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Orbital magnetoconductance in the variable-range-hopping regime
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The orbital magnetoconductance (MC) in the variable-range-hopping (VRH) regime is evaluated
using a model proposed by Nguyen, Spivak, and. Shklovskii (NSS), which approximately takes into
account the interference among random paths in the hopping process. The results are shown to be
valid in more general situations. The MC is obtained using the critical-percolating-resistor method,
which is proven to be equivalent to a modified logarithmic averaging. The behavior of the MC is
analyzed in detail neglecting backscattering. The small-field MC is quadratic in 0, is positive deep
in the VRH regime, and changes sign when the zero-field conductivity is high enough. Very deep in

the VRH regime a quasilinear intermediate-field dependence develops. The calculated MC is al-

ways positive for strong fields and is predicted to saturate at sufficiently large fields. This behavior
and the relevant magnetic-field scale are in agreement with recent experiments.

I. INTRODUCTION

The study of the magnetoconductance (MC) in disor-
dered metals in the weak-localization regime has given
valuable insights into the interference processes in such
systems. Various electronic relaxation times have also
been determined using this method. In systems of meso-
scopic sizes the sample-specific interference is very im-
portant, but is expected to average out in a macroscopic
network of such systems. There is no detailed under-
standing of the magnetotransport in the strongly local-
ized regime. Recent studies' have focused on the mag-
netotransport in the mesoscopic range where the finite
size of the sample is relevant. It is, however, also of in-
terest to study the MC in a large, macroscopic sample in
the regime where thermal hopping dominates the trans-
port. It turns out that the analysis does produce a
definite macroscopic effect due to the Auctuations in the
bond conductances.

A recent experimental study of transport properties of
indium oxide samples in the variable-range-hopping re-
gime (VRH) reveals a positive MC. In the absence of a
magnetic field, the conductance of these specimens obeys
Mott's VRH law, o =croexp[ —(To/T)'~' +"], in two
and three dimensions (d =2, 3) with 200~ To/T ~ 1000.
The hopping distance AM extracted from the data is typi-
cally of the order of several g, where g is the localization
length. The behavior of the MC at low fields is as fol-
lows: after an initial, fast dependence (perhaps H ) at ex-
tremely small fields, the MC becomes quadratic in the
magnetic field for a rather large range of the latter. Stud-
ies of the dependence of the MC on the magnetic-field

orientation relative to that of the film strongly indicate
that it results from an orbital, rather than a spin effect.
The change in the conductance due to the magnetic field
is characterized by the fiux &bM =HR~ j' through an
effective area of the order of RM~ g'~ . More recently
large, mostly positive, MC was found by Assadullaev and
Ciric in amorphous Si3N4, but with large measurement
voltages and by Benzaquen et a/. for CiaAs. The posi-
tiveness of the MC and the anisotropy with respect to the
magnetic field orientation were also observed in earlier
measurements on 20 Si inversion layers.

There have been theoretical approaches to the MC in
the VRH regime but they could not fully account for
these experimental data. Shklovskii and Efros and
Suprapto and Butcher predict a negative MC due to the
shrinkage of the wave functions in the presence of a mag-
netic field. Nguyen, Spivak, and Shklovskii (NSS) (Refs.
9 and 10) are the first to consider in this connection the
effect of the interference among the various paths associ-
ated with the hopping between two sites at a distance RM
apart and a small energy separation of the order of
kg T To in three dimensions. They find that the in-
terference between all possible paths within a cigar-
shaped domain" of length RM and width (R~g)' might
considerably change the hopping probability between two
sites. Averaging numerically the logarithm of the con-
ductivity over many random impurity realizations, in the
presence of a magnetic field, NSS obtain under certain
conditions a positive MC which is linear in the field in
the whole relevant field range.

A theory for the orbital MC in the VRH regime, based
on' the NSS model but employing the critical percolation
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path picture, ' ' was presented in Ref. 15 [Sivan,
Entin-Wohlman, and Imry (SEI)]. It yields the sign of
the MC and the quadratic field dependence in the weak-
field range where the field scale was determined by the
parameter 4M/40 (4&0=bc/e being the quantum-Aux
unit). Furthermore, that model predicted a saturation of
the MC for 4M/40))1. However, the situation very
deep in the VRH regime (RM /g ~ 10) was not considered
in detail.

