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Limiting-path model of the critical current in a textured YBa2Cu307 —b fBIIs
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A limiting-path model for the determination of the critical current in a polycrystalline super-
conductor is presented which allows for the exact calculation of the critical current given the indi-
vidual intergrain couplings. The model is used to determine the a-axis texturing dependence of
the critical current density in a c-axis-oriented polycrystalline YBa2Cu307 —& film. The critical
current density in untextured material is suppressed by a factor of = 3', as compared to the
single-crystal value and can be raised considerably only by strong a-axis texturing (to within 5 ).
A nontrivial length dependence of the critical current density is found for long polycrystalline
wires.

The problem of critical current flow in polycrystalline
samples has obtained a new dimension with the advent of
the oxide superconductors. In a recent Letter, Dimos et
al. ' reported on measurements of critical current densities
across grain boundaries in (c axis oriented) bicrystals of
YBa2Cu307 s. Their data show a strong dependence of
the critical current density on the misorientation angle in
the basal plane a axis of the bicrystal, with a reduction in
current density reaching a factor of,'0 . These results in-
dicate that the critical current in polycrystalline films de-
pends strongly on texturing.

In this Rapid Communication we present a model for
the determination of the critical current in a polycrystal-
line superconductor. Using the experimental data of Di-
mos et al. , we calculate the critical current and its textur-
ing dependence in a c-axis-oriented thin film of
YBa2Cu307 —s. In particular, we find that the current
flow in an untextured film (i.e., with randomly directed a
axis) is suppressed by a factor of 3'0 .

In a polycrystalline high-T, superconductor the ran-
domly oriented grains introduce random coupling
strengths between the grains whose weak link behavior
suppresses the intergrain current flow. Within a classical
model we can determine the critical current of the sample
by finding that interface which minimizes the sum of in-
tergrain critical currents across the interface and which
separates the current feeding contacts. This simple idea
reduces the calculation of the critical current in a poly-
crystalline superconductor to a limiting interface problem.
This class of interface problems has been studied in con-

' nection with several random systems, in particular
domain-wall roughening in Ising models and growth of
directed polymers in random media.

The problem of calculating the critical current of a
granular superconductor starting from its individual inter-
grain couplings has been addressed previously: Huse and
Guyer treated the problem of superfluidity in a porous
medium using ideas presented in this paper but had to in-
troduce various approximations. Octavio et al. , using the
Y V transformation, were able to calculate the critical
current exactly. This method, while being very eIIicient
for large lattices, is a formal decimation technique, which

l, -max g i21
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where v [2(@+1)](mod2mn) and p 0, . . . , mn —1.

yields no information on the actual current flow and on
the interface across which the breakdown of superconduc-
tivity occurs. The present paper bridges between the two
approaches by providing the exact calculation of the limit-
ing interface.

In modeling the thin film we consider a single layer of
grains and formulate the problem of current limitation as
a linear optimization problem which we solve exactly by
the simplex method. The result of this calculation will
show how the problem can be reformulated as that of
finding the best path in a two-dimensional random medi-
um. We use a generalized version of the transfer-matrix
method of Derrida and Vannimenus, and Kardar and
Zhang, which includes also the returning paths and thus
provides an exact and numerically efficie'nt solution of the
problem. The algorithm is used to study the dependence
of the critical current density on sample size and on
texturing.

Consider a single layer of grains arranged on a mxn
square lattice (lattice constant of 1); see Fig. 1. With
their c axis orthogonal to the 61m, the individual grains
are characterized by the direction p of their a axis with
respect to an arbitrary but fixed direction. The angles p
are chosen randomly between 0' and 90' with a Gaussian
distribution g&,(p) of width po [g&(p) —exp( —

P /Po)].
We assume a constant intragrain critical current density
(normalized to 1) throughout the sample such that the in-
tergrain critical current i, (e) is given solely by the
misorientation angle 8 ( p

—p'~ between the a axes of
two neighboring grains. ' The junctions are numbered
consecutively as shown in Fig. 1, and periodic boundary
conditions are applied along the current flow direction.
The critical current I, is found by solving the following
linear problem for the current flow i(, I 1, . . . , 2mn:
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FIG. 1. m xn lattice modeling a single-layer c-axis-oriented
polycrystalline film. The directions p of the a axis are chosen
randomly with a Gaussian distribution of width po. The inter-
grain critical currents i, depend on the misorientation 0 between
neighboring grains. Periodic boundary conditions are applied in

both directions with a cut i, 2I, =0
, (k =1, . . . , m) at the left

and right boundaries, forcing the global current flow into the
vertical direction.

