of the order of g .

IV. NUMERICAL EVALUATION

In this section we evaluate luminescence and excitation
line shapes using the results in (1) and (6) for a symmetric
Inp gGap 8AS/GaAs quantum well with 80 A well width,

0
50-A undoped GaAs spacer layers, 80-A ionized doping
layers, and X= 8 X 10" cm . This carrier density yields
the Fermi energy of 27.4 meV for m,*/mo =0.07 (in units
of free-electron mass). At B=ll T, level n=1 in the
conduction band is half filled. Cyclotron energies are
given by 18.26 and 9.13 meV for electrons and holes with
m,*/m p

=0. 14 . Small mass difFerences between the

quantum well and the barriers are ignored. The perpen-
dicular masses (in the growth direction) equal 0.07 and
0.35 for electrons and holes, respectively. The
confinement wave functions are given by symmetric vari-
ational wave functions with a cosine function in the well
and evanescent expotentials in the barriers and with the
coeScients chosen to minimize the energy. Hartree and
local exchange-correlation potentials are used. ' Band
oA'sets for conduction and valence bands are given by 160
and 67 meV, respectively. ' The damping constants are
obtaining through (I „)=4(n

~
U ~m ). The right-

hand side of this equation contains the damping con-
stants through the density of states in the polarizability
II~ [cf. (3c)] of the dielectric screening constant E .
Therefore the damping constants are calculated self-
consistently through iteration to an arbitrary accuracy.
Alloy scattering is estimated to contribute less than 1-
meV widths to the Landau levels and is ignored.

A total of the four lowest Landau levels are considered
for the basis set for calculating the luminescence line
shape. Using the three lowest levels as a basis set gives
the same result, indicating a rapid convergence of the re-
sult. For the excitation line shape, the lowest seven Lan-
dau levels are used as a basis set. Using the five lowest
levels as a basis set yields the same result, again indicat-
ing a rapid convergence of the result. The line shapes

1.0

0.8—
I

CO
K~ 0.6—I-
K
lLI

I-—0.4—

Lal
K

0.2

0.0
0.0

0~0

~ ~t:I
I

~ I:I:I
)./

10.0 20.0
LUMINESCENCE

4 K
~ ~ ~ ~ ~--- 76 K

1~1
1~0

~ ~
~ ~

~I ~ ~o~+ I

30.0 40.0
ENERGY (meV)

FIG. 5. Luminescence line shapes calculated from (1) and (6)
at three different temperatures. The Fermi level is at the elec-
tron level n =1, which is half filled. The parameters used are
given in the text. The numbers connected by an arrow denote
the initial conduction- and valence-band Landau levels responsi-
ble for the transition (see Fig. 1). The one-rung approximation
shows a small deviation only for 0~0 peak at 4 K as shown by
a dash-dotted curve.

calculated from (1) and (6) for luminescence and excita-
tion are shown in Figs. 5 and 6, respectively.

For the luminescence spectra in Fig. 5, the 1 —+0 tran-
sition, prominent at 4 K, diminishes at 76 K where the
new 1~1 transition shows a large intensity at the ex-
pense of the 0—+0 intensity. The relative peak height of
the 1~1 transition to that of the 0~0 transition at 76 K
is determined by the Boltzmann distribution. On the oth-
er hand, the peak intensity of the 1~0 transition at 4 K
is determined mainly by the matrix elements of the im-
purity potentials between the Landau-level states n =0
and n =1 and impurity-induced Landau-level spectral-
density tailing. It should be mentioned here that the re-
sult at 76 K is calculated by using the zero-temperature
screening formula in (3a) which underestimates the
Coulomb interaction and the level widths somewhat at
this high temperature.

For the excitation spectra in Fig. 6, the solid curve in-
dicates the total ladder contribution. The satellite lines
due to ODT appear below the 1~1 threshold as well as
between the DT lines. DT and ODT are illustrated in
Fig. 1 by solid and dashed arrows, respectively. The en-
ergy separation between the electron Landau levels is
about twice that of the hole levels because m,*=2m,*.
The 1 —+1 peak is smaller than the 2~2 peak because the
n =1 electron level is half filled. It is clear from Fig. 1

that the excitation resonance peaks are approximately
equally spaced in energy as shown in Fig. 6. These be-
haviors are consistent with the discussions presented in
the Introduction. The relative strengths of ODT
luminescence and excitation peaks are expected to in-
crease with respect to those of DT for decreasing fields.
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—0.4I-

LU
K 0.2

2~2

tures as observed recently. For excitation spectra,
carrier-impurity interactions induce new satellite lines
corresponding to ODT below the threshold as well as be-
tween the main lines.

