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Absence of effective electron-photon scattering in a tunneling chain of quantum dots
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We present a calculation of the dc electrical resistivity o. '(0) of a tunneling chain of quantum
dots (also called a quasi-zero-dimensional quantum-dot superlattice) due to the scattering by quasi-
one-dimensional longitudinal-acoustic phonons. We find the vanishing of resistivity in such a sys-

tem attributed to the restraint of electron-phonon scattering. This phenomenon is expected to be
observable in the experiment.

I. INTRODUCTION

Remarkable recent developments in semiconductor mi-
crofabrication technology have allowed the fabrication of
structures with quantum confinement producing a one-
dimensional quantum-well wire (QWW), ' and have en-
riched the intriguing study of one-dimensional physics in
real systems. It is reasonably expected that the fabri-
cation of a quasi-zero-dimensional quantum-dot superlat-
tice will also produce equally intriguing phenomena. Re-
cently, Reed et a/. ' have reported a successful fabrica-
tion of such a quasi-zero-dimensional system, in which
electrons are confined in three spatial directions, and
electronic states are discrete. Energy-level splittings in
such a quantum dot are generally of the order of 25 meV.
If the thickness of the barrier is thin enough, electron
tunneling between the adjacent quantum dots will occur.
Physically, when no tunneling exists, the system cannot
allow the presence of the plasmon waves. Huang et al.
calculated the tunneling intrasubband and intersubband
plasmons in a quantum-dot superlattice. Leal et al. ' '"
reported the temperature dependence of the electrical
conductivity in a two-dimensional electron gas (2D EG)
and in quasi-one-dimensional conductor systems. Be-
cause a 1D EG can only be scattered by the short-range
part of the scattering potential, in contrast to the cases of
2D and 3D ECx which can be scattered not only by the
short-range part, but also by the long-range part of the
potential, the difFerence temperature behavior within the
low-temperature region is expected. ' Their calculations
indicate that for longitudinal-acoustic (LA) interaction
the temperature dependence of the electrical conductivity
is uniquely determined by the dimensionality of the pho-
non system. ' '"

In this paper, we present a calculation of the dc electri-
cal resistivity of a quasi-zero-dimensional quantum-dot
superlattice. The calculation indicates that when the
period of the dot superlattice, d, is large enough, the en-
ergy restriction will dominate the maximum phonon en-
ergy absorbed, in contrast to the case of small d where
the momentum restriction Ac, q k&O dominates it.

When d' further increases, the electrical resistivity is rap-
idly suppressed to zero due to the restraint of the
electron-phonon scattering. Clearly, the larger the period
of the dot superlattice is, the better the linear tempera-
ture dependence of the electrical resistivity is. The model
system is only suitable to be applied to the one-
dimensional phonon system" where the temperature is
above the Peierls transition temperature. Besides, it al-
lows one to include the presence of high magnetic fields
without further formal di%culties. In Sec. II, we present
the model Hamiltonian of the problem, as well as the
memory-function formalism, to give an expression for dc
electrical resistivity. The numerical calculation of the
temperature behavior of the resistivity and some remarks
are also given in this section.

II. THE MODEL SYSTEM AND ITS HAMILTONIAN

The number of thermally excited optical phonons in
the temperature range of interest is quite small, they will
not play a fundamental role in the scattering process.
Thus, we start with a Frohlich Hamiltonian in tight-
binding approximation (TBA)

0 = g E(k)CkCI, + gfitoqa a + QD(q)p(q)Aq
k

with an electron-phonon coupling constant D(q), energy
dispersion E(k), and the symbols p(q) and A defined by

D(q)=[A' (/ m2;X' co)]'~ qg,
E(k) =( W/2)[1 —cos(kd)],

p(q) = g Ck+ C

(2)

(3)

A~=(a +a ) .

