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We present ab initio calculations for dilute Fe alloys with 3d and 4d elements. The calculations
are based on local-density approximation of density-functional theory and employ the Korringa-
Kohn-Rostoker Green's-function method. Results are given for the densities of states, the local mo-
ments, and the magnetization oscillations around the impurities. A detailed comparison is made
with measurements of the electronic specific heat, with neutron-scattering results for the moments
of the impurity and the neighboring host atoms, and with magnetization measurements. Contrary
to the case of Co and Ni alloys, the majority-spin band contributes most to the screening in the Fe
alloys. This arises from the fact that the Fermi energy falls into the minimum of the minority-spin
density of states. The results are in qualitative agreement with a proposed pseudogap theory and
naturally explain why Fe alloys show such a complicated magnetic behavior.

I. INTRODUCTION

There exists a large amount of experimental informa-
tion on the electronic and magnetic properties of Fe al-
loys. Especially, dilute Fe alloys have been studied by
many methods such as magnetization measurements, nu-
clear magnetic resonance, Mossbauer effect, or neutron
scattering. From a theoretical point of view the under-
standing of these alloys has not yet sufficiently advanced,
despite the well-known fact that density-functional
theory represents a reliable method to calculate the mag-
netic properties of transition metals from first principles.
In the last few years considerable progress has been made
concerning the local behavior of impurities in Fe. Espe-
cially noteworthy are the calculations by Akai, Akai, and
Kanamori' and by Akai et a/. , who give a consistent
picture of the local moments, hyperfine fields and spin-
lattice relaxation times T& of impurities in Fe. Also the
results of Leonard and Stefanou as well as the recent re-
sults of Anisimov et al. should be mentioned in this con-
text. In contrast to these efforts for the calculation of the
local properties of impurities in Fe, the present paper is
mainly addressed to the changes of the host properties
caused by the impurities. In addition to the local proper-
ties we calculate the charge and magnetization oscilla-
tions around the impurities and make a detailed cornpar-
ison with the experimental information about these sys-
tems.

The behavior of disordered concentrated alloys has
been studied using the coherent-potential approximation
(CPA). Especially, the work of Hasegawa and
Kanarnori being based on tight-binding models has led
to a basic understanding of these alloys. Recently more
sophisticated and fully self-consistent CPA calculations
based on the Korringa-Kohn-Rostoker (KKR) method
and. density-functional theory have been performed for

some Fe alloys, e.g. , for NiFe by Johnson, Pinsky, and
Stocks and Akai, for VFe by Johnson, Pinsky, and
Staunton, whereas Akai et aI. ' studied several Ni and
Co alloys. In these CPA calculations the response of the
host atoms is only considered in an average way. No de-
tailed information about the charge and magnetization
oscillations, which are the aims of the present paper, can-
be obtained by this method.

Dilute Fe alloys show a more complicated behavior
than dilute Ni or Co alloys. Basically this arises from the
fact that, contrary to the "strong" ferromagnets Co and
Ni, Fe is a "weak" ferromagnet since the majority-spin
band is not completely filled. This has important conse-
quences for the magnetic properties of dilute Fe alloys,
e.g. , none of the dilute Fe alloys falls on the main branch
of the Slater-Pauling curve and no universal behavior as
for the Ni and Co alloys is found experimentally. "'
Nevertheless there are also strong similarities between
the Fe and the Ni and Co alloys. To clarify these
differences and similarities is one purpose of our paper.
The second purpose is to compare our calculated densi-
ties of states, local impurity moments, and magnetization
changes of the host atoms with the large amount of ex-
perimental information on these alloys.

The outline of the paper is as follows. In Sec. II we
present a short account of the theoretical method and
some technical information concerning the calculations.
In Sec. III we present results for the local densities of
states of the impurities and for the changes of the total
density of states due to one impurity. At the Fermi ener-
gy these changes are directly related to the changes of the
electronic specific heat and a detailed comparison with
specific-heat measurements is given. In Sec. IV we dis-
cuss the calculated local moments of the impurities,
which are in good agreement with earlier estimates. '

We stress the similarities and differences between the lo-
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cal moments in Fe and Ni. The main results of the
present paper, the magnetization distributions in the first
five shells around the impurity, are given in Sec. V. In
particular the change of the total magnetization per im-
purity atom is considered and a comparison with magne-
tization measurements is made. The general trend of
these magnetization changes and the role of majority and
minority bands in screening are quite di6'erent compared
to the strong ferromagnets Ni and Co. In Sec. VI the
main results are summarized.