Equations (1)-(3) constitute a linear optimization prob-
lem which can be solved exactly using the simplex
method. In Fig. 2 we show the result of such a calcula-
tion (m n =24) for a uniform distribution of angles p
and the following parametrization of i, (0) based on ex-
perimental data: '

r

1 1

1+e/e, 1+ (90 —e)/e,

with the parameters i, = —0.08, i,0=0.6, and 00=4.0 .
The main result is the following. As the critical current is
reached there is one and only one path y, crossing the
sample in the direction orthogonal to the current How with
all junctions lying on this path carrying the critical
current [it ~

=i,I, i c y, . This path minimizes the sum
gt g r l I taken over all possible paths y crossing the sam-
ple from left to right and therefore I, =pl ~ ~, i,I We cal.l
y, the critica! or limiting path The critic. al path always
exists, since otherwise we can find at least one percolating
chain of grains along the direction of current flow on
which all the junctions are undercritical. In this case the
current through the sample can still be further increased,
contradicting the assumption that the critical current has
been reached.

The critical path is in fact a long (length i, ) inhomo-
geneous Josephson junction crossing the whole sample.
As the current is driven beyond the critical value a finite
voltage will appear across the critical path. The charac-
teristic length describing the junction on a microscopic
scale is the transverse penetration depth X, =(cool,d/
16m AI, ) ', where No =he/2e, k is the grain penetration
depth, and d is the film thickness. For our classical model

FIG. 2. Critical state of a 24X 24 lattice determined with the
simplex method. The directions p of the a axis are distributed
uniformly, &0 =~. Dotted lines are undercritical junctions, con-
tinuous lines denote critical junctions, and the thick line is the
critical path y, . The critical current is determined by summing

up the couplings i,I along the critical path, I, =0.813. Whereas
the critica1 path is uniquely determined, other critical junctions
can be made undercritical by a small rearrangement of the
current flow. For a textured sample the number of critical verti-
cal junctions decreases, indicating an increasingly laminar flow.

to be applicable we have to exclude the existence of inter-
grain vortices which would have to be described by a mod-
el taking into account the phase of the coherent supercon-
ducting state, e.g. , by the XYmodel. For strongly coupled
grains, i.e., k, (L, where L denotes the grain size, no in-
tergrain vortices can exist. ' In the oxide superconductors
the intergrain current densities are of the order of 10
Acm 2 and the grain penetration depth is k=0.2 pm.
The resulting transverse penetration depth if X, =2.5 pm,
which is smaller than the typical grain size L =10pm and
we conclude that our classical model can be applied. "

The reformulation of the maximal current problem
(1)-(3) as that of finding the limiting path is the follow-
ing one: Find the path y, from the left to the right edge
which minimizes the functional gl ~ „i,I. This best path
problem can be solved, within the restricted set of nonre-
turning paths, by the transfer matrix method used in Refs.
3 and 7. %e have generalized this method to include re-
turning paths, irrespective of how complicated their struc-
ture is. The basic idea is to include both forward and
backward transfer steps. The importance of returning
paths depends on the details of the intergrain coupling dis-
tribution w&, (i) which can easily be obtained from g~, (p)
and Eq. (4). Whereas the omission of returning paths
changes the results for the critical current density (J,) by
less than 0.1% for a distribution w&, (i) based on Eq. (4),
their inclusion turns out to be important in the percolation
problem" with only two values for i,I, one of which is
zero.

We first address the problem of the existence of a well-
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defined critical current density characterizing the film.
We expect the critical current I, of a film to be propor-
tional to the length l, of the critical path. In Fig. 3 we
show the scaling behavior of (i,) with sample size n for
square-shaped samples, m n. The critical path length
depends linearly' on the sample dimensions for n ~ 50,
(l, )= [1+x(po)]n, with the coefficient x (po) determined
by the coupling distribution. As a consequence the critical
current density (J,) (I,/n) saturates and thus is a mean-
ingful quantity characterizing the film. In addition, we
have found that (J,) is independent of the sample form
q m/n in the limit m qn ~. ' This result is due to
the rapid narrowing of the distribution function for J,
with increasing size n (its width scales as n — )
showing that self-averaging takes place in a single large
sample.