Here we have assumed in Eq. (3) that all the excited
states are well above the ground level due to the very
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small lateral sizes I.z I.
y and the width of quantum well

L, and only the ground level is occupied. Ck (Ck) and
a~ (a ) are the electron and phonon creation (annihila-
tion) operators with momentum k and q, respectively.
p(q) is the Fourier transform of the electron-density
operator, g the deformation constant due to dilation, m,
the ionic mass, and N' the number of lattice cells.

The dc electrical resistivity cr '(0)=m "l(Ne r), m*
being the effective electronic mass and N the carrier den-
sity, can be obtained by using the memory function

'=ImM (0). Making use of the force-force correla-
tion function II„(co), the zeroth-order approximation
gives

M'„'(0) =( —1/Nm *) lim II (~)~ (6)
CO~0

where

II ii(co)= i—J B(t)([U (t), Ut3(t)]) exp(icot)dt .

B(t) is the unit step function and U is the generalized
force acting on the center of mass given by

U =i g q D( q) p( q) A
q

(8)

After a lengthy algebraic calculation, we finally express
ImII„„(co) with the aid of the imaginary part of the
dielectric function e2(q, iilco) in the Bohm-Pines random-
phase approximation (RPA)

exp(/3A'co )[exp(Pirico) —1]
ImII „(co)=gq D(q)

[exp(PA'co ) —1]I exp[PA(co +co)]—I ]

ei(q, fi( cqo+ co) ) —term(co~ —co) . (9)

Using the Lindhard equation, the imaginary part of the dielectric function can be written as

e2(q, &co )/v =2[B(EF E)—B(E—F E+ )]/(d W s—in(qd/2) I 1 —[A'co/W sin(qd/2)] I
'~ ), (10)

E+ =( W+fico Wcos(qd l2—) I 1 —[iiico/W sin(qd/2)] I'~ )/2,

where we have assumed in Eq. (10) that the range of temperature of interest satisfies kii T «EF. Substituting Eq. (9)
into Eq. (6) gives

ImM'„'(0)=(2'/3/Nm*) g q ~D(q)~ Iexp(Pirico )/[exp(13iiico ) —1] Iez(q, fico )/v (12)

Employing the Debye approximation, i.e., co =C, q, and introducing the parameters defined as

c =kFd, a=k~0 /8' t =T/0, k~O =2AC, k~,

we get

cr '(0)/3 =(m*/Ne ) ImM„'„'/2

=(do/d) 1 dx Iexp(x/2ct)/[exp(x/2ct) —1] I [x /[sin (x/2) —(ctx/2c) ]' (14)

with a constant 2 as a unit for electrical resistivity,

A =[/ h /(ktiO )N N'e m;rtWd C,do] .

conservation law requires

q(2kF . (16)

do is a unit of length introduced for dimensional reasons.
It should be noted that the electron-phonon scattering

will be dominated by the following four restrictions.
(i) For definite momentum transfer ih'q, the momentum

(ii) For definite momentum transfer Aq in the elastic
electron-phonon scattering process, the energy conserva-
tion law gives

q & ( WIBC, )
~
sin(qd /2)

~
.
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(iii) For phonon absorption, the energy level related to
the initial electronic state should be occupied, which
means that

E ~EF .

(iv) For phonon emission, the energy level related to
the final electronic state must lie below the Fermi surface,
that is,

(19)
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FICi. 1. The period of the dot superlattice d dependence of
the phonon energy ranges permitted, X and X+, for phonon
absorption and phonon emission respectively. The parameters
are as follows: n&D =1.58X10' cm ', k&O =0.8631 meV, and
m *=0.041m, . The long-dashed line is related to the restriction
for energy conservation, and the short-dashed line the restric-
tion for momentum conservation. The dotted-dashed line and
the doubly dotted-dashed line refer to E ~EF and E+ ~EF,
respectively.

Let x =qd; combining Eqs. (16)—(19) will give the pho-
non energy ranges permitted, X and X+, for phonon
absorption and phonon emission, respectively, as shown
in Fig. 1.