II. THEORETICAL METHOD

In the calculations we employ density-functional
theory in the local-density approximation. We use the lo-
cal functional of von Barth and Hedin' but with the pa-
rameters as determined by Moruzzi et al. ' (MJW). Only
for FeMn are the results sensitive to the particular form
of the exchange-correlation potential used (see discussion
in Sec. IV).

Our calculations are based on multiple-scattering
theory using the KKR Green's-function method, which
we will outline shortly for paramagnetic systems; the gen-
eralization to magnetic systems is obvious. For more de-
tails we refer to Ref. 15. For lattice of muffin-tin poten-
tials centered at positions R" the Green's function can be
expanded into eigensolutions of these spherically sym-
metric local potentials,

G(r+R", r'+R";E)
=&E 5„„gYz (r )Hr" ( r &,'E)RP ( r &,E ) Yz ( r')

L

+ g Y~(r)RP (r;E)Ggg (E)RP (r';E)Yr (r') .
L,L'

(1)
Here the vectors r and r' are restricted to the Wigner-
Seitz cell and r & (r & ) denotes the larger (smaller) value of
r =

~r~ and r'= ~r'~. The subscript L =(l, m) collectively
denotes the angular momentum quantum numbers t' and
m and Yr (r) are real spherical harmonics. The regular
[R&"(r;E)]and the irregular solutions [HP (r;E)] of the ra-
dial Schrodinger equation for the nth muffin-tin potential
are defined by their asymptotic behavior outside the
muffin-tin sphere of radius S,

R("(r;E)=j((v Er)+&Et("(E)h((&Er),

HP(r;E) =h&(VE r ), for r +S,
where j& and h& are the spherical Bessel and Hankel func-
tions and tP (E) is the usual on-shell t matrix for the nth
potential. Near the origin these functions behave as
RP (r;E)-r'and HP (r;E)- I /r'+'.

All the information about the multiple scattering be-
tween the muffin tins is contained in the structural
Green's-function matrix Gg r" (E). It can be related to its
counterpart Gg r" (E) for the host crystal by an algebraic
Dyson equation,

0
Ggr". (E)=G)r" (E)+ g Gr"."r. (E)htP (E)Gr".. r". (E) .

n" L"

The summation goes over all sites n " and angular
momenta L" for which the perturbation Et'. (E)
=tP. (E) t'&"—(E) of the t matrices t of the host is
significant.

In the calculations we take s, p, d and f states (with an-
gular momenta I & 3) into account. We allow the poten-
tials of the first five shells around the impurity to be per-
turbed. In total these are 58 atoms surrounding the im-
purity. The potentials are assumed to be spherically sym-
metric inside the Wigner-Seitz sphere, i.e., we use
volume-conserving, but slightly overlapping, atomic-
sphere potentials. Using iteration techniques all poten-
tials are calculated self-consistently. The Dyson equation
(3), being in our case of rank 944X944, is solved using a
group-theoretical decomposition into irreducible subma-
trices, the largest of rank 70X70. This reduces the com-
puter time considerably.

The charge density is obtained from the Green's func-
tion by

E
n(r)= ——J dE ImG(r, r;E)

2= ——Im Jdz G(r, r;z) . (4)

where 5&(E) are the scattering phase shifts. We use a
generalization of this formula for complex energies.

An important approximation in our calculations is that
we neglect the lattice relaxations around the impurities,
i.e., we fix the neighboring host atoms at the ideal lattice
positions.

III. DENSITIES OF STATES AND SPECIFIC HEAT

Figure 1 shows the calculated local densities of states
(DOS) in the impurity Wigner-Seitz sphere for the 3d im-
purities V, Cr, Mn, Co, and Ni together with the DOS of
pure Fe, denoted by "Fe in Fe." In pure Fe the Fermi
energy falls into a minimum of the minority-spin DOS.
This minimum is typical for the DOS of bcc metals and
separates the lower-lying bonding states from the higher
antibonding ones. In the majority-spin band the Fermi

Since the Green's function is, as a function of the com-
plex energy variable z, analytical on the whole physical
sheet with the exception of the real axis, the energy in-
tegral can be transformed to a contour integral in the
complex energy plane, ' ' provided this contour ends at
the Fermi energy EF on the real axis. The contour in-
tegral can be very easily calculated with rather few ener-
gy points since for complex energies z the Green's func-
tion is rather structureless. In practice this also means a
large saving of computer time. '

The changes of the integrated density of states b.N(E)
induced by the impurity can be calculated using a gen-
eralization of the Friedel sum rule to multiple-scattering
problems given by Lloyd' and Lehmann, '

b,N(E) =—g [5((E)—8 i(E)]=1
n, L

——Imlndet~5„„5zz —G Pz.(E)b, tg (E)~, (5)
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FIG. 1. Local densities of states of 3d impurities in Fe for both spin directions. The figure denoted "Fe in Fe" represents the den-
sity of states of pure Fe.

energy cuts off the upper shoulder from the d DOS so
that about 0.2—0.3 d states are not occupied. This is the
reason why the moment of pure Fe is only 2. 15p~ and
not (2.5 —2.7)pii as one would expect for a "strong" fer-
romagnet with a filled majority-spin band. Therefore Fe
is called a "weak" ferromagnet.

