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Properties of one-dimensional quasiperiodic discrete Schrodinger equations are analyzed by
means of a finite-size scaling of the spectrum and the wave function. The incommensurate Harper
model, which has only one Fourier component in the potential, is analyzed as an example, and some
quantitative results, which are consistent with previously known qualitative features, are obtained.
In addition, some universal behaviors are observed. The methods are also applied to a generalized
model with the potential having two Fourier components. The existence of mobility edges is
demonstrated and the phase diagram on localized and extended states is shown.

I. INTRODUCTION

An electron (or a phonon) in quasiperiodic (QP) sys-
tems is a subject of great interest. In such systems, the
wave functions and the spectra exhibit all the possibili-
ties localized wave functions (dense point spectrum),
extended wave functions (absolutely continuous spec-
trum), and critical wave functions (singular continuous
spectrum). Various QP models have been studied so far
in terms of various analytical or numerical techniques.
In particular, a number of investigations have been made
for a one-dimensional tight-binding model:

where m stands for arbitrary integers. In this model, all
the states are critical, irrespective of k.

The above models have a common feature: the spec-
trum is pure at each value of k, i.e., extended, localized,
and critical states do not coexist in a spectrum, and there
are no mobility edges. However, there is no a priori
reason why all QP models have a pure spectrum; thus
they may have mobility edges. In fact, the existence of
mobility edges has been previously suggested for the gen-
eralized Harper model, where two Fourier components
are contained in V(x). ' " We have recently reported
novel behavior of mobility edges in the model

, + V(ton +8)tb„=EQ„, V(x ) =A, tanh[p cos(2mx ) ]/tanhp, (5)

V(x) =A, cos(2trx ), (2)

which is known as the Harper model, undergoes a metal-
insulator transition at A, =2. That is, for X(2, all the
states are extended, while for k&2, all the states are lo-
calized. At A, =2, all the states are critical.

In the model defined by

V(x) =A, tan(2trx),

on the other hand, all the states are localized for any
value of A, . This is presumably due to the unboundedness
of the potential.

Another well-known one-dimensional QP tight-binding
model is the Fibonacci model, ' which is defined by
to=cr —= (&5—1)/2 (the reciprocal of the "golden mean")
and

m —o. (x ~m
V(x)= '

m (x ~m+1 —o.

where V(x) is a periodic function with periodic 1

[ V(x +1)= V(x)], co is an irrational number, and 8 is a
phase constant.

For several forms of V(x), the properties of the wave
functions and the spectra have been well understood.
The model defined by

in which localization could take place from the center of
the spectrum as A, is increased.

If the spectrum is nonpure and mobility edges exist in a
QP model, the next question is the structure of the mobil-
ity edges in the spectrum. In general, the band structure
of one-dimensional QP systems is infinitely nesting, and
has infinitely many gaps. From that, one possibility is
that there would be infinitely many mobility edges. " As
for model (5), we showed that this is not the case, and
that only a finite number of mobility edges exist. ' In this
paper, we show that the generalized Harper model also
has a finite number of mobility edges.

When one studies Eq. (1) numerically, an irrational
number co must be approximated by a rational approxi-
mant. In order to determine whether the states of a mod-
el are extended, localized, or critical, a series of rational
approximants converging to the irrational co is taken;
then the asymptotic dependence of the spectrum or the
wave function on the approximants in the series is stud-
ied. For a model with a pure spectrum, one can distin-
guish extended, localized, and critical states by measur-
ing the total bandwidth of the spectrum. ' A multifrac-
tal analysis of the spectrum in the critical case also works
well in such cases. ' In the nonpure case, however, indi-
vidual states in the spectrum have to be studied. In
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studying model (5), we used two methods of analysis: one
is the study of an asymptotic behavior of the bandwidths
corresponding to the individual states; the other is a mul-
tifractal analysis of wave functions themselves. In this
paper, we explain in detail the methods which were
brieAy sketched in Ref. 12, and apply them to the Harper
model and the generalized Harper model.

The remainder of this paper is organized as follows. In
Sec. II, the methods of the analysis are presented. In Sec.
III, the methods are applied to the Harper model [Eq.
(2)], and it is demonstrated how clearly one can distin-
guish extended, localized, and critical states through the
methods. In Sec. IV, the model with V(x) containing
two Fourier components is studied in detail, and the
mobility-edge structure is exhibited. A summary and
conclusions are given in Sec. V.