In this paper we present a comprehensive discussion of
the orbital MC in the VRH model, and argue that the re-
sults hold quite generally. We find the regimes in which
the various behaviors found by NSS and SEI hold and
discuss the various ways to obtain the macroscopic MC
from that of the elementary bonds.

II. ANALYSIS OF THE MC WITHIN THE
PERCOLATION MODEL

The conductivity of a sample in the hopping regime
may be analyzed in terms of an equivalent resistor net-
work. ' ' Any two sites between which the electron
hops are taken to be connected by a conductance o.,f,

where o.
p is a constant having dimensions of conductance

and e,f=(~e, [+~Ef~+~a; —Ef~)/2, where e; and Ef are
the initial and final site energies measured from the Fermi
energy. In (1), If is the efFective overlap integral between
the initial and final sites. ~I,) depends exponentially on
the distance r,f between the two sites, ~If ~

~ exp( —
r;1~ )

where a is of the order of the inverse localization length.
Quite generally, cr,f is a random variable, depending

upon the site energies, the distance between them, r,f, and
the strength of the overlap integral. The conductivity of
the macroscopic sample is determined by the percolation
threshold condition. ' Given the probability distribu-
tion P(cr lo 0, r) for the dimensionless conductivity o loo
at a spatial separation r, the sample conductivity o., is
given by the requirement that the conductors of o )cr,
occupy a certain finite fraction Z, of the system volume
Q

where d is the system dimensionality. Thus, knowledge
of the distribution function will yield an implicit equation
for the "critical*' conductivity o, . In the variable-range-
hopping regime, the critical conductivity obeys Mott s
law, o, =croexp( —To/T)' '"+", with To/T~10, and
where kg Tp is on the order of the average energy spacing
between levels localized within a localization volume, g' .
The critical conductance connects sites whose spatial sep-
aration, RM, is typically at least several g's (depending
upon the temperature and impurity concentration) and
whose site energies are of the order of a few kz T, much
sma11er than kg Tp ~ The percolation argument thus as-
sumes that the conducting properties of the system are
determined by hops of elementary conductance o, which

span a critical network throughout the macroscopic sys-
tem.

The quantum aspect of the elementary hopping is
brought about by the overlap integral I,f. It results from
electron tunneling between the initial and final sites
around which the wave functions are localized, with lo-
calization length g. The spatial separation r,f between
two sites belonging to the critical network is larger than

There are, therefore, many difFerent paths connecting
the initial and final sites, along which the electron
traverses other sites, of site energies in general lying far
away from the Fermi level. The eR'ective overlap integral
I,f thus contains the effects of interference among the
various possible paths.

We adopt here the picture of Nguyen, Spivak, and
Shklovskii (NSS) (Refs. 9, 10, and 15) according to which
the important contribution to J,f comes from all oriented
paths within a cigar-shaped region of length r f and width
(r,g)' One. thus may visualize the electron to perform
a random walk of step g perpendicular to the hopping
distance rf. In the specific geometrical model employed
by NSS the random walk has an elementary step equal to
the microscopic length. The appearance of the g in the
more general case follows from the discussion of the
statistics of the path contributing to I,f given by
Shklovskii and Spivak. " The resulting effective overlap
integral is the sum over the contributions from the vari-
ous paths

If=e 'f +Jr .
r

(3)

As the number of oriented paths is exponential in the
path length, a redefinition of the localization length in the
expression for the elementary conductance [Eq. (1)] yields

where y,f represents the quantum interference effect upon
the conductance. It depends upon the hopping distance
r,f and, in particular, upon the magnetic field.

The interference factor y is a random variable. It is

where n is the number of oriented paths and y f is a ran-
dom variable of order unity.