For Co and Ni impurities we observe the tendency that
the local majority-spin DOS becomes more and more
filled. In addition the minority states are also filled up to
accommodate the additional charge. This leads to a large
peak at the Fermi energy in the minority-spin DOS of the
Ni impurity. In the case of Mn, Cr, and V impurities the
population of the minority-spin DOS does not change
very much. Here the major erat'ect is the shift of the upper
peak of the majority-spin DOS through the Fermi energy.
This peak is just at EF in the case of Mn and forms an
empty virtual bound state above EF for Cr and V. The
local moments of the impurities, which can be directly
calculated from the local DOS, are discussed in Sec. IV.

Unfortunately we are not aware of any photoemission
experiments on these systems with which we could com-
pare our results. The only information available about
the density of states are specific-heat measurements. '

As it is well known the electronic contribution to the
specific heat is given by c, ( T)=y T, where the coefficient
y is given by

2 2

y= n(EF)(1+A, ) .

Here n(E~) is the DOS at the Fermi energy, ks the
Boltzmann constant, and A, is the mass enhancement
which is normally due to electron-phonon interaction

(see, e.g. , Ref. 24). However, for ferromagnets electron-
rnagnon interaction also seems to be very important.
From the calculated DOS at EF for pure Fe, n (Ez) = 1.04
states/eVatom, and the measured value ' of y=4. 79
(mJ/mol K ) we estimate a mass enhancement of
A,F, ———1.96.

From Eq. (6) above we obtain for the relative changes
of y, n (EF ), and A, in the alloy

~n«F) +
y n(EF) 1+I, (7)

Since AA, is unknown, we compare in Figs. 2 and 3 the
calculated relative changes b,n(E+)/n(EF) directly with
the values b,y/y measured by several groups. All values
refer to the changes arising from one impurity atom.

The changes An(EF) in Figs. 2 and 3 are calculated by
summing up the changes of the impurity cell and of all Fe
atoms in the first five shells around the impurity. Thus
we have not summed up all changes up to infinite extent
as would have been the case if Lloyd's formula for the in-
tegrated DOS were used and b,n(E) were calculated by
taking the derivative. Therefore the calculated changes
might not be completely converged with respect to the
number of shells included.

Nevertheless Fig. 2 clearly shows that our calculated
local DOS resemble the qualitative trends found in the
specific-heat experiments, i.e., the negative values for the
early 3d impurities, the positive value for Mn followed by
a negative one for Co and again a positive one for Ni.
Unfortunately no measurements for Cu impurities exist.
The dashed line in Fig. 2 shows the majority-spin band
contribution hn + (E~ ) /n (E~ ) compared to hn (EF )
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FIG. 2. Relative change An(E+) of the total density of states
per 3d impurity atom compared to the density of states n (EF )

per Fe atom in pure Fe [solid line, b n(E~)/n(E+)]. The dashed
curve shows the contribution hn +(E+ ) /n (E+ ) from the
majority-spin band. The circles give the relative change b,y/y
of the coefticients for the electronic specific heat as determined
by experiment (Refs. 21—23).

In(E~), where An(E~)=An+(E~)+An (E~). One sees
that except for Ni and Cu impurities all important contri-
butions to b, n (E~) come from the majority-spin band. In
these Fe alloys the DOS at Ez of the minority-spin band
practically does not change with concentration, so that
also for the more concentrated alloys the pronounced
minimum of the minority-spin DOS at EF is well
preserved. This is fully in line with the arguments of
Malozemoff et al. that in ferromagnetic alloys, especial-
ly in Fe alloys, the Fermi energy is very likely fixed at a

minimum of the DOS which then acts as a pseudogap. In
Sec. V we will show that this behavior is of prime impor-
tance. for the understanding of the magnetic properties of
these alloys.