II. METHODS

The rational approximants for co are obtained by the
continued-fraction expansion for co. For a rational ap-
proximant M/X, the system is periodic; thus the spec-
trum consists of a finite number of bands. When going to
the next approximation step, each band splits into several
subbands. Thus the spectrum for the irrational cu has
infinitely many band gaps; and has a hierarchical struc-
ture. In the Fibonacci model, this hierarchical structure
in fact has scaling, which can be explained by analysis of
an exact renormalization-group transformation. '"

A. Scaling analysis of bandwidths

where the probability measure is normalized to unity
(g+, p~

=g~, ~ g ~

= 1). We assign a Lebesgue mea-
sure / =1/N to all the sites. Thus the probability mea-
sure is supported by an interval [0,1] for each stage of ap-
proximation. We study the n —+~ behavior of the set
from a multifractal point of view. ' Since we have taken
a uniform Lebesgue measure, the sealing index e defined
by I-exp( —en) has no distribution. The scaling index
of the probability measure o, studied here is defined by

p. -1 ' = ( 1/X) '

We study the singular spectrum f(a) defined by
Q(a)-l f' ', where Q(a)da is the number of lattice
points having a between o. and a+de. For extended
wave functions, the probability measure scales as
p~. —1/X = l; thus f (a ) is defined only at a = 1 [f( 1)= 1].
For localized wave functions, on the other hand, p is
finite (a =0) only on a finite number of lattice points and
is exponentially small (a= ao ) on the other points; thus
f (a) is defined at a=O [f(0)=0] and a= oo

[f ( ~ ) = 1]. For critical wave functions, a has a distribu-
tion, i.e., f (a) is a smooth function defined on a finite in-
terval [a,„,a,„].

The multifractal analysis of the wave functions in one-
dimensional QP models has already been tried by several
workers. ' ' We calculate f (a) or equivalently the en-
tropy function S(a), following the method developed in
Refs. 16, 22, and 17. The entropy function can be calcu-
lated by an analogous formalism to the usual statistical
mechanics. First we introduce a free energy defined by

G(q)= lim G„(q),
pf ~ oo

One method to determine whether a state is extended,
localized, or critical is to study the dependence of the
bandwidth on N. If the state is localized, the bandwidth
B should decrease exponentially as N is increased. If the
state is extended or critical, on the other hand, B is ex-
pected to behave as

B—1/N~ .

where

G„(q)=—lnZ„(q),
1

and

Z„(q)= y p,'.

(10)

When the state is extended, y is 1 for almost all the cases.
However, there exist extended states with y=2. ' These
states correspond to "band edges" and the behavior
comes from a remnant of Van Hove singularity in one-
dimensional bands. This point will further be discussed
in the next section with an example in the Harper model.
When the state is critical, y can take a value greater than
1. In fact, the distribution of y (a= I/y) in the whole
spectrum has been studied from a multifractal point of
view for the Harper model with the critical coupling'
and the Fibonacci model' in which all the states are crit-
ical irrespective of the coupling.

The entropy function is obtained through the Legendre
transformation as

and

S (a) = G (q)+ eaq,

1 dG(q)
o, = ——

E

(12)

(13)

The entropy function S(a) and the singular spectrum
f (a) relate with each other as

S(a)=of(a) . (14)
B. Multifractal analysis of wave functions

Another method of analysis is to study a wave function
itself. Now let the nth approximant for ~ be M/N. Then
the system is periodic with period N. A wave function is
analyzed as a set on lattice sites with probability measure

p, =~/, ~
(j=1,2, . . . , N),

When we make a numerical analysis following the
above formalism, we have to be deliberate on the finite-
size effect. If we calculate f (a) from Eqs. (12) and (13)
by replacing G (q) by G„(q) with a finite n, the obtained
f (a) is a smooth function of a, irrespective of the wave
function being extended, localized, or critical. However,
f (a) is smooth only for critical wave functions. There-



SCALING ANALYSIS OF QUASIPERIODIC SYSTEMS: 8227

fore, in order to distinguish localized, extended, or criti-
cal states, one has to obtain G (q) by a careful extrapola-
tion from G„(q) with finite n's before applying the Legen-
dre transformation [Eqs. (12) and (13)]. From Eqs.
(9)—(11), it is expected that

G„(q)-G(q)+O(1/n) . (15)

Thus we should plot G„(q) against 1/n for every value of
q, and estimate 6 (q) in a limit I/n —+0.

