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Excitons in double quantum wells
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Excitons in a double-quantum-well structure, consisting of two wells separated by a thin barrier,
are studied. Binding energies and oscillator strengths of the exciton ground state are calculated as a
function of the barrier width and the well width. It is shown that the barrier width and the barrier
height give the significant inhuence on the dimensional character of excitons through the change of
the distribution of the subband wave function.

I. INTRODUCTION II. SUBBAND STATE IN A DOUBLE QUANTUM WELL

%'ith recent developments in semiconductor technolo-
gy, superlattices —that is, one-dimensional periodic
thin-layer structures —have attracted much attention.
These systems have interesting characteristics which are
not seen in bulk materials in optical and electrical prop-
erties, and they have been actively researched from both
fundamental and practical points of view. '

Up to now, the study of the exciton states in such sys-
tems has been performed mainly for a single quantum
well (SQW), where an electron and a hole are in the same
layer and the coupling with neighboring wells is neglect-
ed. ' '

In the present work we focus our attention on a
double-quantum-well (DQW) structure consisting of two
quantum wells separated by a thin potential barrier and
study the lowest exciton state in this system from a gen-
eral point of view. In the SQW system, subband and ex-
citon states are determined by physical parameters such
as well width and potential barrier height, and material
parameters such as masses and dielectric constants. In
the DQW system these subband and exciton states are
also influenced by a barrier between two quantum wells:
as the barrier width is suitably thin, a wave function has
a significant amplitude in both wells, and then the cou-
pling of the two wells occurs. ' ' This feature yields
unique properties, such as the enhanced quantum-
confined Stark eA'ect, and then potential applications to
optical devices can be actively studied. "'

In the following we study theoretically general proper-
ties of the binding energy and the oscillator strength of
the exciton in a DQW system which have not been stud-
ied so far. In Sec. II the subband states in this system are
discussed briefly. In Sec. III we calculate the energy, the
binding energy and the oscillator strength of the exciton
ground state as a function of the well width and the bar-
rier width, using a finite-potential model and a variational
method. In Sec. IV we summarize the results obtained in
the present calculation.

First, let us consider a motion of a particle in a DQW
structure consisting of two quantum wells with thickness
L„, separated by a thin potential barrier with thickness
Lb (Fig. 1). ' ' ' In the et''ective-mass approximation
the Hamiltonian for a particle is given by

H, = + V(z) .
Pz

2'
Here the z axis is taken to be perpendicular to the well in-
terfaces. The mass of the particle m is equal to m in the
well region and m» (mb2) in the middle (side) barrier re-
gion. The z components of the position and momentum
of the particles are denoted z and p„respectively. The
confinement potential V(z) for a particle is assumed to be

0, Lb/2& lzl &Lb/2+L
v(z)= v", lzl &Lb/2

V", L /2+L & lzl &

The solution of the Schrodinger equation with the Hamil-
tonian H, is easily obtained. The symmetry of the system
yields the even and odd wave functions with respect to
the z coordinate. For the even or odd function, we obtain

De ', z )Lt, /2+L„
A sin(az)+B cos(az), Lb/2&z &Lb/2+L

C(e '+e '
), L /2) lzl

Q(z) = '

+ A sin(az)+B cos(az),
—Lb /2 )z ) —Lb /2 —L~

P2z+De, z (—Lb/2 —L

where a=(2m E, )'~ /A' and P,. =[2mb, (V ' Et)]' /A'—
(i =1 or 2). Et is the eigenenergy of the lth subband of a
particle. By matching t)'j(z) and (1/m, )dg(z)/dz (i =w,
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for the finite O.I, where the coupling of the lowest state of
each SQW, via the potential-barrier region, yields the
lowest two states, except for the very-small-V case. In
this very-small-V case there is only one bound state in
our DQW system. We see in Fig. 2(b) that the energy
differences between E& and E2 become smaller for larger
potential barrier Vb because of the smaller coupling of
the two wells.

In Fig. 3 we have plotted the square of the wave-
function amplitudes, ~g&(z) ~, of the lowest two states for
three different barrier-well width ratios o.