The qualitative trend shown in Fig. 2 can already be
understood from the local DOS of the impurities as
shown in Fig. 1. In the minority-spin band the minimum
at E~ is for all impurities very much the same as for pure
Fe. The only exception is Ni, where a sharp increase at
EI; is observed due to the lowering of the upper peak. In
the majority-spin band the situation is, however, very
different. For V and Cr the upper edge of the host DOS
is strongly reduced, for the impurities as well as for the
the neighboring Fe atoms. This naturally arises from the
hybridization of the host states with the upper virtual
bound state of the impurities which pushes the Fe states
to lower energies. For Mn the upper peak moves to the
Fermi energy which explains the positive specific-heat
values. On the other hand, for Co and Ni impurities the
majority, -spin band becomes more and more filled, so that
An (E~) is negative. The large positive specific-heat
value for Ni is totally due to the sharp peak at EI; in the
minority-spin DOS.

In this context it is also noteworthy that Shinozaki and
Arrot ' find a nonlinear concentration dependence of y in
the case of dilute FeMn and EeNi alloys, whereas the al-
loys with Ti, V, Cr, and Co show a linear concentration
dependence. This is in qualitative agreement with the lo-
cal DOS in Fig. 1 since one expects the sharp Ni and Mn
peaks at EF to broaden rapidly with concentration.

IV. IMPURITY MOMENTS

The calculated local moments of the 3d and 4d impuri-
ties in Fe are shown in Figs. 4 and 5, together with the
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FIG. 3. Relative change hn(E+)/n(EF) for 4d impurities
[experiment, Mo (Ref. 21)] (same nomenclature as in Fig. 2).

FIG. 4. Local moments in the impurity Wigner-Seitz sphere
for 3d impurities in Fe. The triangles are experimental values
from neutron scattering [Ti (Refs. 27 and 29), V (Refs. 21 and
33), Cr (Refs. 29, 31, and 32), Mn (Refs. 27—30), Co (Ref. 26), Ni
(Refs. 27 and 29), Cu (Ref. 34)].
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FIG. 5. Local moments in the impurity Wigner-Seitz sphere
for 4d impurities in Fe. The triangles are experimental values
from neutron scattering (Refs. 29 and 53).

experimental data obtained by neutron scattering. In
general the agreement with the experimental data is very
good. The early 3d impurities couple antiferromagneti-
cally to the host atoms whereas the late ones, Mn, Co,
and Ni, couple ferromagnetically. This behavior is very
similar to the one found in Ni (Refs. 35 and 36) and is
well understood from the work of Friedel, Kanamori,
and Campbell and Gomes. The moments found for the
4d impurities are in general much smaller than the ones
in the 3d series. The same trends are also found in Ni.
However, there are some subtle differences between 3d
impurities in Ni and Fe which we will discuss below.

Compared with the calculations of Akai et al. , which
are based on a single-site approximation for the per-
turbed potentials, the present results for the antiferro-
magnetic impurities Ti, V, and Cr, are in much better
agreement with the experimental data. Here the in-
clusion of the perturbed neighboring potentials is essen-
tial as has been found already in a previous publication.

The local moment of the Mn impurity turns out to be
sensitive to the special form of the exchange-correlation
potential used in the calculation. While the MJW local
functional' and the one of Vosko, Wilk and Nusair
(VWN) (Ref. 40) yield similar values of 0.69pz and
0.64pz, respectively, the one of von Barth and Hedin'
(vBH) gives rise to a considerably smaller value (0.34pz).
The VWN potential is generally believed to be somewhat
more accurate, since it is based on exact results for the
homogeneous electron gas. From Fig. 1 it is seen that the
values calculated either with the MJW or VWN local
functional are in good agreement with the experimental
data. In this context it should be noted that the negative
values reported for the Mn moment by Kajzar and
Parette ' are unreliable. These results show an unreason-
ably large concentration dependence and are in disagree-
ment with other experimental findings. The same au-
thors also obtained unreasonably large negative values for

the moments of Cr, V, and Ti (Refs. 41 and 42) which are
not included in Fig. 4.