In practice, we can distinguish localized, extended, and
critical states by studying only the asymptotic behaviors
of G„(q) in q~+~. When f (a) has nonzero values
only on [a;„,a,„],there exist constants q, and q, , such
that if q )q, or q & q, , G(q) is linear with respect to q:

'e(f;„—cz;„q), q )q,
G(q)= '

e(f,„—a,„q), q &q, (16)

where f;„=f (a;„) and f,„=f(a,„). If
&f/d~l +o= ~(~f/i3~I o= —~ ), q, (q, )

goes to ~ ( —~ ); then Eq. (16) holds only asymptotical-
ly. In any case, by studying the asymptotic behaviors of
G„(q):

e(f '"„—o.""„q ) as q ~+ ~, (17)

(, n)+max= lim +max &

n —+ oo

f(a;„)= lim f '"„, (18)

f(a,„)= lim f'",'„.

we can obtain a;„,a,„,f (a;„),and f(a,„) through
the relations

(n)
min llm dmin &

lyzed has a distribution of Lebesgue measure. The singu-
lar spectrum f (a) can be obtained from r(q) through a
Legendre transformation. In place of solving Eq. (19),
r(q) is often calculated numerically from

I'„(q,r)/I „(q,~) =1, n&n' . (21)

This procedure is a sort of extrapo1ation. This corre-
sponds to assuming that G„—G =const/n. However, the
prefactor of 1/n may oscillate. In fact, we will find such
a situation in the next section.

III. APPLICATION TO THK HARPER MODEL

A. Scaling analysis of bandwidths

From now on, we take co to be o =(i 5 —1)/2 (the re-
ciprocal of the golden mean). The rational approximants
for o are F„ i/F„, where F„ is the nth Fibonacci num-
ber defined by Fn =Fn &+En 2 with n ~ 2, and
FO=Fi =1. Since F„ i/F„-o. =(v'5 —1)/2, as n —+ ~,
the scaling index of. the Lebesgue measure, e, is in(1/o ).
In this case, each band splits into three subbands as n is
increased. Therefore, each point in the spectrum for the
irrational limit (n ~ ) is specified by an infinite se-
quence of 1, 0, and 1, which represent the upper, middle,
and lower subbands, respectively. ' Therefore, the pro-
cedure one needs to carry out to analyze the properties of
the state specified by a sequence is to study the asymptot-
ic behavior of the wave function or the bandwidth along
the sequence.

In this section, we analyze the spectrum and the wave
functions of the Harper model defined by Eqs. (1) and (2).
Here the phase constant 8 in Eq. (1) is taken to be 0. In
this model, we encounter all the possible states: extend-
ed, localized, and critical. We demonstrate how clearly
one can distinguish whether a state in the spectrum is ex-
tended, localized, or critical.

lim I „(q,r)=1 (19)

is introduced. Here I „(q,~) is defined by

I „(q,r) =X'Z„(q), (20)

although a generalization is required when the set ana-

When a wave function is critical, a. ;„and a,„should
have different finite values. When a wave function is ex-
tended, namely when f (a) is defined only at a= 1 and
f (1)= 1, one should obtain the results a;„=a,„=1 and

f(a;„)=f(a,„)=1. When a wave function is local-
ized, one should obtain the results a;„=0, u,„=~,
f(a;„)=0, and f(a,„)=1. In the following sections,
we first estimate a;„,a,„, f(a;„), and f(a,„) from
(17) and (18), and determine whether a wave function is
extended, localized, or critical; then only when the wave
function is critical, we calculate a whole curve off (a).

Finally, in this section, we discuss the relation between
this extrapolation and a technique often used in the stan-
dard formalism for f (a).' In the standard formalism,
r(q) defined by

First, we carry out the bandwidth analysis. %'hen the
state under the investigation is specified by an infinite se-
quence [C,C2C3C4C5C6 } (C~ =1, 0, or 1), we mea-
sure the width (8„)of the band specified by a finite subse-
quence [C,CzC3 . C~ }, which is a band of a periodic
system with period X =F„. Then the relation between
B„and F„ is traced. Figure 1 is plots of F„B„versus n

[=lnF„/ln(1/cr)] for several states with (a) A, =1.9, (b)
A, =2.0, and (c) A, =2. 1. The states displayed in this figure
are (1) [000000 . },(2) [ 1 1 1 1 1 1 },(3) [0 1 1 1 1 1 . . },
(4) ] 100000 },and (5) [101010101010

For A, = 1.9, it is observed that F„B„—1 for (1), (4), and
(5), while F„B„—1/F„ for (2) and (3). The states (2) and
(3) coincide with "edge states" which are in general
identified by [

. 111111 } or j
. 1 1 1 1 1 1

That is„y in Eq. (6) is 2 if the state is an "edge state, "
while y is 1 otherwise. Thus it can be concluded that all
the states are extended. This result is consistent with a
conjecture that all the states are extended if A, & 2.

