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Mode conversion and the electron-phonon distribution in nonequilibrium metal films
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We present a model to describe the phonon distribution injected into a solid from a heated metal
film in which spontaneous phonon decay is present. The phonon-decay processes are shown to have
three main effects: First, after excitation of the metal film the characteristic temperature of the elec-
tron distribution is lower than predicted by other models; secondly, the high-frequency component
of the longitudinal-phonon spectrum is attenuated; and thirdly, a nonequilibrium transverse-phonon
spectrum is generated. We discuss the dependence of these effects on the electric field applied to the
film and show that the results are consistent with the available experimental data.

INTRODUCTION

Si,nce the early work of von Gutfeld, ' heat-pulse mea-
surements have been used by many to study the proper-
ties of phonon propagation in solids. ' In these experi-
ments a metal film of thickness d is deposited onto a sub-
strate and is heated either electrically or optically. In
both cases, the energy delivered to the electrons is dissi-
pated to the phonons producing a heat pulse. The
acoustic-mismatch model" was the first attempt to de-
scribe the injection of phonons into a solid from a heated
metal film. In this model it was assumed that the pho-
nons leaving the film followed a Bose-Einstein distribu-
tion with an associated temperature determined by a bal-
ance between the electrical power into the film and the
loss of phonons from the film. Later, Maris and Perrin
and Budd ' introduced a more realistic model describing
the distribution of phonons escaping from the film by tak-
ing into account the frequency dependence of the
electron-phonon interaction in the metal. This model
predicted a phonon distribution that difFered significantly
from a Bose-Einstein distribution.

Summarizing the arguments of the Perrin-Budd model,
an electric field applied to a metal film heats the electrons
above the lattice temperature and, assuming the
electron-electron interaction is sufficiently rapid com-
pared with other processes in the film, the electron sys-
tem attains a Fermi-Dirac distribution at a temperature
T, . The ensuing loss of energy to the phonon system, to-
gether with the modification of the phonon distribution
away from the ambient Bose distribution, is characterized
by the electron-phonon relaxation time, ~, h, and a time
of phonon relaxation, ~b, towards the substrate tempera-
ture. These two relaxation processes act in competition

so that phonons for which ~, ~h/~b ))1 remain close to
the temperature of the substrate while those for which

h/~b &(1 will be heated above the temperature of the
substrate.

In the original model the mechanism of phonon relaxa-
tion was simply phonon loss from the film into the sub-
strate. Several assumptions were made to obtain a simple
expression for the rate of phonon escape from the film.
First, phonon propagation within the film was ballistic;
secondly, the film material was elastically isotropic and
thirdly, a refIection coefficient describing the probability
of a phonon traversing the film-substrate interface was
frequency independent. With these assumptions
~b=4gd/v, where U is the sound velocity and g is the
frequency-independent reAection factor that is equal to
the reciprocal of twice the appropriate values of I de-
scribed by Little. ' Hence, in the linear dispersion re-
gime ~b is independent of the phonon wave vector. The
formulation used by Perrin and Budd to describe the fre-
quency dependence of the electron-phonon scattering
rate, '7

ph was presented by Pippard. This model shows
that for a crystalline metal with a spherical Fermi sur-
face, ~, 'h is proportional to the phonon wave vector.
Furthermore, because of the spherical Fermi surface, the
interaction only provides coupling between the electrons
and longitudinal phonons. From the models for the re-
laxation times ~b and 7 ph the wave-vector dependence
of v ph /7 b establishes that high-wave-vector phonons
will come into quasiequilibrium with the hot electrons
while those of low wave vector will remain close to the
temperature of the substrate.

Several experiments' '" have shown that at low levels
of heater excitation the acoustic-mismatch model and the
Perrin-Budd model adequately describe the phonon spec-
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trum injected from a metal film into a substrate. Howev-
er, when the excitation levels are increased, and high
phonon frequencies generated, agreement between theory
and experiment becomes poor. Using an optical tech-
nique, Bron and Grill" have analyzed the spectral distri-
bution of a phonon pulse and have shown that the high-
frequency components are substantially reduced from the
levels predicted by either of the two theoretical models.

More recent studies' of phonon generation from me-
tallic films excited at high power levels have also shown
attenuation of the high-frequency component of the pho-
non distribution compared with that predicted by Perrin
and Budd. The only explanation consistent with all as-
pects of the experimental data was that the high-
frequency phonons generated within the film underwent
strong spontaneous phonon decay before being emitted
into the substrate.