An interesting length dependence of the critical current
is found for a long wire, m ~, n const. The critical
current density always drops to the minimal coupling i,
since the probability to find a straight critical path
(i, n) with a current density in the interval [i„i,+bi]
approaches unity for arbitrarily small positive bi The.
asymptotic form of &J,(m)) depends on the properties of
w(i) near i, We. have calculated the asymptotic length
dependence for two classes of coupling distributions.

(i) Two juncti-on model: u (i) p, h(i —i, )+ (1 —p, )
xh(i —(i, +6)), p, ( l. In this case the critical current
density approaches &, exponentially:

&J,(m)&-i, +ice /L+ .

io min[i, +6/n, (1+1/n)i, ],
L ' —ln(1 —p,")=p,".

The critical fiow model of Huse and Guyer corresponds
to such a two-junction model with i, =0. In this limit the
critical current density can be found by counting the num-
ber of percolating paths connecting the contacts.

(ii) Continuous coupling distribution: w(i) A (i

—i, ) +0((i —i, )'+'), a ) —1. The decay of the
current density is only algebraic with. a strong dependence
on the wire thickness n:

&J, (rrt)& i, +in(n, A, a)m '+O(m I +' ),
. ( ~ )

[An'+ r(1+a)]" (I+ )1-(I +n(l +a))
with X [n(a+I)] '. Fori, (e) given by Eq. (4) thede-
cay of the critical current density is algebraic with an ex-
ponent X 2/n [class (ii), a ——,

' ]. The exponential de-
cay of (J,(m)) for the two-junction model is due to the
gap in the coupling distribution [w (i) 0] which
separates i from the larger couplings. The above results
illustrate that the length dependence of the critical
current in a long wire is drastically weakened by increas-
ing its width n.

Finally, we discuss the dependence of (J,) and (1,) on
texturing; see Fig. 4. As the directions p of the a axis in
the grains are lined up, po~ 0, the average coupling (i,)
shifts towards large values. The mean critical current
density (J,) increases with texturing but always remains
well below the average coupling (i,). This behavior illus-
trates that the critical current density cannot be deter-
mined from the average properties of the material. The
suppression factor for the critical current density reaches

in the case of an untextured material and we find that
only very strong texturing (go~5') will increase the
current density close to the maximal coupling strength
ib 0.54. The length of the critical path (1,) changes with
the degree of texturing and shows a maximum at pa 35'
where the disorder in the couplings is largest. Increasing
texturing further, the current Bow pattern becomes lami-
nar with fewer and fewer saturated longitudinal bonds
and eventually the critical path approaches a straight line
with &i,) -n

In conclusion, we have reformulated the problem of
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FIG. 3. Relative critical path length &i,&/n and critical
current density (J,) vs sample size m n. For n & 50 the critical
path length increases linearly with the sample size n. This be-
havior implies the saturation of the critical current density (J,),
which therefore becomes a meaningful quantity characterizing
the quality of a polycrystalline film.
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FIG. 4. Critical current density (J,}and relative critical path
length vs width t&o parametrizing texturing. &J,& and &i,/n& have
been evaluated at 0.9', 2.25', 4.5, 6.75, and at all multiples of
9 . Average has been taken over 300 samples with m n 50
(including returning paths); the error bars are smaller than the
thickness of the lines. Note that the average coupling strength
&i,) is not a good approximation for (J,). In untextured material
the critical current density (j,) is suppressed by a factor of,& as
compared to the single-crystal value.
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current limitation in a polycrystalline superconductor as a
limiting path problem. We have applied the model to the
determination of the critical current in a polycrystalline
c-axis-oriented thin film. The results of our calculations
show a very strong texturing dependence of the critical
current in polycrystalline films. Only very strong a-axis
texturing (po 5') can increase i, near the intragrain
critical current density. This result provides a possible ex-
planation of the difference between critical current densi-

ties found in single crystals and in polycrystalline c-
axis-oriented thin films. "
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