In the presence of a constant magnetic field the in-
dividualgath overlap integral is multiplied by a phase
factor e r, pr being the phase acquired from the magnet-
ic field along the yth path. This is the only modification
due to the magnetic field at small enough fields such that
the ilux through an elementary area g is much smaller
than the quantum-Aux unit @0.' (Spin effects which
change the site energies are ignored in our discussion of
the orbital effects. ) Equation (3) is thus modified to read

(5)
r

The elementary conductance of the system [Eq. (1)] then
becomes

2—ar,. —Pc,. 2 ]. ip

r
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P(J',J")= 1
~
Ji)2 j2g 2

e
a &2'

1 [Jii )2/'2~ 2

b&Z~

(8)

where

1 2 2 1a = —icos P, b =—+sin Pr .
n n

(9)

Thus P (J',J") is a product of two normal distributions,
for the real (J') and imaginary (J") parts of the field-
dependent effective overlap, with standard deviations a
and b, respectively. The resulting y distribution is

F(y )dy =fdJ'dJ"5(y (J') (J")—)P(J', J—")dy

governed by a distribution function which varies under
the effect of the magnetic field. Consequently, the per-
colation condition (2) yields a field-dependent critical
conductivity o, (H) and, in turn, the magnetoconductivi-
ty of the sample.

Consider first the probability distribution of y in the
absence of the magnetic field. The individual path over-
lap integrals may be assumed to be real. Then, for mutu-
ally independent path contributions, ~y~ is distributed
normally, ' i.e.,

Fo(y )dy =&I/2rre i' ~2d~y~, (7)

where for simplicity it was assumed that (J2 ) =1. Un-
der the assumptions above, the y distribution is indepen-
dent of the hopping distance and is peaked around y =0.
Correlations among the paths were recently considered in
Ref. 18.

In the presence of the magnetic field, it is convenient
to construct the y distribution from the probability
distributions of (J') =1/n(g Jzcosg ) and J"
=(1/n)(g Jrsingr), where ~J~ =(J') +(J") . As-
suming that for any path with a phase P there is also a
symmetric path with a phase —

Pr (an assumption which
is valid in the NSS model), the central-limit theorem' for
both J' and J"yields (see the Appendix)

towards finite values of y. The distribution is zero at
y =0, increases linearly with y and is peaked at y of the
order of b. Thus the effect of the magnetic field is to nar-
row the distribution ofy by favoring intermediate values
of y, of order b, instead of those ~ b, and reducing the
probability for larger y, as compared to the zero field dis-
tribution. This behavior is depicted in Fig. 1.

The magnetic field enters the distribution through the
phase factors a and b [Eq. (9)]. In the strong-field limit,
such that the magnetic flux through the hopping "area"
[of length of the typical hopping distance RM and width
of the order of (RMg)'~ ] becomes larger than the
quantum-Aux unit, a becomes comparable to b,
a -b —

—,', and the distribution saturates to the form

with a broad peak located at y —( —,')'~, and vanishing
linearly at y =0. We note that the way the b ~0 limit is
achieved is by the shrinking of the range (of order b in y)
where F vanishes at y &(b and has a peak for y -b (see
Fig. 1).

En the presence of a magnetic field, the distribution
function of y depends upon the hopping distance r
through the phase factors a and b. This complicates the
calculation of o, (M) by the percolation condition [Eq.
(2)],' but is not expected to be a major effect since every-
thing is governed by the critical bonds whose length does
not vary by orders of magnitude. For the sake of simpli-
city it will be assumed now that the relevant area for the
phase factors is characterized by the typical hopping dis-
tance RM. The elementary conductance [Eq. (6)] is then
a product of the quantum" factor y and the "classical"
exponential factor, exp( ar —Ps), each —obeying its in-
dependent distribution function. Assuming the site ener-
gies to be distributed uniformly in a band of typical width

I.0
o =O. I5

b= QQ
I

1 y'/4 2s' y (a b) z-
2ab 4a 2b 2 (10)

I
b=

,-'. ' b=p7
I

where Io is the modified Bessel function of order zero.
Equations (8) and (9) are most easily obtained in the

simple case where the J are independent random vari-
ables having a variance of unity. Assuming a symmetric
distribution for sin2$r one immediately finds that J' and
J" are independent Gaussian random variables distribut-
ed according to Eq. (8). This is really the central-limit
theorem. A fuller analysis leading to Eqs. (8) and (9) un-
der much more general conditions is presented in the Ap-
pendix.