Another possible mechanism which can contribute to
ODT lines are Auger-type processes' where a carrier is
scattered off other carriers through Coulomb interac-
tions. Since such processes are inelastic, ODT lumines-
cence lines are expected to be seen below the main 0~0
line as well as above it in contrast to the elastic scattering
case shown in Fig. S. These processes have been ruled
out in Ref. 2 on the basis of data.

0.0
20.0

I I I

30.0 40.0 50.0 60.0 70.0
EXCITATION ENERGY (meV)

80.0

FIG. 6. Excitation line shape calculated from (1) and (6) at 4
K for the parameters given in the text. The Fermi level is at the
electron level n = 1, which is half filled. The numbers connected
by an arrow denote the initial valence- and conduction-band
Landau levels responsible for the transition (see Fig. 1). The
1~1 transition is the usual threshold. The one-rung approxi-
mation shows a small deviation only for 2~2 peak as shown by
a dotted curve.

Measurement of the excitation line shapes in strong fields
is in progress.

We have also evaluated the line shapes using the one-
rung result in (8). The line shapes show no significant
differences from the ladder results except for small devia-
tions for the 0—+0 4 K luminescence peak (dash-dotted
curve) in Fig. 5 and 2~2 excitation peak (dotted curve)
in Fig. 6.

V. CONCLUSIONS

A theory of luminescence and excitation line-shape
function was developed in a strong magnetic field. The
effect of carrier-impurity interactions on luminescence
and excitation line shapes was examined by summing the
ladder diagrams exactly. The broadening and tailing of
the Landau-level spectral density (essential for evaluating
the spectroscopy line shape) was investigated by employ-
ing a self-consistent Born approximation which includes
inter-Landau-level impurity scattering. The accuracy of
the one-rung approximation was assessed and found to be
fairly high, when the Fermi energy is much larger than
the Landau-level widths. This is not surprising in view of
the fact that a ladder approximation is important in dc
transport problems where each successive rung intro-
duces overlapping resonances of a pair of Green's func-
tions. In the present problem, however, each rung intro-
duces mainly virtual admixing of Landau-level states (re-
sponsible for ODT) as discussed in the Introduction. We
found that carrier-impurity scattering not only broadens
the line but yields breaking of the usual n ~n selection
rule, inducing ODT. As a result, the luminescence line
shape crosses over from n ~0 (n =0, 1, ) transitions at
low temperatures to n —+n transitions at high tempera-
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APPENDIX

(&„„)'
S „(z)=— +5 „(z),4z —e„—S „(z)

(A2)

where |i „ is defined in (9d). At this stage the self-energy
part is dropped from the denominator of 5 „ in the
right-hand side of (9d), being much smaller than the cy-
clotron energy. Solving (A2) for S „,we find for g inside
the nth level (i.e., 2 „~0)

S „(g—i0)= —,'(g —e „+5 „+i+A „), (A3)

where 3 „ is defined in (9c).
When the energy z lies inside another Landau level

m An (i.e., 2 )0), (Al) is rewritten as

(&„„)'
S „(z)=— +b,„(z), (A4)

where

(l )' (I )'

4z —e —S (z) '
i z —@i

(A5)

In this Appendix we derive the self-energy part in Eq.
(9) and the spectral density in the high-field limit where
the Landau levels are well separated. The self-energy
part is given in the self-consistent Born approximation by

(r„)'
S „(z)=—,'g

m Z 6am am

The symbols used in (Al) are defined in the text. The di-
agonal contribution (m =n) arises from intra-Landau-
level impurity scattering and the off-diagonal contribu-
tion (mAn) from inter-Landau-level scattering. Denot-
ing the self-energy part as S „(z) when the energy z lies
inside the (broadened) Landau level n, we find
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Here the double prime in the second term indicates ex-
cluding l =n, m from the summation. The second term is
much smaller than the first term and is discarded. We
then find from (A2), (A4), and (A5) for A &'0 Use is made of the relationship

(A8)

(A6) (1 „„) fe(A „)QA „dg= —(1+/ „) ' . (A9)

which, combined with (A3), yields (9a).
The total number of states inside a given (say, nth)

Landau level is obtained by integrating the density of
states in the entire region where A „(g)~0. We find
from (9) and (5)

(A7)

to the order g „(« 1) where

The spectral density of any Landau level n satisfies the
normalization condition:

I „d = 1+ 2„ I+ 2„=1. (A 10)

The first (second) term following the first equality
represents the total integrated spectral density from in-
side (outside) the level n reduced (induced) by the inter-
Landau-level scattering by the amount g „. This special-
density tailing eA'ect is schematically illustrated in Fig. 3.
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