For A, =2.0, the situation is quite different. It is ob-
served that B„—(1/F„)i', where y = 1.829 for (1) and (4);
y =2.374 for (2) and (3); y = 1.951 for (5). This result is
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consistent with a conjecture that all the states are critical
at A, =2. Here is a point to be noted. The states (1) and
(4) are governed by the same index, and the states (2) and
(3) are also governed by the same index. By investigating
other states, we can conclude that all of the states
specified by I

. 000000 .
J (the "center states") have

an identical value of y (=yc =—1.829), and all of the
"edge states" have an identical value of y (=yz ——2. 374)
as well. This situation is of the same as the Fibonacci

model, where it can be understood in terms of the exact
renormalization group. ' ' For the state (5), y takes a
value between yz and yE. In fact, yc and yz are the
minimum and the maximum values of y, and the distri-
bution of y (or a defined by I/y) has been studied by a
multifractal approach. '

The fact that all the "edge states" and the "center
states" have identical values of y (yz and yc) suggests
the existence of a renormalization-group structure in the
Harper model. In fact, Ostlund and Pandit followed this
direction in the Harper model.

For A, =2. 1, B„ is observed to decrease rapidly for all
the states; thus localization of all the states can be con-
cluded consistently with a conjecture that all the states
are localized for k) 2.

10 ~p 0
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Q

0 0 0h b
+ + + +
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B. Multifractal analysis of wave functions
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FIG. 1. Plots of F„B„against n for several states when (a)
1=1.9, (b) A, =2.0, and (c) A, =2.1. In (a), all the states are ex-
tended, and in (c), all the states are localized. In (b), all the
states are critical; then the values of y [8„—(1/F„)~] are 1.829
for the states t

. 00000 J, 2 374 for the states
11111. ), and 1.961 for the state t10101010 . I.

Next, we study the wave functions themselves from a
multifractal point of view. Before going to the multifrac-
tal analysis, we show the wave functions calculated for a
finite-size system (n =21, i.e., N =Fzi =17711). Al-
though the pictures of the wave functions are found in
some previous literature (for example, Ref. 6), it would be
instructive to show them here. In Fig. 2, the wave func-
tion corresponding to the spectrum edge I 1 1 1 1 . 1 I is
displayed for (a) X= 1.9, (b) A, =2.0, and (c) A, =2. 1. Also,
the wave function corresponding to the center of the
spectrum [000000 I is displayed in Fig. 3. From
these figures, it may be obvious that the wave functions
are extended for A, =1.9 and are localized for A. =2. 1, al-
though the following analysis is necessary in order to get
a convincing conclusion. Furthermore, a character of the
wave functions of A, =2 is not trivial in itself.

Figure 4 shows a plot of G„(q) defined by Eqs. (10) and
(11) with n =21 for the state specified by
I 1 1 1 1 1 1 1 . I. By calculating G„ for several values
of n, we estimate the n ~ ~ limit.

In Fig. 5(a), we plot aI "I„against 1/n for A, =1.9, 2.0,
and 2.1. By extrapolation, we can estimate the n~~
limits as a,„=1for X=1.9, a;„=0.168 for A, =2.0, and
a;„=0for A, =2. 1. This value of o';„ for A, =2.0 is con-
sistent with a previous study. It is observed that the
overall behavior of o.""„is linear with respect to 1/n, al-
though it also contains an oscillatory structure. We can
also estimate o.',„ in terms of a similar analysis as
a „=1=+;„for A, =1.9, a „=1.53 for A, =2.0, and

In Fig. 5(b), we plot f'"„against 1/n. From this, we
can estimate f (a;„) as f (a;„)=I for A, =1.9,
f (a;„)=0 for A, =2.0, and f (a;„)=0 for A. =2. 1.
From a similar analysis, we can estimate f(a,„) as

f(a,„)=1=f(a;„) for A, =1.9, f(a,„)=0.77 for
A, =2.0, and f(a,„)=1for A, =2. 1.

From the results, we can conclude that the edge state
( [ 1 1 1 1 1 1 I ) is extended for A, =1.9, critical for
A, =2.0, and localized for X=2.1. The same conclusion
can be obtained for the state specified by I00000 .

Next we show f (a ) for the critical case (X=2.0). Fig-
ure 6(a) is a plot of f (a) for I 1 1 11 1 1. I. For this
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state, the convergence of our numerical estimate is fairly
good on the whole range of [a;„,a,„]. The most prob-
able value of a (ao), namely a where f (a) is maximal

[f(a) = 1 j, is 1.27. Recently Fujiwara et al. ' calculated
to f (a) of the corresponding edge state of the Fibonacci
model, and showed that f(a;„)is not zero and f(a,„)
is zero for I 1 1 1 1 1 . I. This is contrary to our result
of the Harper model.