The effect of the field upon the y distribution is clearly
seen from (8) and (10): As the field tends to zero, a —+ I
and b ~0. As a result, the second factor in (8) tends to
5(J") and the y distribution becomes a normal one, i.e.,
it is peaked at y =0 [Eq. (7)]. However, as the magnetic
field is switched on, the weight of the distribution shifts

0.6
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I, 1 r l

O.50
I I I s l s I I l I I i

!.00 l.50 2.00 2.50

FIG. 1. The distribution of ~y~ [Eq. {10)]for various values of
the magnetic field parameter b.
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8' the distribution function of the classical factor of the
conductance is [see Eq. (2)]

P(z)dz= fd(r")r"f dsP(e)5(z e~'—+ ")dz

1 12d 2d+ id
2P $y 2d (2d + 1) z

(12)

This form for P(z) is valid for s smaller than the band-
width (the relevant range for the variable-range-hopping
regime). The upper bound on z is determined in fact by
the convolution with the y distribution (see below) and

hence is of no importance.
With the explicit expressions for the distributions, Eqs.

(10) and (12), the percolation condition for o, (H. ) reads'

f d(cr/cro) f dz P(z)
c 0

X f dy F(y )5(cr/cro y —lz)=Z, .

(13)

The zero-field conductivity, cr, (0), is given by the same
expression with F replaced by its field-free counterpart,
Fo [Eq. (7)]. The relative magnetoconductivity (MC) is
therefore

cr, (H) —o, (0) o, (0)=f dz P(z) f dy [F(y ) Fo(y—)] f dz P(z)z ' Fo(zo, (0)/cro)o, (0} zo' (0) /0'p 1 0'0
(14)

o, (H) —a, (0)
cr, (0)

b2

[lnao/a, (0)] "+'

dz e
—z/2(z —3/2 z

—i/2)
o (0)/ p

X [1nzcro/a, (0)]

b'«o, (0)/o, .

Hence at very low fields the MC is quadratic in the mag-
netic field. ' For high enough values of cr, (0) /o 0
[o,(0)/cro) cr&/a0-10, see Ref. 15] the low-field MC
is negative as a result of the reduction of F below Fp at
large values of z. At lower values of o, (0)/cro the small-
field MC is positive,

cr, (H}—o, (0) -b [ao/a, (0)]'/ /[lnao/a, (0)]
C

b' «o, (0)/o 0 «1 . (17)

We emphasize that the negative MC at o )o.I, while be-

Using the explicit expressions for P(z) and Fo, one finds
that deep in the VRH regime the denominator on the
right-hand side of Eq. (14) is of the order of
[lnoo/o, (0)) "+', and in particular is independent of the
zero-field conductivity o.,(0). The sign and magnitude of
the MC will thus be determined by the di6'erence F—Fp
of the y distributions, appearing in the numerator on the
right-hand side of (14).

Integration by parts and rearrangement lead to the fol-
lowing form for the numerator of the MC:

f [lnzo o/cr, (0)] " [F(z) Fo(z)]dz, — (15)

which may be evaluated as follows. For very small mag-
netic fields such as b cro/o, (0) «1 the argument of the
Bessel function appearing in F(z) [see Eq. (10)] is very
large. One may then use its asymptotic form to obtain

ing a correct result of the model, is a weaker prediction
for real systems. For such large o's, the neglect of wind-
ing paths is not clearly justified. Their inclusion should
lead for o.-o.

p to the usual weak-localization MC. The
magnitude of the relative MC decreases with increasing
temperature ([oo/o, (0)]' =exp[(TO/T)' ' +"/2]).

