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Excitons in double quantum wells
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Excitons in a double-quantum-well structure, consisting of two wells separated by a thin barrier,
are studied. Binding energies and oscillator strengths of the exciton ground state are calculated as a
function of the barrier width and the well width. It is shown that the barrier width and the barrier
height give the significant influence on the dimensional character of excitons through the change of

the distribution of the subband wave function.

I. INTRODUCTION

With recent developments in semiconductor technolo-
gy, superlattices—that is, one-dimensional periodic
thin-layer structures—have attracted much attention.
These systems have interesting characteristics which are
not seen in bulk materials in optical and electrical prop-
erties, and they have been actively researched from both
fundamental and practical points of view.! ¢

Up to now, the study of the exciton states in such sys-
tems has been performed mainly for a single quantum
well (SQW), where an electron and a hole are in the same
layelr gmd the coupling with neighboring wells is neglect-
ed.”

In the present work we focus our attention on a
double-quantum-well (DQW) structure consisting of two
quantum wells separated by a thin potential barrier and
study the lowest exciton state in this system from a gen-
eral point of view. In the SQW system, subband and ex-
citon states are determined by physical parameters such
as well width and potential barrier height, and material
parameters such as masses and dielectric constants. In
the DQW system these subband and exciton states are
also influenced by a barrier between two quantum wells:
as the barrier width is suitably thin, a wave function has
a significant amplitude in both wells, and then the cou-
pling of the two wells occurs.°”!7 This feature yields
unique properties, such as the enhanced quantum-
confined Stark effect, and then potential applications to
optical devices can be actively studied. !!18 724

In the following we study theoretically general proper-
ties of the binding energy and the oscillator strength of
the exciton in a DQW system which have not been stud-
ied so far. In Sec. II the subband states in this system are
discussed briefly. In Sec. III we calculate the energy, the
binding energy and the oscillator strength of the exciton
ground state as a function of the well width and the bar-
rier width, using a finite-potential model and a variational
method. In Sec. IV we summarize the results obtained in
the present calculation.
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II. SUBBAND STATE IN A DOUBLE QUANTUM WELL

First, let us consider a motion of a particle in a DQW
structure consisting of two quantum wells with thickness
L, separated by a thin potential barrier with thickness
L, (Fig. 1).1°712%5 [In the effective-mass approximation
the Hamiltonian for a particle is given by

2
ey +Vi(z). (1)

Here the z axis is taken to be perpendicular to the well in-
terfaces. The mass of the particle m is equal to m,, in the
well region and m,; (m,;,) in the middle (side) barrier re-
gion. The z components of the position and momentum
of the particles are denoted z and p,, respectively. The
confinement potential ¥ (z) for a particle is assumed to be

0, L,/2<|zl<L,/2+L,
vl zl<L,/2 )
Ve L,/2+L,<l|zl <o .

Viz)=

The solution of the Schrédinger equation with the Hamil-
tonian H, is easily obtained. The symmetry of the system
yields the even and odd wave functions with respect to
the z coordinate. For the even or odd function, we obtain

De # 2>L,/2+L,

A sin(az)+B cos(az), L,/2<z<L,/2+L,

ce’re ™), L,/2> 7]
P(z)= ) . (3)
F A sin(az)*B cos(az),

~L,/2>z>—L,/2—L,

/3,22

*De*, z<—L,/2—L,

where a=(2m,E;)!"?/# and B;=[2m,;(V*—E)]'*/#
(i =1o0r2). E, is the eigenenergy of the /th subband of a
particle. By matching ¥(z) and (1/m;)d{(z)/dz (i =w,
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FIG. 1. Double-quantum-well profile along the z axis normal
to layer interfaces. Here, CB, VB, and E; denote the
conduction- and valence-band edges, and the gap energy, re-
spectively.

b1, or b2) at the interfaces z=L, /2 and L, /2+L,, we
obtain the following equations for the /th subband
eigenenergy: for the even wave function,