From Fig. 1 we know that when d is less than about
200 A, the phonon energy ranges permitted for phonon
absorption and emission are almost independent of d (as
seen in Fig. 1, X and X+ are nearly proportional to d
when d &200 A). However, when d exceeds d, [the in-
tersection of the curves defined by Eqs. (16) and (17), re-
spectively], as shown in Fig. 1, the restriction for phonon
energy absorbed Eq. (17) (long-dashed line) begins to

dominate X instead of the momentum restriction Eq.
(16) (short-dashed line), then the range permitted for pho-
non energy absorbed is greatly reduced. When d further
approaches to d2 [the intersection of the curves defined
by Eqs. (17) and (19), respectively], the phonon energy
ranges for phonon absorption as well as phonon emission
are coincident. This gives the vanishing of the resistivity
in such a system. To some extent, we can say that there
seems to exist a "transparency window" for propagation
of Bloch waves in this system when d approaches d2.
The temperature dependence of the electrical resistivity is
shown in Fig. 2.

From Fig. 2 we can see the clear increase of the electri-
cal resistivity in the region (0 & d & d i ) and the decrease
of the electrical resistivity in the region (d & dz). The in-
set of Fig. 2 shows the low-temperature behavior of the
electrical resistivity (T/0 -0.0—0.5). It is evident that
the larger the period of the dot superlattice is, the better
the linear temperature dependence of the electrical resis-
tivity is. In the . more interesting regime
0 «T«EF/kz, the screening efFects can be disre-
garded, and the linear temperature dependence for a
one-dimensional phonon system (1D PS), 2D PS, and 3D
PS has been obtained. Hence, we can suppose that in this
regime the LA-phonon system loses the information
about its dimensionality in the interaction with the elec-
tron. gas.

Furthermore, it is worthwhile to mention that our
theory can be easily generalized to include the magnetic
field eA'ects in this quasi-zero-dimensional dot-
superlattice systems. Moreover, the many-body effects
can also be calculated in our formalism using the com-
plete electron density correlation S(q, ip„) instead of the
"simple bubble" noninteracting electron density correla-
tion S (q, ip„) which implies neglecting "quantum
corrections" to the electrical resistivity. However, these
effects do not seem to play an important role for the LA-
phonon scattering in the temperature range we are in-
terested in.

Taking the strong-screening limit (kd «1) in Eq. (3),
we know that E(k) will tend to the free-electron energy
A' k /2m*, thus we require that 8'-2A /m d . Con-
sidering a realistic model to account for the overlap of
the wave functions in the calculation of 8', we know
that the empirical estimation of the bandwidth
W-2A' exp( d /L, )/m "d will d—ecrease more rapidly
than -2A /m *d with the increase of the period d of the
dot superlattice. When k&O /kF=2AC, is larger than
Wd -2A' exp( d /L, )/m *d, —the electrical resistivity
will be suppressed to zero. In this case, if we take
I.,=d/2, we estimate that d2 is less than 100 A, which
implies that we can easily observe this tunneling
phenomenon experimentally. ' However, the qualitative
features of the electrical resistivity from these two models
remain the same.

Although we can adjust the one-dimensional carrier
density n &D by changing the gate voltage, the adjustable
range permitted is generally very small. In contrast, ex-
perimentally, we can easily change the period d of the dot
superlattice over a wide range. If kF exceeds m/d, the ex-
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FIG. 2. The temperature behavior of the electrical resistivity for different periods of the dot superlattice (or different coupling
0

strength). The constant do is chosen to be 100 A, and the other parameters are the same as those in Fig. 1. The inset shows the
features of electrical resistivity in the low-temperature regime.

cited levels begin to be occupied, and the model system
introduced above will fail to apply. In this case, the sys-
tem has gone through a transition from a semiconductor
to a metal, and the intrasubband acoustic-plasmon mode
is completely suppressed, but the intersubband plasmon
mode can still exist.
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