For 3d impurities in Ni, Zeller found in calculations
for noninteger nuclear charges Z that there exists a rath-
er broad region of Z values, 24 ~ Z ~ 26, where the fer-
romagnetic and antiferromagnetic solution are stable or
metastab1e, respectively. Contrary for Fe, Akai et al.
found no such transition region and a negative moment
of —1.7pz for Mn, whereas Anisimov et a/. report a
positive (1.6pz) and a negative moment ( —2.3p~) for
Mn, both corresponding to stable solutions. Our calcula-
tions indicate that Mn in Fe is a very critical'case. It is
not only sensitive to the exchange-correlation potential
used but also to other approximations made in the calcu-
lation, especially the angular momentum cutoff. In an
jt +2 calculation we find for the MJW potential a sharp
and discontinuous (first order) transition at Z=25. 04
from the ferromagnetic to the antiferromagnetic solution,
in agreement with Akai et al. Both for the vBH and
VWN potentials the same transition occurs in an l ~2
calculation for nuclear charges Z slightly smaller than 25,
the transition itself is however smoother and continuous
(second order). In a more accurate l ~ 3 calculation these
transitions are shifted to smaller Z values and a positive
moment is obtained for all three exchange-correlation po-
tentials.

The major difference between the behavior of 3d im-
purities in Ni and Fe is therefore the existence of a rela-
tively large two-state region in Ni, which is absent in Fe.
We will now give a plausibility argument that -this is a
direct consequence of the much larger host moment of
Fe. In nonmagnetic hosts, e.g. , in Cu, 3d impurities such
as Cr, Mn, or Fe have a stable magnetic moment Mo. As
a function of the nuclear charge Z, this moment Mp
varies as shown in Fig. 6(a), with the maximum occurring
at Mn. With respect to an arbitrary quantization axis,
also the state with moment —Mo exists and is degenerate
with +Ma. In a plot of the total energy E(M) as a func-
tion of the hypothetically varying moment M we expect a
symmetrical curve with two well-defined minima at +Mo
[Fig. 6(b)]. The maximum at M=0 corresponds to the
paramagnetic state [dashed line in Fig. 6(a)]. If we now
consider a ferromagnetic host with a rather small host
moment, such as Ni, we expect that for Mn the two mini-
ma still exist, but that the degeneracy is broken and one
minimum is slightly lower than the other one [Fig. 6(d)].
This is plausible since the impurity moment is much
larger than the host moment. By varying the nuclear
charge and considering Mo as a function of Z, we obtain
a curve as shown in Fig. 6(c). For the late 3d impurities
only the ferromagnetic state survives, for the early ones
only the antiferromagnetic one, whereas in the middle of
the series two states exist. This just corresponds to the
results for Ni found by Zeller. The dashed line in Fig.
6(c) is the solution corresponding to the maximum. If we
then consider a host with a larger moment, we obtain a
case where even in the middle of the series the second
minimum disappears [Fig. 6(f)]. In this case the Mo(Z)
curves suddenly, but continuously drops in the middle of
the series from positive to negative values [Fig. 6(e)].
This is just the situation which we and Akai et al. found
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V. MAGNETIZATiON OSCILI.ATIONS

o
I

M

0

M

FICx. 6. Schematic behavior for the total energy E as a func-
tion of the variable impurity moment M and for the real impuri-

ty moment Mo as a function of the atomic number Z. (a) and (b)
refer to 3d impurities in a paramagnetic host like, e.g. , Cu, (c)
and (d) refer to a ferromagnet with a small host moment like Ni,
and (e) and (f) refer to a ferrornagnet with a larger moment like
Fe.

to occur close to Mn in Fe. This sharp transition ex-
plains why Mn in Fe is such a difficult case. Contrary to
3d impurities, 4d impurities are not magnetic. Conse-
quently we expect, in a ferromagnetic host, that the
E(M) function has only one minimum. The Mo(Z) curve
should then be rather Aat and 5 shaped, which is what we
have found in Fig. 4 for the local moments. It is then
more appropriate to speak of an induced moment, i.e.,
one which is induced on the impurity site by the host po-
larization.

The calculated magnetization changes AM„
(n =1,2, . . . , 5) for Fe atoms in the first five shells
around the impurities are listed in Table I for the 3d
series and in Table II for the 4d series. Given are also the
changes hM, I of the total magnetization obtained by
summing up the local changes of the impurity cell and of
the Fe atoms in the first five shells. Alternatively the
changes of the total magnetization can be calculated us-
ing Lloyd's formula, thereby including also longer-ranged
contributions. This leads to the values denoted by AM.
The difference between AM,

&
and AM gives an indication

whether the considered cluster of perturbed potentials is
sufficiently large to include all magnetization perturba-
tion s.