In this paper we describe a phonon-radiation model in
which we have incorporated spontaneous phonon decay
via three-phonon processes as an additional mechanism
by which the phonons can relax towards the ambient
temperature. It is shown that for an isotropic metal film
in the steady state the spontaneous phonon decay
modifies the longitudinal-phonon spectrum, produces
nonequilibrium transverse-phonon spectra, and reduces
the temperature reached by the electrons. We demon-
strate that a good correspondence between the calcula-
tions and the experimental data exists and that phonon
decay in the heater film reduces the need to consider any
frequency dependence of the acoustic-mismatch parame-
ter.

MODEL

An analysis of heat-pulse generation requires the solu-
tion of coupled electron and phonon transport equations
with appropriate boundary conditions at a film-substrate
interface. In order to make the problem tractable, we fol-
low the previous work of Perrin and Budd and assume
the phonon and electron distributions to be spatially uni-
form and the exchange of energy between the phonons
and the substrate to be described by the relaxation time

In this approximation the evolution of the phonon
I

distribution N (q) is given by

5NJ(q) N~(q, T, ) N—, (q) N)(q, To) —N, (q)+
&l-ph(q) ~J

where To is the substrate temperature and N, (q, T) is the
Bose distribution of mode j evaluated at temperature T
and wave-vector magnitude q. The electron-phonon re-
laxation rate given by Pippard is

[~, oh(q)] '=:- m q/2A harp

for the longitudinal mode and

I:&' I h(q) j

for the transverse modes, where = is the deformation po-
tential, m is the electron mass, and p is the mass density.
We note, a spherical Fermi surface is considered here.

The model thus far described has only one possible de-
cay channel for the longitudinal-phonon energy, that is
via phonon escape to the substrate. We now introduce
further terms to take account of the possibility of
phonon-energy relaxation via spontaneous phonon-decay
processes in the metal films.

The decay of longitudinal phonons in an isotropic solid
has been shown' ' to proceed via the three processes,
L~L+T~, L—+T, +T„and L~T~+T~. Each process is
governed by the conservation of energy and momentum
and has a characteristic relaxation time proportional to
q in the Debye model. In this paper we designate the re-
laxation times r, (q), rz(q), and r3(q) for the three decay
processes, respectively. The collinear process L~L+ L
is also possible, ' but from a final-density-of-states argu-
ment the decay rate is small compared with the other
processes, and so, we neglect it in the present calculation.
The decay of transverse phonons is prohibited in an iso-
tropic solid owing to the conditions of energy and
momentum conservation, and is, therefore, disregarded
here.

. The modification of Eq. (l) to include decay of the lon-
gitudinal phonons leads to the following two equations
for the longitudinal-phonon distribution,

„(q)
5NL(q) NL(q, T, ) —NL(q) NL(q To) Nr (q) NL(q, T0) —N„(q) NL(q, T0)—NL(q) N„(q, T0)—NL(q)+ + + +

6t +b ~, (q) r~(q) r3(q)

(2)

5NL(q')

6t
NL(q 0) NL(q) NL(q ) NL(q ) L(q To) NL(q ) NL(q 0) NL(+ + +

r, (q) r, „„(q') +b r)(q')

NL(q', To) NL(q ) NL(q To) N„(q')+, +
r&(q') r3(q')

(3)

where from the conservation laws and to maximize the
joint density of final states, q'=q/2. The final distribu-
tion of longitudinal phonons, therefore, will have two
components, one arising from direct generation, the other
from the decay L~L+Tz for phonons of wave-vector

I

magnitude q &qzz/2, qzz being the wave-vector magni-
tude at the isotropic zone boundary. In addition, the
transverse phonons produced by the L~L+T~ decay,
together with those produced by the last two terms of
Eqs. (2) and (3), provide nonequilibrium distributions of
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5Nr (q")

5t

Nr (q", To) N—r (q")
T

1
+b

transverse phonons. The evolution of the transverse-
phonon distributions can be described by

In order to be able to calculate the phonon spectra for
a given set of parameters, it is necessary to estimate the
steady-state electron temperature for a given applied field
E. This is accomplished by considering the energy bal-
ance between electrons and the longitudinal phonons
given by

oN~ (q")

6t

NL(q, To) —N&(q)—2
r2(q)

NL(q, To) —NL(q)

r, (q)

Nr (q ', To) Nr (q )

+ 2 2

T2
7b

NL(q, To) —NL(q)—2
r3(q)

(4)

(5)

Q2 = g A'co(q)
ptot q

NL(q, T, )
—NL(q)

(10)

RESULTS

where E is the electric field and p„, is the sum of the
impurity-limited resistivity pi and the resistivity arising
from the phonons. Successive approximations for T,
are made until energy balance is achieved to the accuracy
required. The phonon spectra are then calculated for the
values of T, satisfying energy balance.