Si[1—S,tan(aL,)]
+tanh(B,L, /2)[S, +tan(aL,)]=0, (4)
and for the odd wave function,
S, +tan(aL,)+tanh(B,L, /2)S,[1—S,tan(aL,)]=0,
()

where S;=my;a/(m,B;) (i =1 or 2). If the length and
energy are conveniently measured in units of the well
width L, and the first-subband energy for the SQW in
the infinite-potential-barrier model E ;> =7°#*/(2m,L2),
our system is characterized by the following five parame-
ters: the normalized potential barrier V°!=V°*1/E},
the barrier-well width ratio o, =L, /L, the potential-
barrier ratio o, =V?2/V?!, and the effective-mass ratio
O, i=my; /m, (i =1 and 2). Changing these physical pa-
rameters, we have calculated the normalized energy
E,=E,;/E}{ and the wave function ,(z) for the lowest
two subband states (I =1,2). Results  with
oy=0,,=0,,=1 are shown in Figs. 2 and 3.

In Fig. 2(a) we plot the subband energy E, as a func-
tion of the barrier-well width ratio o; for three normal-
ized potential barriers, i.e., plt=pbl=pt=1, 10, and
100. In the figure we see that differences between E, and
E, become smaller for larger o;. This reflects the fact
that the coupling of two wells becomes weak for larger
o, . Figure 2(b) gives the subband energy E, as a func-
tion of the normalized potential barrier 7 ® for four
barrier-well width ratios, i.e., o; =0, 0.01, 0.10, and 1.00.
When o is zero, our system is just that of the SQW with
well width 2L,,. Thus energies E, =1 and E, =1 are ob-
tained in the infinite-barrier case (¥ =) and both E,
and E, decrease monotonically for decreasing ¥ %, as seen
in the figure. This behavior is rather different from that
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for the finite o, where the coupling of the lowest state of
each SQW, via the potential-barrier region, yields the
lowest two states, except for the very-small—Vb case. In
this very-small-7 ® case there is only one bound state in
our DQW system. We see in Fig. 2(b) that the energy
differences between E, and E, become smaller for larger
potential barrier ¥, because of the smaller coupling of
the two wells.

In Fig. 3 we have plotted the square of the wave-
function amplitudes, |1,(z)|?, of the lowest two states for
three different barrier-well width ratios o; =0.0, 0.1, and
1.0 with the normalized potential barrier ¥ °=1.0. We
find in this figure that, for increasing barrier-well width

w 0.5
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FIG. 2. (a) Normalized subband energy E, for / =1 and 2 as
a function of the barrier-well width ratio o;. The normalized
potential barrier is taken to be ¥ *=1, 10, and 100. (b) Normal-
ized subband energy E, for / =1 and 2 as a function of the nor-
malized potential barrier ¥ °. The barrier-well width ratio is
taken to be oy =0, 0.01, 0.10, and 1.00.
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o, the wave-function amplitudes of the lowest state
(I=1) at z =0 becomes smaller. Then the square of the
wave function amplitude of the / =1 state becomes simi-
lar to that of the / =2 state. This reflects the smaller cou-
pling of two wells for larger o .

Here we briefly discuss the dependence of the subband
states on o and o,,=0,,,=0,,, with the fixed values
V%'=1.0 and o, =0.1. Setting o, =1, we increase oy,
and then the subband energy E; (I =1,2) becomes larger
than that of Fig. 2(b): for example, E,=0.22 and
E,=0.60 for o,=2, which are compared to E,=0.20
and E,=0.51 for o, =1. This is because for larger o
the penetration of the particle into the outside barriers is
suppressed and the confinement effect becomes stronger.
Next, we set o, =1 and increase o,,. Then, the subband
energy E, (I =1,2) becomes smaller than that in Fig. 2(b):
for example, E,=0.17 and E,=0.43 for o, =2 and
E;=0.20 and E,=0.51 for o, =1. This smaller sub-

Z/Ly

FIG. 3. Square of the wave-function amplitude, |1,(z)|?, for
the lowest two subband states (I =1,2) as a function of the nor-
malized position z/L, with the normalized potential barrier
V°=1.0. (a), (b), and (c) correspond to the barrier-well widths
o, =0.0,0.1, and 1.0, respectively.
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band energy is due to the fact that the kinetic-energy
term of the particle in the barrier region decreases as the
mass my =m,; = m,, increases.