L =0.0, 0.1, and
1.0 with the normalized potential barrier V"=1.0. We
find in this figure that, for increasing barrier-well width

FIG. 1. Double-quantum-well profile along the z axis normal
to layer interfaces. Here, CB, VB, and EG denote the
conduction- and valence-band edges, and the gap energy, re-
spectively.

1 I I I
( I I I I

I
I I I

(a}

v=100

b 1, or b2) at the interfaces z =Lb/2 and Lb/2+L, we
obtain the following equations for the Ith subband
eigenenergy: for the even wave function,

S, [1—Satan(aL ) ]

+tanh(piLb /2)[Sz+ tan(aL )]=0, (4)

and for the odd wave function,

S2+tan(aL )+tanh(p, L& /2)S, [1—S2tan(aL )]=0,

)~ 05

10

I I I I t I I I I I I I I I
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where S,. =mb, a/(m p;) (i =1 or 2). If the length and
energy are conveniently measured in units of the well
width L and the first-subband energy for the SQW in
the infinite-poteritial-barrier model Ei" =sr fi /(2m L ),
our system is characterized by the following five parame-
ters: the normalized potential barrier V"'= V '/E&,
the barrier-well width ratio o.

L =Lb/L, the potential-
barrier ratio o.v= V" /V ', and the effective-mass ratio
o. ; =mb;/m (i =1 and 2). Changing these physical pa-
rameters, we have calculated the normalized energy
E&=E&/Ei and the wave function Itj&(z) for the lowest
two subband states (/=1, 2). Results with
o.z=o ] =a~2=1 are shown in Figs. 2 and 3.

In Fig. 2(a) we plot the subband energy EI as a func-
tion of the barrier-well width ratio o.

L for three normal-
ized potential barriers, i.e., V"—= V '= V =1, 10, and
100. In the figure we see that differences between E& and
E2 become smaller for larger o.L. This rejects the fact
that the coupling of two wells becomes weak for larger
crL. Figure 2(b) gives the subband energy E& as a func-
tion of the normalized potential barrier V for four
barrier-well width ratios, i.e., o.

L =0, 0.01, 0.10, and 1.00.
When o I is zero, our system is just that of the SQW with
well width 2L . Thus energies E& =

4 and E2 =1 are ob-
tained in the infinite-barrier case ( V = oo ) and both Ei
and E2 decrease monotonically for decreasing V, as seen
in the figure. This behavior is rather difterent from that

I I I I IIII I I I I III
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FIG. 2. (a) Normalized subband energy EI for l =1 and 2 as
a function of the barrier-well width ratio o.L. The normalized
potential barrier is taken to be V =1, 10, and 100. (b) Normal-
ized subband energy EI for l =1 and 2 as a function of the nor-
malized potential barrier V . The barrier-well width ratio is
taken to be o.

L =0, 0.01, 0.10, and 1.00.
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from zero, the electron and hole subband wave functions
have dips at z, =z& =0 in the middle barrier part. This
yields the smaller electron-hole Coulomb interaction, re-
sulting in the smaller exciton binding energy. Thus, the
minimum of the binding energy as a function of Lb origi-
nates from the change of the distribution of the wave
function due to the quantum-size effect.

In Fig. 6 the oscillator strength f""is plotted as a
function of the barrier width Lb for three different values
of L, i.e., L =0.1a&, 0.2a~ and 0.6az. We see in the
figure that a minimum of f""appears for each value

The reason for the appearance of the minimum is
the same as that of E ' ' " in Fig. 5(b).

10
LW=0.1 (aB)

02

0.6

80- 1 j I

w=O2 ( a) 1
Lb a

60 FIG. 6. Oscillator strength of the lowest exciton state, f"",
as a function of the well width Lb. The well width is taken to be
L„=O.la~, 0.2a~, and 0.6a~.

40

20

0 0.5
Lb

Here we discuss the effects of the potential-barrier
height on excitons. In addition to the case of the total
potential barrier VT = 120R, we have also calculated exci-
ton states for the case of VT=60R and 240R. When
L„=Lb=0.2a~, the obtained values of E ""are 2.02R
and 2.11R for VT=60R and 240R, respectively. These
are compared with 2.07R for VT=120R. From these re-
sults we can say that for fixed L and Lb the larger the
barrier potential height VT, the larger the value of
E "",though the differences are small.