N„(q) = [NL(q, T, )+x (q)NL(q, To)],
1

1+x q
It

(
,

)
re-ph q 1 1

r&(q) 1+x (q') 1+x (q)

X [NL(q, T, ) —NL(q, To )]
1+ [NL(q', T, )

—NL(q', To)]1+x q'

+NL(q', To ),

(6)

2r„'(q" )
Nr (q")= [NL(q, T, ) —NL(q, TO)]r, q 1+x q

+Nr (q", To),
(8)

1 2 1

r, (q) r3(q) 1+x (q)

X[Nt, (q T. ) NL(q To)]+Nr (q To)

Nr (q")=r&'(q")

where

1 1 1 1x(q)=r, „(q) + + + . (9)
q r~ q r3(q)

where q"=(c/2)q with c being the ratio of the longitudi-
nal to transverse velocity of sound. The factors of 2 ac-
count for the number of phonons generated in the decay
processes L~T, +T, and L~T2+Tz.

The magnitude of the relaxation times ~&, ~z, and ~3 has
been the subject of debate for sometime and consequent-
ly, the dominant decay channel has been uncertain. Re-
cently, Tamura' has reevaluated the magnitude of the
spontaneous decay rates for longitudinal phonons in an
isotropic solid and has shown that the decay into two
transverse-acoustic modes dominates. The decay rates
obtained by Tamura have been explicitly presented by
Berke et aj'. ,

' and it is from these expressions'that we
have determined ~„~2, and ~3 for this paper.

Solutions for the steady-state phonon distributions are
obtained directly from Eqs. (2)—(5),

Using the model described above, we have calculated
the longitudinal- and transverse-phonon spectra generat-
ed by electrically heating a 10-nm-thick gold film deposit-
ed on a sapphire substrate. The equilibrium substrate
temperature used was To =7 k. The following con-
stants were used: electron density n =6 X 10 m

pI = 5 X 10 0 m, mass density p = 19 300 kg m, and
deformation potential:-=3. 77 eV. We also used second-
order elastic constants measured at 10 K, '

C)) =2.0161X10" N m, C)~ =1.6967X 10" N m
and C44=0.4542X10" Nm, and third-order elastic
constants calculated at 0 K, ' C &44

= —1.224 X 10"
N m and C456 = —1.561 X 10" N m . Using the
method described by Fedorov to define an isotropic
medium most similar to the given crystal, we have calcu-
lated the sound velocities from the elastic constants and
the mass density to be v L

=3.42 X 10 m s ' and

v~ =1.32X 10 m s '. The resulting phonon-relaxation
rates r& with g=12.5 are (~t, ) '=0.68X10' s ' and

(rg ) (7 y )
' =0.26 X 10' s '. The magnitude of the

isotropic zone-boundary wave vector, qza, for gold was
estimated from the low-temperature lattice constant of
0.395 nm and the fcc structure, to be 1.72 X 10' m

The longitudinal-phonon energy-density distribution,
q NL(q) generated with an electric field of 1.55X10
V m is shown in Fig. 1 (curve 1) together with the ener-

gy density calculated without the inclusion of spontane-
ous decay (curve 2). The most prominent diff'erence be-
tween the two spectra occurs for wave vectors above
qzB/2. Down-conversion reduces the energy density of
phonons close to the zone boundary by approximately 2
orders of magnitude and produces a maximum in the
spectrum at a wave vector slightly below qzB/2. We note
that because the spontaneous decay provides a mecha-
nism for energy to be lost from the longitudinal to the
transverse modes, the longitudinal-phonon energy density
calculated with down-conversion always lies completely
below the energy density calculated by the original
Perrin-Budd model. The corresponding energy density
q Nr(q) for the transverse modes T, (curve 1) and T2
(curve 2) is shown in Fig. 2. The high-wave-vector part
of the spectrum (q )2X10 m ') is generated by down-
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FIG. 2. The transverse-phonon energy-density distribution
for a field of 1.5SX10' Vm '. The T, and T~ modes are shown
in curves {1) and (2), respectively, and curve (3) shows the
transverse-phonon distribution at the ambient temperature.