III. EXCITON STATE IN A DOUBLE QUANTUM WELL

Next, we discuss excitons in the DQW. Here we
confine ourself to the case that materials of the middle
and side barrier parts are the same. The Hamiltonian of
the system is written as

Lpate e?

2u er
Here we have assumed the isotropic band for an electron
(with mass m,) and the ellipsoidal band for a hole (with
mass m,, in the x-y plane and m,, in the z direction). The
kinetic-energy part of the center-of-mass motion of an
electron and a hole in the layer plane is omitted from the
Hamiltonian since x and y components of the momen-
tum, Py and Py, being conjugate to center of mass coor-
dinates X and Y, are constants of motion. H,, (H,,) is
given by H, of Eq. (1) with the replacement of mass m
and barrier-potential heights ¥V?=V?%1=¥"%2 by electron
mass m, (hole mass m,,) and potential heights
Ve=vi=v (vi=vE'=VP?), respectively. The third
term on the right-hand side of Eq. (6) represents the
kinetic-energy part of the relative motion with position
r=r,—r,, momentum p=—i#id/0r, and mass
u=m,m, /(m,+m,) in the x-y plane. The Coulomb at-
traction between the electron and hole is described by the
last term of Eq. (6), where € is the background dielectric
constant. We use a variational method to calculate the
exciton state.?”* The following variational wave func-
tion for the 1s-type state, associated with the /,th electron
and /, th hole subbands, is chosen as

oM =Ny, (2,0, (2,)8(r) . %

H=H,+H, ©6)

a,l,) . . .
Here, N " is the normalized factor. The normalized

I,th electron (I,th hole) subband wave function ¥ (z,)
[#,, (z,)] is calculated as in Sec. II. ¢(r) describes the rel-
ative motion and is chosen to be of the form

p(r)=exp{ —[a*(x*+y*)+p%2?]'"?} , (8)
where a and 3 are variational parameters. The exciton
energy can be calculated from

gl = <CI)(I"’1")|H|¢”‘”1")> ’ ©)

(a,8)

and the binding energy is determined by

B(l,,1,

E”W =g; +E) —E"" (10)

Here, E/ (E lhh ) is the [, th electron (I, th hole) subband en-

ergy. Also, the optical oscillator strength can be ob-
tained from*~ %26

f(Ie,Ih

Here, B, is proportional to |M,, |, where M_, is the opti-
cal transition matrix element between the conduction and

'=B,|6(0)F(ON"""""12 /2L, . (11
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valence bands. The electron-hole—overlap function F(0)
is given by

FO)=[""dzy, (29, (2) . (12)

In the following, all energies are expressed in terms of the
Rydberg R (=ue*/2€*#%%) and all lengths in terms of the
Bohr radius ap (=€#*/ue?). If we neglect the difference
in masses for the well and barrier parts, the present sys-
tem is characterized by the following six parameters: the
well width L, the barrier-well width ratio o, =L, /L,
the total potential barrier ¥2=V?2+ ¥V}, the band offset
Q,=V!/V%, the electron-hole mass ratio o =m,/m,,
and the anisotropic hole mass ratio o/*=m,, /m,. In the
present model calculation we choose 0% =1.0, 0#*=5.0,
Q,=0.6, and V$= 120R, whose values roughly corre-
spond to the GaAs well and the Al,Ga;_,As (x =0.3)
barrier. U