So far, we have assumed that excitons are associated
with each electron and hole subband state. When the en-
ergy difference between the first and second subband state
is small, it may be necessary to consider intersubband
coupling of the excitons. To examine this effect, we have
calculated excitons associated with the subband
I„I&=1,2, and have then considered the coupling of

(7, 1~ )
these excitons: a linear combination of states 4 ""
(l„ll, =1,2) is used,

A(l„lq)4 ""

Thus, the exciton energy with the coupling E, is calculat-
ed from

det
~ M(l, l», l,'ls )

~

=0 ( l„lz, l,', ll,
'= 1,2) . (14)

0 1
Lb aB

Here,

(I, /~ )

FIG. 5. (a) Exciton energy E ' " as a function of the barrier
width L& for the well width L =0.2az. (b) Binding energy of
the lowest exciton state, E "",as a function of the barrier well
width LI, . The well width is taken to be L =O. la&, 0.2a&, and
0.6a~.

Equation (14) is a 4X4 determinant, but this equation is
reduced into two 2 X2 determinants, because of the sym-
metry properties of the wave function with respect to the
z, and zz coordinates. Then the lowest exciton energy is
obtained from the following 2 X 2 determinant, i.e.,



EXCITONS IN DOUBLE QUANTUM WELLS 8383

0.5

0.4

0.3

0.2

0.1

0 1
aB

be seen that AE depends very much on the barrier width
Lb. Comparison of the results in Figs. 5 and 7 shows that
the intersubband coupling of the excitons yields the
larger binding energy by at most 20%. The decrease of
AE for large Lb is due to a decrease of the coupling of
wells. Also, we find that for the change of Lb the oscilla-
tor strength f ' behaves similar to f"" in Fig. 6.
Changes of the oscillator strengths due to the intersub-
band coupling are not so large: for example, when L is
O. la&, f'=4. 30 and 4.42 and f''"=4.31 and 3.68 in the
same units as Fig. 6 are obtained at the values of
Lb =0. lan and 0.4az, respectively. The above results in-
dicate that the qualitative behavior of excitons in the
DQW system is described without the intersubband cou-
pling, but the coupling needs to be considered for the
quantitative discussion in the region of the barrier width
0.2a~ Lb -0.8a~.

IV. SUMMARY

FIG. 7. Change of the exciton energy due to intersubband
coupling, AE, as a function of the barrier width I.I, . The well
width is taken to be I- =0.1a~, 0.2a&, and 0.6a&.

M(11,11) M(11,22)
M(22, 11) M(22, 22) (15)

Then the binding energy of the lowest exciton, E, , is
given by

E =E'+E —Ec 1 1 c (16)

f '=Bs
2 (l, , l~ )

A (l„lh)N ""F(0)

Also, the oscillator strength with the coupling f' can be
calculated from

We have studied the lowest exciton state in the
double-quantum-well structure consisting of two wells
separated by a thin barrier. The variational calculation
has shown that the exciton binding energy and the oscil-
lator strength are strongly affected by a barrier width Lb.
both exciton binding energy and oscillator strength have
a minimum as a function of Lb. This rejects the distribu-
tion of the subband wave function in the double-
quantum-well system which affects the magnitude of the
electron-hole Coulomb interaction. The above results
show how the dimensional character of excitons, such as
two- or three-dimensional character, appears in the
double-quantum-well system. Also, it is shown that the
intersubband coupling of excitons needs to be considered
for the quantitative discussion generally, though this does
not affect the qualitative behavior of excitons.

According to Eqs. (15)—(17), we have performed a numer-
ical calculation of the exciton energy E„ the exciton
binding energy E, , and the oscillator strength f, : results
obtained are similar to those in Figs. 4—6. The change of
the exciton energy due to the intersubband coupling
AE =E, —E""=E,—E ""is shown in Fig. 7. It can
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