Figures 7 and 8 show the total change AM of the mag-
netization per impurity for the 3d and 4d series, together
with experimental data. AM is also often referred to
as the concentration derivative of the magnetization in
the dilute limit, i.e., AM=dM/dc~, o, where c is the
atomic concentration. The general trend found experi-
mentally, i.e., the increase of the magnetization for Co,
Ni, and Rh, Pd as well as the strong negative decrease of
the magnetization towards the beginning of the series are
well reproduced by the calculations. A closer look at the
figure reveals that the calculated data are on the average
somewhat below the experimental points. While in some
cases like Ru, Rh, and Pd this is not significant due to the
large uncertainties of the experiments, the data for Ti, V,
and Cr as well as Mo seem to be sufficiently reliable and
indicate that there might be a problem with the calcula-
tions. For these impurities Table I shows a relatively
large difFerence between the change AM,

~
of the moment

in the cluster and the value AM calculated by Lloyd's for-
mula. This points to positive contributions to AM from
shells further away. Though by using Lloyd's formula,
Eq. (5), these contributions are formally included in b,M,
they are not entering the self-consistency cycle and are
therefore presumably underestimated. The relatively
good agreement between AM and AM,

~
for the late

transition-metal impurities shows that these uncertainties
due to the restricted number of perturbed atoms only
occur for the early. d impurities.

Let us now discuss the shell dependence of the changes

TABLE I. Local moments Mo of 3d impurities in Fe. The values EM„are the changes of the local moment of an Fe atom in the
nth shell around the impurity. AM, ~

is the change of the total moment summed over the impurity and five shells of Fe atoms; hM is

essentially the same quantity, but calculated by Lloyd's formula. The results have been obtained using the MJW exchange-
correlation potential.

Sc
T1
V
Cr
Mn
Fe
Co
Ni
Cu

—0.29
—0.58
—0.96
—1.29
+0.69
+2.16
+ 1.65
+0.79
+0.08

AM i /p~
—0.204
—0.173
—0.118
—0.067
—0.057

0
+0.098
+0.114
+0.019

AM2/pz

—0.069
—0.040
—0.019
—0.012
—0.033

0
+0.025
+0.025
—0.013

AM3/pz

—0.011
—0.002
+0.013
+0.028
+0.018

0
+0.007
+0.013
—0.005

b M4/pg

—0.005
—0.006
—0.003
+0.002
+0.004

0
+0.009
+0.014
+0.009

AM5/pz

+0.036
+0.046
+0.050
+0.049
+0.027

0
+0.009
+0.011
—0.003

AM, ) /pg

—4.46
—4.15
—3.69
—3.29
—1.78

0
+0.79
+0.28
—1.86

—4.19
—3.86
—3.37
—2.93
—1.51

0
+0.72
+0.22
—1.92
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TABLE II. Local moments Mo of 4d impurities in Fe and changes EM„of the Fe moments in the nth shell around the impurity.
The same nomenclature as in Table I is used.

Y
Zl
Nb
Mo
Tc
Ru
Rh
Pd
Ag

Mo /pz
—0.16
—0.31
—0.46
—0.52
—0.32
+0.34
+0.60
+0.40
+0.06

hM) /p~

—0.213
—0.225
—0.210
—0.180
—0.121
—0.016
+0.073
+0.109
—0.002

EM& /pz
—0.046
—0.053
—0.040
—0.033
—0.040
—0.033
+0.006
+0.021
—0.018

AM3 /pz

+0.026
+0.022
+0.029
+0.041
+0.050
+0.045
+0.040
+0.034
+0.012

AM4/p~

+0.012
+0.004
+0.002
+0.001
+0.002
+0.007
+0.015
+0.021
+0.016

AM5/pz

+0.047
+0.054
+0.059
+0.059
+0.050
+0.030
+0.011
+0.011
+0.001

AM,
& /pz

—3.36
—3.81
—3.68
—3.31
—2.65
—1.20
—0.01
+0.25
—1.70

AM /pz
—3.02
—3.42
—3.26
—2.86
—2.21
—0.93
+0.06
+0.20
—1.75

EM„of the local moments (see Tables I and II). Figures
9 and 10 show the total change b,M (solid line), the con-
tribution to b,M from the impurity cell (dashed line), and
the sum of the contributions from the impurity and the
first shell atoms (dotted line). From these curves and
from Tables I and II one finds that the magnetization
changes AM„show a rather complicated behavior. For
Co and Ni the local impurity moments decrease com-
pared to Fe, but the moments of all Fe atoms in the five
shells around the impurity increase. Thus we have an ex-
tended positive polarization cloud around the impurity
and the decrease of the local moment is more than corn-
pensated by the increase of the surrounding host mo-

ment. These alloys show a tendency towards strong fer-
rornagnetisrn with a partial filling up of the majority-spin
band (see below and Sec. II). A similar behavior is also
found for the isoelectronic 4d impurities Rh and Pd.
While the local impurity moments are much smaller, the
positive polarization clouds are equally extended and car-
ry even larger moments.