FIG. 1. The longitudinal-phonon energy-density distribution
calculated with [curve (1)] and without [curve (2)] three-phonon
processes.

conversion of the longitudinal phonons, whereas the
low-wave-vector part corresponds to the equilibrium dis-
tribution NT(q, To) at To. The equilibrium energy spec-
trum at high wave vectors is shown by the dashed curve
(3) in Fig. 2.

The differences between the longitudinal-phono n
energy-density spectra with and without down conversion
can be understood by considering the various relaxation
rates in the problem. Using the constants given above,
we estimate that (ib) '=0.68X10' s ' and r, ~&=2. 1q
s '. From the expressions given by Berke et al. , we cal-
culate that ~i '=7X10 'q s ', ~z '=2X10 q s
and ~3 '=4X10 q s ' showing that the L~T2+T2 is
the dominant three-phonon process. For wave vectors
close to the zone center (rb) ') ~, ~t, ) r3 ', therefore,
the phonons generated by the electrons escape from the
film without undergoing spontaneous decay. In this limit
the present model agrees with the original Perrin-Budd
model as shown in Fig. 1. In the wave-vector regime
where (rz) '&r, ~t, (r3 ', the phonons are generated
and escape at a rate below that of spontaneous decay;
thus, all of the phonons decay before they are able to
leave the heater film. This situation exists for phonons of
wave vector above 8.5 X 10 m ', that is qzB/2, and so, in
this region we expect the greatest difference between the
models with and without spontaneous phonon decay.

The longitudinal- (L) and transverse- (T„Tz) phonon
energy-density spectra, and the total energy-density spec-
trum (X), including both the longitudinal and transverse
modes, are shown in Fig. 3 for an electric field
F. =1.55 X 10 V m '. The important contribution of the
transverse modes to the total energy spectrum is easily
seen from this figure. The low-frequency part of the
transverse-phonon energy spectra (curve T) is the equilib-
rium distribution X(co, To ) at To. A nonequilibrium
spectrum for the transverse phonons appears for
co —3 X 10' s '. The transverse-mode energy spectra are
larger than that of the longitudinal mode, except in a
small region about the maximum where the nonequilibri-
um transverse spectra appear. This is in fact due to the
higher density of states of the transverse phonons, as can
be seen from Fig. 4 where the corresponding phonon dis-
tributions X (co) for the mode j are shown. At large fre-
quencies co) 3X10' s ', the transverse-phonon equilib-
rium distribution is very small [curve (5)]; thus, the
minimum observed in the T, and Tz distributions [curves
(3) and (4)] is due to the occurrence of down-conversion.
A maximum is also observed in these curves: it resu1ts
from the low value of the distribution of the longitudinal
phonons that can be down-converted at high frequency
[curve (1), cozB/2 ( co ( cozB]. Around this maximum, the
transverse-mode distributions are larger than the longitu-
dinal distribution which indicates the importance of
down-conversion; this is also seen by comparing the
curves (1) and (2) that represent the longitudinal-phonon
distributions without [curve (1)] and with [curve (2)]
down-conversion.

We have also investigated the dependence of the
longitudinal-phonon energy-density distribution on the
applied electric field. The wave-vector dependence of
'T

pI1 shows that hot electrons tend to rel ax by emitting
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FIG. 3. The longitudinal (L) and transverse phonon (T„T2j
energy densities together with the total energy-density spectrum

( X ). cozy is the angular frequency of the longitudinal mode at
the zone boundary.