In Fig. 4 the exciton energy E ¢ * and the binding en-
ergy EBMD of the lowest exciton state are shown as a
function of the well width L,,. We see in Fig. 4(a) that

the exciton energy E et decreases monotonically as L,
becomes larger: this behavior is the same as that of the
interband transition energy from the /,th hole subband to
the /,th electron subband. Figure 4(b) gives the binding
energy E2tV for three different barrier widths, namely
L,=0.05ag, 0.10ag, and 1.00az. In the figure we also
plot EZV in the cases of L, =0ap and L, = way, which
correspond to the SQW with the well widths 2L,, and L,
respectively. We find that for a given finite-potential-
barrier value the binding energy has the maximum in the
range 0 <L, <0.2az. The reason for the occurrence of a
maximum is the same as that in the SQW.> When the
well width L, decreases from large values, an exciton is
confined in the well and the two-dimensional character
appears in the large binding energy. However, for the
further decrease of L,, the penetration of the exciton
wave function into barrier parts becomes large and then
two-dimensional character of exciton starts to decrease,
while three-dimensional character increases.’ This ex-
plains why the maximum of EZD appears. We note
that in the infinite-potential-barrier case (V?=V}=wR)
this penetration of the wave function does not occur and
the purely two-dimensional result of the binding energy,
4R, is obtained for L,=O0ap as in the case of the
SQW.2"* If we consider the thick-barrier case (the
large-L, case), we expect the weak coupling of the wells.
Thus, as seen in Fig. 4(b), the exciton binding energy be-
comes close to that of the SQW with the well width L.
In Fig. 5 we show the exciton energy E(I”’I") and the
binding energy of the exciton, E2'D, as a function of the
barrier width L,. Figure 5(a) shows how the coupling of
the two wells affects the exciton energy: for larger L, all

exciton energies—FE estn )’s—are close because of the
smaller coupling of the wells. In Fig. 5(b) the binding en-
ergies EB(MD are shown for three different values of well
widths, namely L, =0.1lag, 0.2ap, and 0.6az. We find
that for a given value of L, the exciton binding energy
EBD hag a minimum. The value of L, at the minimum
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is smaller for larger L. The reason for such a behavior
is as follows. We know that the binding energy of the
DQW in the thick limit L, = oo (in the thin limit L, =0)
is that of the SQW with the well width L, (2L,). When
L, is large enough, the binding energy keeps that of the
SQW with the well width L, to some extent, since the
wave function rarely goes into the other well. As L, is
reduced, EZ1) decreases due to the spreading of the
wave function into both wells and to the smaller
electron-hole Coulomb interaction. Next, we consider
another case, i.e., the small-L, case. When L, increases

100 T T T
(2)
(L., 2£,)=_(2,2) ]

~ i (2.1)
= /(’»2) i

(1) -

tw  (ag)

FIG. 4. (a) Exciton energy E el as a function of the well
width L, for the barrier width L, =0.1ay. (b) Binding energy
of the lowest exciton state, EZ‘"!) as a function of the well
width L, for three different barrier widths, namely L, =0.05ap,
0.1ap, and 1.0ap. The dashed and dashed-dotted lines show the
binding energy in the cases L, =0aj and o ap, respectively.
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from zero, the electron and hole subband wave functions
have dips at z, =z, =0 in the middle barrier part. This
yields the smaller electron-hole Coulomb interaction, re-
sulting in the smaller exciton binding energy. Thus, the
minimum of the binding energy as a function of L, origi-
nates from the change of the distribution of the wave
function due to the quantum-size effect.

In Fig. 6 the oscillator strength £V is plotted as a
function of the barrier width L, for three different values
of L,,i.e., L,=0.lag, 0.2ap and 0.6az. We see in the
figure that a minimum of f! appears for each value
L,. The reason for the appearance of the minimum is
the same as that of E2"1) in Fig. 5(b).

R 1 1 1 1 1 1 1

(] 1 2

Lp (aB)

FIG. 5. (a) Exciton energy E(I"'I”) as a function of the barrier
width L, for the well width L, =0.2ag. (b) Binding energy of
the lowest exciton state, EZ>!") as a function of the barrier well
width L,. The well width is taken to be L, =0. lag, 0.2a3, and
0.6ap.

TSUNEO KAMIZATO AND MITSURU MATSUURA

I&

10

(4]

f(1 ,1) (arb. units)

1 ! 1 1 | . L 1 L

1
Lp (aB)

FIG. 6. Oscillator strength of the lowest exciton state, f"!),
as a function of the well width L,. The well width is taken to be
L,=0.1ag,0.2az, and 0.6az.