We now turn the case o &&o I, not treated in Ref. 15.
Here, at intermediate values of the magnetic fields such
that 1 ))b & o, (0)/a 0 the main contribution to the in-
tegration in (15) comes from the region z & b and is posi-
tive, dominating the negative contribution from the re-
gion cr, (0) /o o

~ z ~ b . Using again the asymptotic form
for the Bessel function one finds for d =2 with
/1—:lnb o o/cr, (0) (a related expression applies at d =3):
a, (b) —a, (0)

o, (0)
-b[/1 +(2)5/1 +(2 )(5)4A

+(2 )5(4)3A +(2 )5!A

+(2 )5!]/[1nao/a, (0)] "+',
cr, (0)/cr, &b'«1 . (18)

In this regime the MC is quasilinear in the Geld with im-
portant logarithmic corrections. These cause the MC to
deviate from linearity (Fig. 2) and to appear quadratic
over much broader ranges of b. For b sufficiently larger
than o.,(0)/oo the MC has an approximately linear be-
ha»or (Fig. 2). The temperature dependence of the MC
arises from the e6'ective hopping area which determines
the phase factor b. This area is proportional to RM, i.e.,
to (To/T) / ' +", again yielding a decrease of the MC
with temperature. Finally, when the magnetic field is
strong enough such that the Aux through the hopping
domain is larger than the quantum-fiux unit (i.e., b
the MC saturates' to a relative value of order unity, in-
dependent of the magnetic field. The behavior of the MC
in the various regimes as computed from Eq. (14) is
shown in Fig. 2. One notes the quadratic-type behavior
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FIG. 2. The behavior of the relative MC as a function of the magnetic field (parametrized by C&M/d&o) in the various regimes [from
Eq. (14)] for three values of o, (0)/o o.

for moderate values of o, (0) /cr Owhich crosses over to
quasilinearity as o.,(0)/o o decreases.

III. EQUIVALENCE OF RESTRICTED
LOGARITHMIC AVERAGING

WITH THE PERCOLATION ANALYSIS FOR THE MC

averaging over the critical network (we emphasize that
this is not averaging over the whole network which may
give undue weight to, e.g., very small conductances).
This demonstration is straightforwardly generalizable to
the case where P (x) is governed by a joint distribution of
several variables (such as r, E, y in our VRH problem).
These issues are discussed in Ref. 19.

In this section we consider the generic problem of a
broad distribution of the conductance, e, on top of
which the individual bond values of x are randomly
changed each by a small Ax. This is evidently a
simplified picture; in the VRH model the bonds have
varying lengths and energies. Ax can be induced, for ex-
ample, by a small magnetic field. We denote the distribu-
tion of x by Po(x) and the distribution of bx by
Pa(x, bx ) (clearly, moments such as ( hx ) depend on x).
The distribution of u —=x+hx, is given by

P(u)= f dx fdbx Po(x)P&(x, bx)5(u —x —hx) .

(19)

f P(D)du =p, . (20)

We substitute (19) into (20) and perform the integration
over u

p, =fdx fdbx Po(x)P&(x, bx)B(u, —x bx ) . —(21)

Expanding the B function (this is justified for Pz which is
smooth on the scale of bx) and writing u, =u, +b,u„
where u, is the critical value before Ax was introduced,
we obtain after a further expansion in Au, :

b,u, = fd(hx )f dx Po(x)5(u, —x)

XbxP~(x, bx) f dx Po(x)5(x —u, )

(22)

i.e., the change hu is given by the average of Ax over the
critical bonds before the change. In terms of the bond
conductances e " this is a (restricted) logarithmic

The critical value of u is given by the percolation condi-
tion

IV. CONCLUSIONS

The conductance of each bond in the VRH model de-
pends on a sum over paths and is thus sensitive to in-
terference, and depends on an applied magnetic field.
Each bond, similar to a mesoscopic system, has a MC of
a random sign. The surprising result is that the resultant
low-field orbital MC of the macroscopic system is not
averaged out but instead shows a well-defined, substan-

. tial, value. This follows from both the critical path
analysis and from a modified logarithmic averaging' on
the critical network.