In. Fig. 6(b), we display f (a) for the center state
I0000000. I. The values of a;„and ao are 0.358 and
1.31, respectively, and f(a;„)=0. As for a,„and f (a)
near a „,the convergence of our numerical estimate is

rather poor in this case. %'e roughly estimate thata,„-3and f(a,„)-0.
Evangelou and Marder have calculated f (a) for the

state I 0000000 . I. Their result is consistent with ours,
at least, except for u near a „.

We have calculated f (a ) at A, =2 for some other states.
In the state I0 1 1 1 1 1 . I, for example, a;„and ao are
0.169 and 1.53, respectively, which are identical to those
of I 1 1 1 1 1 J. Moreover, f (a) itself is identical in
a,„&a&ac for I111111 . .

j and t011 111
In general, all of the "edge states" have identical values
of a;„(=0.169) and ao (= 1.53), and have identical f (a)

F2 I/2 F2112

(b) a=2. 0
(b) 2=2. 0

~&iLlJJflgJJnlr ilg1stUJ lgtliliiiiilliiiltlll llllll4+I

0 F2 I/2 g,Jip glllilllllilz Jll!l', iilg I i j ll
Qll i Jlligllgjl fl

F2 I/2

5300 5600
6000 6300

FIG. 2. The wave function I 1t, J of the state I 1 1 1 1 1

for (a) A, =1 9, {b) A, =2 0, and {c) X=2 1, with n =21
(F2, =17711). Here 1(i, is depicted only for 0~j~F2, /2 since
the wave function is symmetric with respect to the site j =0.

FIG. 3. The magnitude of the wave function of the state
I000000 ) for (a) A, =1.9, (b) A, =2.0, and (c) A, =2.1, with
n =21 {Fz&= 17 711).



8230 HISASHI HIRAMOTO AND MAHITO KOHMOTO

0. 8

G„(q)
0

0. 6

Q. 4

0. 2

I I I I I ~ ~—2—2

~ I ~ ~ ~ ~ I ~ s ~ ~ i a ~ I I I I ~ ~ I I I I ~ ~ 0. 0
0. 0 0. 5

0. 163
1. 0 1 ~ 5 2. 0

FIG. 4. The "free energy" G„(q) (n =21) for the wave func-
tion of the state I 1 1 1 1 1 i when A, = 1.8, 1.9, 2.0, 2.1, and
2.2. A sharp transition at A, =2.0 is observed.

1. 0

0. 3

in a;„a&no. In the same way, all of the "centeramiII CZ aO'
states" have identical values of a;„(=0.385) and ao
(= 1.31), and have identical f (a ) in a;„~a ~ ao.

On the other hand, it is harder to have qualitative re-
sults on a,„and f (a) for a ~

a&&, since in our calculation
(n ~27), we cannot estimate reliably the n~~ results,
except for the states I00000 I and I11111 I.
However, in view of the possible existence of the
renormalization-group structure, we can conjecture that

0. 6

0. 4—

0. 2

p p
~ ~

0, p 1. 0

0. 358
3. 02. 0

I s s ~ g I ~ ~ i i I s ~ ~ ~ I ~ I & ~

1. 0

~ 2=1. 9
«& 2=2. 0
x 2=2. 1

FIG. 6. Plots of the singular spectrum f(a) for the wave

functions (a) I11111 ) and (b) I00000 J at the critical
case (A, =2).

(n)+ min

p. 6

0. 4

Yh

Ch, -

0. 2

p 0
~=~~a-~4 a

0 1/50

1. 0

0. 8

2=1. 9
o 2=2. 0

x 2=2. 1

Ij. 168 ~x=~=—~
~X

~ ~ s I ~

1/'1 0

f (a ) would be universal in the whole range of
[ ] for the "edge states" and "center states", re-min~ max

spectively.
In this section, we have applied the bandwidth analysis

and the wave-function analysis to the Harper model, and
have demonstrated that both the methods are very
effective means to distinguish extended, localized, and
critical states. In the critical case of the Harper model
(A, =2), in addition, we have first explicitly shown that
f (a) of a wave function (at least for a 5 ac) and the spec-
trum scaling index y are universal both for the "edge
states" and for the "center states. "

IV. GENERALIZED HARPER MODEL

0. 6

0. 2

Yh

-R

0. 0 ~ ~

0 1/50
I ~ ~ s ~ M ~ s ~ ~ I

1/n

FICi. 5. Plots of (a) a'"„and (b) f'"„against 1/n.