Here we discuss the effects of the potential-barrier
height on excitons. In addition to the case of the total
potential barrier ¥'7=120R, we have also calculated exci-
ton states for the case of V2=60R and 240R. When
L,=L,=0.2ay, the obtained values of EZ'"!) are 2.02R
and 2.11R for V2=60R and 240R, respectively. These
are compared with 2.07R for V7=120R. From these re-
sults we can say that for fixed L, and L, the larger the
barrier potential height V#, the larger the value of
EZD though the differences are small.

So far, we have assumed that excitons are associated
with each electron and hole subband state. When the en-
ergy difference between the first and second subband state
is small, it may be necessary to comnsider intersubband
coupling of the excitons. To examine this effect, we have
calculated excitons associated with the subband
l,,1,=1,2, and have then considered the couplinﬁ of

. . L )
these excitons: a linear combination of states & ¢ *
(1,,1,=1,2) is used,
2
v=3 A, )"
1,1,=1

(13)

Thus, the exciton energy with the coupling E. is calculat-
ed from

det|M(1,1,,1.0;)|=0 (1,,1,,1.,1;=1,2) . (14)
Here,
M(lelh,le’l,:)=(d>u"’l")|H|<I>”€’l"))—EC(<I>“9’I")|<I>”€’I”)) )

Equation (14) is a 4 X4 determinant, but this equation is
reduced into two 2 X2 determinants, because of the sym-
metry properties of the wave function with respect to the
z, and z; coordinates. Then the lowest exciton energy is
obtained from the following 2 X 2 determinant, i.e.,
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FIG. 7. Change of the exciton energy due to intersubband
coupling, AE, as a function of the barrier width L,. The well
width is taken to be L, =0.1ag, 0.2a, and 0.6a;.

M(11,11) M(11,22)

M(22,11) M(22,22)|~0" (15)

Then the binding energy of the lowest exciton, EZ, is
given by

EP=E¢+E"—E, . (16)

Also, the oscillator strength with the coupling f¢ can be
calculated from

2 (1) 2
S A(l,1,)N <" F(0)
1,0,=1

fe=B, 17

According to Egs. (15)-(17), we have performed a numer-
ical calculation of the exciton energy E_, the exciton
binding energy E2Z, and the oscillator strength f,: results
obtained are similar to those in Figs. 4—6. The change of
the exciton energy due to the intersubband coupling
AE=E,—E"“W=EZ—EB1D is shown in Fig. 7. It can
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be seen that AE depends very much on the barrier width
L,. Comparison of the results in Figs. 5 and 7 shows that
the intersubband coupling of the excitons yields the
larger binding energy by at most 20%. The decrease of
AE for large L, is due to a decrease of the coupling of
wells. Also, we find that for the change of L, the oscilla-
tor strength f°¢ behaves similar to f‘“! in Fig. 6.
Changes of the oscillator strengths due to the intersub-
band coupling are not so large: for example, when L, is
0.lag, f°=4.30 and 4.42 and f'"V=4.31 and 3.68 in the
same units as Fig. 6 are obtained at the values of
L,=0.1ay and 0.4ay, respectively. The above results in-
dicate that the qualitative behavior of excitons in the
DQW system is described without the intersubband cou-
pling, but the coupling needs to be considered for the
quantitative discussion in the region of the barrier width
0.2ap 5L, <0.8ap.

IV. SUMMARY

We have studied the lowest exciton state in the
double-quantum-well structure consisting of two wells
separated by a thin barrier. The variational calculation
has shown that the exciton binding energy and the oscil-
lator strength are strongly affected by a barrier width L,:
both exciton binding energy and oscillator strength have
a minimum as a function of L,. This reflects the distribu-
tion of the subband wave function in the double-
quantum-well system which affects the magnitude of the
electron-hole Coulomb interaction. The above results
show how the dimensional character of excitons, such as
two- or three-dimensional character, appears in the
double-quantum-well system. Also, it is shown that the
intersubband coupling of excitons needs to be considered
for the quantitative discussion generally, though this does
not affect the qualitative behavior of excitons.
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