The MC is governed by a flux in a typical area given by
R~ g'/. '" At (relatively) large fields, such that the
above flux is much larger than a flux quantum, Np, the
relative MC tends to a positive constant on the order of
0.1 which depends on the zero-field conductivity o, The
extremely low-field MC depends on o., as well. For
o, ~o.

&

—10 "o.
p, the MC starts negative and crosses

over to positive. For o., -o.I, it is positive, proportional
to H for 4~&&Cp and saturates at C~)+Cp. For
rr, ((o.&, there is an additional crossover of the (positive)
MC from H to "quasilinear" behavior for
(@M/%0) -a, /oo. In the latter, there is a wide range
where the logarithmic corrections cause the MC to be
roughly quadratic with an efFective linear behavior at
much larger @M/@p values. These features are in agree-
ment with experiment.

We have proven that these results are due to a central-
lim. it theorem and should thus be quite general. An in-
teresting, still open question is how they crossover to the
usual weak-localization results at o., -o.

p when back-
scattering becomes important. The latter show the usual
sensitivity to, e.g., spin-orbit coupling which is typical of
the "coherent backscattering" mechanism and is not ex-
pected to occur in our model. This crossover may also
influence the negative MC found in our model for the
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largest o., 's. For very strong disorder it is possible that
the direct path for hopping will become dominant and
the MC will vanish. These questions deserve further
study.

Note added in proof. The probability distribution
F(y ) [Eq. (10)] was evaluated for a specific, simplified
model. Yet, its main features (Fig. 1), namely, the nar-
rowirig of the distribution in the presence of magnetic
field and the limiting form for strong enough fields, are
far more general and react the symmetry crossover of
the Hamiltonian from the orthogonal to the unitary en-
semble. It is well known from the theory of conductance
fiuctuations (closely related to random matrix theory)
that the fIuctuations in the wave-function amplitude at a
given point are smaller for the unitary ensemble com-
pared with the orthogonal one (y is proportional to the
wave-function amplitude squared). Strong spin-orbit
coupling should reduce the symmetry to the symplectic
one and hence narrow the distribution even further. An
application of strong enough magnetic field should then
result in broadening of F (y ) and probably negative mag-
netoconductance.

sions. We also thank D. Herman, A. B. Fowler, D. S.
Fisher, and J. Chalker for useful discussions. This
research was partially supported at Tel Aviv University
by the fund for basic research administrated by the Israeli
Academy of Sciences and Humanities, and at the
Weizmann Institute of Science by the Minerva Founda-
tion Munich, Germany. One of us (U.S.) was supported
by the Weizmann Foundation.

APPENDIX: DERIVATION OF THK OVERLAP
PROBABILITY DISTRIBUTION

Here we outline the derivation of the probability distri-
bution P(J',J") [Eq. (8)]. Given the probability density
P(J„J2, . . . , J„)dJi dJ„ that the ith path contrib-
utes J; to the effective overlap (i =1, . . . , n), the explicit
form of P(J',J") is

P(J',J")=JdJI. . . dJ„P(J], . . . , J„)

X 5 J' — —gJr caser
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Expressing the 5 functions in the form of Fourier in-
tegrals, Eq. (A 1) takes the form

P(J', J")= I dx, dxze
(2~)

X +IdJi . dJ„P(J„.. . , J„)exp( ix, J&cos—grl&n —ix2Jrsingrl&n ) .
y

(A2)

1 —— (x, cos P +x2sin Pr)+ .
y

(A3)

One then expands the exponentials appearing in the
second factor of (A2). Assuming a symmetric distribu-
tion of the J s and that each path characterized by P
has its counterpart with —P, the second factor in (A2)
yields

I

The higher-order terms include factors of order nn, etc. For large' n, Eq. (A3) becomes
exp[ —

—,'(x, a +xzb )], to leading order, where

a =g (Jr )cos grin, b =1—a . For simplicity, and

without substantial loss of generality, we choose
(J ) =1. Inserting this form into (A2), and performing
the x, and xz integrations, we obtain Eq. (8).
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