V(x) =A. ,cos(2~x)+A, cos(2mvrx ), (22)

where m is an integer (m ~2). This model, in fact, re-
lates to the problem of an electron under a magnetic field

three-dimensional lattice. A similar model as
been studied previously by other workers, ' ' and t e
existence of mobility edges has been pointed out. These
su ies, owt d' however are not systematic numerical stu ies,

elland the precise mobility-edge structure has not been we

In this section, we study a model in which V(x) has
two Fourier components:
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understood. In fact, Aubry and Andre" suggest that
infinitely many mobility edges exist, while Soukoulis and
Economou' claim that only one mobility edge exists.
Chao et al."say that several mobility edges are found.

On the other hand, there is a theorem due to Her-
man: when V(x) =g" i A, cos(2irpx ), the Lyapunov
exponent y(E) satisfies the inequality y(E) &in(~A, „~/2)
for almost every co and 8. That is, if ~A, „~ )2, the
Lyapunov exponent y(E)) 0, irrespective of E; thus all
the states are exponentially localized. Therefore, for the
model defined by Eq. (22), the spectrum is purely dense
point if

~
A,

~

)2. However, this theorem gives us no in-
formation about the properties for

~
A,

~

& 2, where the
spectrum may be nonpure and mobility edges may exist.

Hereafter, we study the case of m =3. Then a relation
V(x +—,

'
) = —V(x) holds as in the Harper model; thus, in

the incommensurate limit, the spectrum is symmetric
with respect to E =0. For m =2, for example, this is not
the case. In the following calculation, we take co to be
cr —= (&5—1)/2 and 8 to be 0, as in the previous section.
Thus each state can be specified by an infinite sequence of
1, 0, and 1. Applying the methods mentioned in the
preceding sections, we explore the properties of this mod-
el in detail. Special attention is paid to clarifying the
mobility-edge structure of the nonpure spectrum.

When A, , =O or A, 3=0, this model (the generalized
Harper model) reduces to the ordinary Harper model.
Thus if A, , )2 (A, , &2) and A, 3=0, all the states are local-
ized (extended). If also A,3) 2 (A.3 &2) and A, , =0, all the
states are localized (extended). In the general case (A, ,WO

and A, 3%0), localized and extended states may coexist.
First we show in Fig. 7 the phase diagram of this model.
The concrete numerical data from which we obtained this
phase diagram will be presented in the latter part of this
section. When k, and A, 3 are sufficiently large, all the
states are localized (region I). When A. , and A, 3 are small,
all the states are extended (region II). In the intermediate
values of A, i and A, 3, the spectrum is nonpure, and local-
ized and extended states coexist (region III). We find no
critical state except when (A, „A,3) is (2,0) or (0,2). As
shown below, a finite number of mobility edges exist in
region III. Note that all the states are localized for A, 3 & 2
on this phase diagram. This is consistent with the
Herman's theorem, mentioned above.

&0

0 O O

I

0 0"

—2

X0

In the phase diagram, there are several features: the
boundary between I and III is parallel to the X, axis at
Ar3 0.5. When 1 .5 & A,

&
& 3 ~ 3, all the states are localized

at k3 =0.5, while extended states appear for smaller A, 3,
no matter how close to 0.5. Another feature found in this
diagram is a small dip near (A, t, A3) =(0,2). These
features are probably due to the speciality that V(x) has
only two Fourier components. In fact, the model (5),
which has an infinite number of Fourier components,
does not show such an awkward behavior. '

In the following part of this section, we show the de-
tails of numerical analyses, and clarify the precise
mobility-edge structure of the nonpure spectrum in the
generalized Harper model. First we show an example of
the bandwidth analysis in this model. Figure 8 is a plot
of n versus I„B, for several states when A, , =2.0 and
X3=0.25. It is clearly seen that the states specified by
I11111 1 . j, I10000 . . j, and I11111 j are lo-
calized, whereas the states specified by I00000. j and

IO 1 1 1 1 j are extended. By applying the same
analysis to other states, we can see that all the states
specified by I 0 .

j are extended and all the states
specified by I 1 j or I 1 .

j are localized. Thus the
spectrum has two mobility edges located in the gap be-
tween the states I 0 1 1 1 1 .

j and I 11111 j and in
the gap between the states (01111 .

j and
I11111 . j.