phonons of high wave vector. In the original Perrin-
Budd model this eff'ect was manifest by the peak of the
phonon-energy density distribution increasing from the
maximum of the ambient-temperature Bose-Einstein dis-
tribution to higher wave vectors as the electric field was
increased. Further increases in the field caused the max-
imum to continue to move to higher wave vectors and ap-
proach the zone boundary. ' %'e have found this behav-
ior to be modified in the presence of spontaneous phonon
decay. The energy-density distributions of longitudinal
phonons for several values of the electric field are shown
in Fig. 5. As expected, the three-phonon processes
reduce the energy density for phonons of wave vector
above qzs/2. We note that the energy-density curve ob-
tained for the lowest field considered, 10 V m ', hardly
diff'ers from the corresponding curve without down-
conversion at wave vectors greater than 5 X 10 m
(dashed curve). The peak of the distribution as a function
of electric field is shown in Fig. 6. In the presence of
three-phonon processes, as the electric field is increased
from zero, the maximum of the energy density follows
the original model up to fields -2X10 Vm '. At
higher fields the position of the maximum becomes less
dependent on the electric field and approaches a value of
qzB/2. An interpretation of this behavior is relatively
straightforward; as the electron temperature is increased
by the field, higher-energy phonons are emitted. The q
wave-vector dependence of the three-phonon processes
makes spontaneous decay more eff'ective at high fields,
and so, the large-wave-vector phonons emitted by the
electrons rapidly down-convert before being able to leave
the film.
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FIG. 4. The frequency distributions for the longitudinal and

transverse phonons for a field of 1.55 X 10' V m
FIR. 5. The energy-density distribution of the longitudinal

phonons for several electric fields.
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FICz. 6. The dependence of the magnitude of the wave vector
corresponding to the peak in the energy density, as a function of
electric field. The straight line indicates the dependence in the
absence of three-phonon processes.

From the condition of power balance we have also
been able to determine the steady-state electron tempera-
ture for a given electric field. To illustrate the effect
spontaneous phonon decay has on the electron tempera-
ture, we have calculated the ratio of the steady-state elec-
tron temperature ( T, )pc with phonon decay to the elec-
tron temperature T, without phonon decay, Fig. 7. At
the lowest electric fields, the electron temperature is close
to that found by Perrin and Budd. However, as the field
is increased, the ratio falls until at high fields it goes
through a minimum. We note that the field at which the
ratio of electron temperatures starts to decline is the
same field at which the dependence of the energy-density
maximum begins to deviate from the original Perrin-
Budd model ~ The high-field electron-temperature behav-
ior results from the increased electron scattering that in-
creases the resistivity of the metal. When the down-
conversion is not considered, this leads to a value of T„
for a given electric field, smaller than the value obtained
with resistivity determined by the impurities only [Eq.
(10)].

Finally, we briefly compare the results of our calcula-
tions with some experimental data. The spectroscopic
studies of Bron and Grill" showed that a heat pulse emit-
ted from a thin Inetal film contained fewer high-
frequency phonons than predicted by Perrin and Budd.
Bron and Grill put forward an interpretation of the
discrepancy based on the fact that the frequency-
independent acoustic-mismatch model was breaking
down for phonons whose wavelengths approached atomic
dimensions. The present calculations indicate that pho-
non down-conversion in the metal films is sufficient to ac-
count for the reduced numbers of high-frequency pho-
nons. Furthermore, the present model suggests that the
majority of phonons impinging on the film-substrate in-
terface are of a wavelength greater than atomic dimen-
sions; consequently, the frequency-independent acoustic-
mismatch approximation is expected to be valid in this

FIG. 7. The ratio of the steady-state electron temperatures
with and without the three-phonon processes, as a function of
electric field.

case. We note that in a real metal-film heater, mode
softening near the zone boundary will cause the down-
conversion of near-zone-boundary phonons to become
even more efficient since their escape time will be in-
creased. Moreover, in the real situation high-frequency
phonons will be more strongly scattered at the film-
substrate interface which will further increase their es-
cape time. A more detailed analysis of the similarities be-
tween the present work and the data of Bron and Grill is
inappropriate since the heater and substrate materials
used in their experiments were substantially different
than those considered here.

A closer comparison may be made with recent
phonon-pulse data obtained using thin gold-palladium
films deposited onto a carefully prepared sapphire sub-
strate. ' The films were excited using electric fields of up
to 3 X 10 V m ' for durations on the nanosecond time
scale. As a result of the short excitation time, large
power densities were achieved and a significant popula-
tion of phonons was produced at the zone boundary of
the metal film. By detecting the dispersive broadening of
the phonon pulse launched into the substrate, the wave
vector of the dominant phonons within the longitudinal
pulse was estimated to be qzB/2 which is in agreement
with ihe present analysis, Fig. 5. Moreover, the experi-
ments showed that as the electric field was reduced, the
ratio of the number of transverse to longitudinal phonons
fe11: this result is consistent with the transverse-phonon
spectra being generated by spontaneous three-phonon de-
cay.
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