The early transition-metal impurities show a more
complicated behavior. In the sequence 24Cr to z, Sc and
42Mo to 39Y the local moments of these impurities de-
crease more or less linearly, which is similar to the behav-
ior found in Ni. On the other hand, the total change b,M
increases almost linearly, which is in strong contrast to
the behavior found in Ni, where AM decreases in this
sequence according to AM—= —10—AZ. Thus the global

t — theory

theory

experiment

4
O

C -2-

5 I I I I I I I I I

Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 7. Total change hM of the magnetization per impurity
atom as calculated for 3d impurities in Fe. The triangles are the
results of magnetization measurements [Ti (Refs. 43 and 44), V
(Refs. 33, 45, and 46), Cr (Refs. 44, 46, and 47), Mn (Refs. 28,
30, 44, and 48), Co (Refs. 44 and 49), Ni (Refs. 44, 50, and 51),
Cu (Refs. 35 and 52)].

I I I I I I I I

Y Zr Nb No Tc Ru Rh Pd Ag

FIG. 8. Total change hM of the magnetization for 4d impur-
ities [E, experiments; Mo (Refs. 4S, 52, and 53), Tc (Ref. 52),
Ru (Refs. 44, 53, and 54), Rh (Refs. 44 and 54), Pd (Refs. 44, 54,
and 55), Ag (Ref. 56)].
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~ hM

O

-5 I I I I I I I I I

Sc Ti V Cr Mn Fe Co Ni Cu

FIG. 9. Contributions to the total change hM of the magne-
tization (0) due to 3d impurities (0, contribution from the im-

purity cell;, sum of the contributions from the impurity cell
and first-shell atoms).

behavior of the magnetization in Fe is quite different
from the local impurity behavior, both for the early as
well as late transition-metal impurities. Moreover the po-
larization clouds of the early 3d impurities show a lot of
structure. While the contributions from the first two

1- ~M
o impurity cell
a imp. + 1" shell

C)

/
/

/

Q~

4d series

5 I I I I I I I I

Y Zr Nb Mo Tc Ru Rh Pd Ag

FICx. 10. Contributions to the total change hM of the magne-
tization due to 4d impurities (same nomenclature as in Fig. 9).

shells are strongly negative, the ones from the third,
fourth, and fifth shells are positive, with the fourth one
giving only a minor contribution. Presumably some more
positive contributions come from atoms further away
which are not explicitly included in the self-consistency.

The only direct information about the magnetization
disturbances around the impurities can be obtained by
magnetic neutron scattering. Campbell has analyzed
the earlier experiments of Collins and Low in detail.
Within the experimental uncertainty it is not possible to
distinguish between the moments of the first and second
neighbors as well as between the moments of the third,
fourth, and fifth neighbors. For the average moments of
the first and second neighbors he obtains positive mo-
ments for Co and Ni as well as for Rh and Pd and nega-
tive values for the early 3d impurities as well as for Mo
and Ru. Within the relatively large experimental uncer-
tainties, these values agree with our calculated data. The
average moments for the third-, fourth-, and fifth-shell
atoms are always positive. Both the signs and magni-
tudes of these data agree with our results. This is also
true for the results obtained by Child and Cable for
FeMn and by Aldred et aI. ' for FeCr. However, our re-
sults strongly disagree with the experiments of Kajzar
and Parette ' for Fe Mn, Fe Cr, FeV, and FeTi. These
authors obtain relatively large positive changes for the
first neighbors which are incompatible with our calcula-
tions as well as with the above experimental results. A
much more meaningful comparison with the neutron-
scattering results would require to calculate the cross sec-
tions for magnetic scattering directly. This is, however,
beyond the scope of the present paper.

The total change AM of the magnetization can be ex-
pressed by the global changes bN (E~) of the popu—la-
tions of the majority-spin (+) and minority-spin bands
( —) which are calculated by Lloyd's formula.
bM=b, N (E~) bN (E~) is th—e difFerence of these
population changes whereas the sum hN+ (E~ )

+EN (E~)=AZ, the change of the impurity nuclear
charge, if the Friedel sum rule is satisfied exactly. As has
been emphasized recently by Williams et aI. ' ' these
populations b,N (E~) show a very—simple behavior if the
alloys are strong ferromagnets. Then the majority-spin
band remains filled, i.e., AN+(Ez ) =0 and the magnetiza-
tion changes opposite to the valence: hM = —AZ. In Ni
these relations are very well satisfied for Co, Fe, and Mn
impurities as well as for the early 4sp impurities (Cu, Zn,
Cra). Contrary for the early 3d impurities in Ni a d vir-
tual bound state moves above the Fermi energy in the
majority-spin band, so that hN+(E~)= —5 and
AM= —10—b,Z. Our calculations have shown that
these relations are well satisfied in Ni.