Next we show an example of the wave-function
analysis. The case of I, , =2.0 and A,3=0.25 is studied as
the above. Figure 9 is a plot of 1/n versus (a) a'"„, (b)

f'"„,and for IO 1 1 1 1 .
} and I 11111 . j. It is found

that a;„=lim„a'"„=1 and f(a;„)=lim„ f '"„
=1 for IO 1 1 1 1 . . j, while a;„=0and f (a;„)=0 for

I 1 1 1 1 1 j. Thus it is concluded that the state
IO 1 1 1 1 j is extended and the state I 11111.

j is
localized. This is consistent with the result of the band-
width analysis.

We use both the methods (the bandwidth analysis and
the wave-function analysis) to obtain the following data.

x0
F.~.

ZO

&0

&0

-3

-4

-5
2, =2. 0

23=0. 25

0 X

0 TTT11. .
10000. .

x T 1111..
+ 0TQII. .
O 00000. .

XO
I s I t ~ i ~ I ~ ~ ~

&0 j5
~ I ~ i ~ s

20 25

FIG. 7. The phase diagram on the A, &-A, 3 plane. There is a re-
markable discontinuity at A.3 =0.25.

FIG. 8. A plot of F„B„against n for A,
&
=2.0 and A,3=0.25.

The states specified by ( 1 1 1 1 1 }, I 10000 }, and

j 11111 } turn out to be localized, while the states specified
by I01111. .

} and I00000 } are extended.
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FIG. 10. The energy spectra for various values of A.
&

and
A, 3 =0.25.
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FIG. 9. Plots of (a) a ";„and (b) fI";I„against 1/n for p =2 p
and A,,=0.25. Localized and extended states are clearly dis-
tinguished as the bandwidth analysis in Fig. 8.

We checked that the two methods always give a con-
sistent result.

Now we show an overa11 behavior of the spectrum.
Figure 10 shows the spectra for various values of A, , and
A,3=0.25 fixed. Only the lower halves of the spectra
(E &0) are displayed, since the spectra are symmetric
with respect to E =0. The line in the figure is a mobility
edge. In the lower-energy side of the line, the states are
localized, while in the upper side, the states are extended.
For A,

&
&A, 't"' (=1.04), all the states are extended: the

spectrum is purely absolutely continuous. For k&) A, '&' '

( =2.66), on the other hand, all the states are localized:
the spectrum is pure point. For X'&"'&k& &A, '&' ', the
spectrum is nonpure: extended states and localized states
coexist in the spectrum. At k, =A, ',"', the states of the
lowest (highest) energy become localized, and for
A, &) k'&"' the mobility edges appear and divide the spec-
trum into the two regions: the states in the outer sides of
the mobility edges are localized, whereas the states in the
inner side are extended. This is analogous to the Ander-
son localization in the three-dimensional disordered sys-
tems, and is in contrast to the behavior found in the mod-
el with the potential (5), where the states in the inner side
of the mobility edges are 1ocalized and the states in the
outer sides are extended. ' The mobility edges move to-
wards the center of the spectrum as A,

&
is increased, and

1.310 1.355 1.590 1.701
2.654 2.665 {X )

all

extended

101 111"(gap
111111.

1lllll
gap (-101111

01111
gap 11111 locali zed

1.310
.32

1001 11"
gap 101111" (-101111"

gap 100111"

1.355
( 'A3 = 0.2 5 )

FIG. 11. The location of a mobility edge as a function of P.
&

for A,3=0.25. When 1.115& k& & 1.310, for example, the mobili-
ty edge is in the gap between t 101 1 1 1 j and I 1 1 1 1 1

The location has a tendency to stay in large energy gaps, and
moves from the edge of the spectrum towards the center as k& is
increased.

finally all the states become localized at k& =A,", '.
In A, '&"'& A, , & k&' ', the mobility edges have a tendency

to be located in large gaps in the spectrum. In Fig. 11,
we show how the position of a mobility edge moves with
A,

&
when A,3=0.25. For 1.115&k, &1.310, the mobility

edge stays in the gap between t 1 1 11111 .
I and

t101111 . }, and for 1.355&k, &1.590, it stays in
the gap between t 1011111.

J and I 1 1 1 1 1 1 1 .
In a rather narrow range 1.310& A, , & 1.355, the mobility
edge moves between the two large gaps. In most of the
range, however, the mobility edge stays in the gap be-
tween I 10111111. .

I and I 1001 1 1 1 1 . .
I and in

the gap between {1001111 .
I and [ 101 1 1 1 1 1

By now, we have shown the properties of the system
with A,3=0.25. In that case, the mobility edges have been
shown to move from the edges of the spectrum to the
center. However, this is not always the case for other
values of A, 3. For the states specified by I 1CzC3C4
the situation changes itself continuously: the mobility
edges move from the edges of the spectrum to the center
with increasing A,

&
when A, 3 is fixed, and the values of A. ,

where the individual states become localized decrease
continuously with increasing X3. However, the states
specified by IOC2C3C4 . .

I show a very curious behav-
ior. For X3&0.5, localization starts from I01 1 1 1
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and finally the state I0000 j becomes localized at
The value of A, , where the state j0 1 1 1 1 . .

j be-
comes localized (A,", ') and A, I' ' are very close to each
other (for example, A,I' '=2.665 and A,I' ~=2. 654 when
A, 3=0.25). That is, the states specified by
IOC2CiC4 .

j localize almost at once. The values of
A,
"
,

' and A,
"
,

' increase with A, 3. However, A,
"
,

' and k&' '

become smaller discontinuously at A.3=0.5. For X3 0.5,
moreover, A, &' ' is smaller than A, &' '. the state
I00000 j becomes localized at a smaller value of A, ,
than the state j01111. j. A similar situation is also
found in another model. ' The values of A,

"
,

' and A,
"
,

'

decrease with increasing ki for A, 3
~ 0. 5.

From the above, for k& (0.5, the boundary between I
and III in Fig. 7 is a line where localization of
I00000 j takes place, while for A,i~0.5 it is a line
where localization of I01 1 1 1 .

j takes place. Howev-
er, this is not the case in the neighborhood of the dip in
Fig. 6: in this region, the boundary is a line where locali-
zation of I00000 j occurs, as in A, 3 (0.5.

V. SUMMARY AND CONCLUSIONS

In this paper, we have explained the methods of
analyzing the spectrum and the wave functions of one-
dimensional discrete Schrodinger equations with a quasi-
periodic potential. The methods have been applied to the
Harper model and the generalized Harper model [Eq.
(20)].

The results obtained from both methods are consistent
with each other, as expected. Thus we can clearly distin-
guish localized, extended, and critical states, and can
study the scaling properties of the critical states.

For the Harper model, the well-known conjecture that
all the states are extended (localized) for A, (2 (A, )2) is
confirmed. For the critical case (A, =2), some interesting
universal behaviors are observed. All the "edges states"
specified by I

. . 111111 .
j or I 1 1 1 1 1 .

j have
an identical value of the scaling index of the spectrum
(y=yz ——2.374), and all the "center states" specified by

00000 j have an identical index ( y =y c—:1.826) as well. Furthermore, this universality appears
in the scaling property of the wave functions themselves:
all the "edge states" ("center states") have an identical
f(a), although this is not yet certain near a,„, where
the convergence of our numerical calculation is poor.
These behaviors are likely to show the existence of an
renormalization-group structure in the Harper model.

For the generalized Harper model (20), extended and
localized states coexist in the spectrum. The regions of
the localized and the extended states in the spectrum are
separated by mobility edges. When X3 is fixed and A, , is
increased from zero, localization starts from the edge of
the spectrum at a value of A, &, and the mobility edges
move from the edges of the spectrum towards the center
of the spectrum. After the localization of the states in
the outer bands specified by [ 1 j or I 1 .

j has com-
pleted, the localization of the center band corresponding
to the states specified by I 0 .

j takes place. For
k3 (0.5, the states of this band localize from the edges to
the center. On the other hand, for k3 ~0.5, the states of
the center band localize from the center to the edge.

The mobility edges stay in large gaps for most of the
values of A, , and A, 3. In other words, the mobility edges
are located more probably in gaps belonging to upper lev-
els of the hierarchical band structure (tree structure) than
in those belonging to lower levels. In any case, the mobil-
ity edges always stay in gaps; thus there is no critical
state in the generalized Harper model except at the two
points (A&, A&)=(2, 0) and (A&, A3)=(0, 2) on the A&-A3

plane. Critical states (singular continuous spectrum) ap-
pear only at very special situations, and are unstable
against some perturbations.

In this paper and in Ref. 12, we have studied one-
dimensional QP systems with nonpure spectra. Although
we have found completely unexpected and exotic proper-
ties in such systems, the spectra are in any case separated
into dense point and absolutely continuous regions by
finite numbers of mobility edges.

One of the other possibilities of the structure of the
nonpure spectrum is that there would be infinitely many
mobility edges. The one-dimensional QP systems have an
infinite hierarchical structure of subbands. Thus there is
a possibility of the hierarchy of the mobility-edge struc-
ture. However, the models we studied do not exhibit
such a behavior.
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