Contrary to Ni, in Fe, where the majority-spin band is
nearly filled (about 0.2—0.3 electron are missing), the situ-
ation is very different, as shown in Figs. 11 and 12. In-
stead, here the minority-spin band population is more or
less constant, while the majority-spin band population
changes about linearly with AZ. This is also in agree-
ment with the results for the change hn(E~) of the total
DOS as discussed in Sec. III. Figure 2 clearly shows
that, with the exception of Ni, all the action is in the
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FIG. 11. Change of the integrated densities of states
hN —(EF) for both spin directions in the case of 3d impurities.
AN+(EF) gives the change of the majority-spin band popula-
tion, and AM (EF) that of the minority-spin band. Note that
AZ =hN+(EF )+AN (EI; ) if the Friedel sum rule were exactly
satisfied (see Table II).

FIG. 12. Change AN —(EF) for the case of 4d impurities in
Fe (same nomenclature as in Fig. 11).

majority-spin band. Thus in Fe the role of both subbands
is exchanged compared to Ni and Co. Such a behavior
has been discussed by MalozemoF et al. in their "gap
theory" for ferromagnetic alloys. The main argument is
that if the paramagnetic Fermi energy lies close to a
minimum of the density of states then the Fermi energy
of the ferromagnetic alloy is very likely to be pinned in
this minimum. Indeed we have seen in Sec. III that also
in the dilute alloys the minimum in the minority DOS at
EF is well preserved and no new states appear in the
"gap" region of the DOS. Only at the end of the 3d
series (Ni) do the edges of the antibonding peak move to
the Fermi energy. This naturally explains why in Fe the
majority-spin band contributes most of the screening.
Nevertheless the variation of the minority-spin popula-
tion, though smaller than the majority-spin one, cannot
be completely neglected. Otherwise AM would vary as
hM = —b,Z which is clearly not the case (see Fig. 7).
This is a direct consequence of the fact that the Fermi en-
ergy lies merely in a minimum of the DOS, but not in a
true gap.

VI. SUMMARY

In our ab initio calculations we calculate both the local
properties of the 3d and 4d impurities in Fe as well as the
changes of the global properties arising from the induced
host perturbations. We employ the local-density approxi-
mation together with the KKR Green's function method.
The impurity potential and the perturbed potentials for
five shells of Fe atoms are determined self-consistently.

The calculated impurity moments are in very good

agreement with data from neutron scattering. Contrary
to previous results, but in agreement with the experi-
ments, we obtain for Mn a positive moment. We show
that Mn in Fe is a dificult case, since the moment of Mn
in Fe is close to the transition from a ferromagnetic to an
antiferromagnetic coupling with the host moments.

The calculated changes of the total density of states at
the Fermi energy agree well with specific-heat measure-
ments. Except for Ni in Fe all trends are determined by
the variation of the DOS of the majority-spin band,
showing that the minimum of the DOS in the minority-
spin band is well preserved in these alloys.

For Co and Ni as well as for Rh and Pd impurities we
obtain a long-ranging enhancement of the neighboring Fe
moments, indicating a tendency towards strong fer-
romagnetism in these alloys. For the early transition-
metal impurities a more complicated oscillatory behavior
of the neighboring Fe moments is found. Strong negative
contributions from the atoms in the first two shells exist
together with positive contributions from the atoms fur-
ther away. These results are in qualitative agreement
with the limited information from neutron scattering.

The calculated changes of the total moment are com-
pared with magnetization measurements. In general the
agreement is good, but there are some systematic devia-
tions for the early d impurities which presumably arise
from the neglect of a self-consistent treatment of the
atoms beyond the fifth shell. The analysis of the
majority- and minority-spin band populations shows that
the changes in the majority-spin band are much larger
than in the minority-spin band. Thus contrary to the
strong ferromagnetic Co and Ni alloys the majority-spin
band contributes most of the screening in these Fe alloys.
The physical reason for this fact is that the Fermi energy
lies in the minimum of the minority-spin DOS of Fe.
Since this minimum is well preserved in the dilute alloys
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it acts as a pseudogap and tends to keep the number of
occupied states in the minority-spin band approximately
constant. This is the reason for the rather complicated
magnetic behavior of the Fe—transition-metal alloys.
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