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We develop a novel formulation of dc electrical linear-response theory for a phase-coherent con-
ductor with multiple leads valid in arbitrarily strong magnetic field and for a given impurity
configuration and measuring geometry. This formulation is convenient for discussion of the quan-

tum Hall effect and mesoscopic transport phenomena. We express the total current response I
through lead m completely in terms of the voltages V„applied at the leads, independent of the elec-
tric field in the material, i.e., I =g„g „V„. We show that while the current-density response is

not in general expressible as a Fermi-surface quantity, the total transport current determined by
these conductance coefficients g „does depend only on the wave functions (or Green functions) at
the Fermi surface as T~O. This yields new and useful Green-function expressions for the g „and
the longitudinal and Hall resistances. When transformed by appropriate applications of scattering
theory, these expressions are shown to be equivalent to the relation g „=T „,where T „ is the sum

of all the transmission coefficients between leads m and n, as first obtained by Buttiker on the basis
of phenomenological arguments. A brief discussion of the relation between this formula and other
proposed Landauer formulas is given. It is noted that the occurrence of the quantum Hall effect is
very natural in this formulation and simple conditions on the scattering matrix of the conductor
which imply the quantum Hall effect are derived.

I. INTRODUCTION

A reexamination of electrical linear-response theory in
an arbitrary magnetic field is of particular interest now
due to two major developments in the field of quantum-
transport phenomena. The first development is the
discovery of a wealth of novel sample-specific and
geometry-specific quantum phenomena in small ("meso-
scopic") conductors at low temperature. ' The second is
the discovery of the integer quantum Hall effect, which
demonstrates that in the two-dimerisional quantum limit
the Hall resistance shows highly nonlinear and (as the
system size goes to infinity) discontinuous dependence on
magnetic field.

In the former case, mesoscopic conductors, the first
novel efFect discovered experimentally was the apparently
random dependence of the resistance of a given sample
on magnetic field (or carrier density in gated semiconduc-
tor systems) which was reproducible in a given sample al-
though differing from sample to sample. The samples
initially studied were in the diffusive regime, in which the
voltage probes are separated by a distance greater than
the elastic scattering length I, but the temperature is low
enough that inelastic scattering is negligible. It is now
understood that the reproducible resistance noise arises
from a quantum-interference effect similar to laser speck-
le whose manifestation in a given sample depends on the
particular configuration of impurities; ' the statistical be-
havior of these (time-independent) fluctuations was
shown to have some universal features. ' These mea-
surements also revealed a further initially puzzling obser-

vation: although putatively measurements of the longitu-
dinal resistance, the magnetoresistance pattern
("magnetofingerprint") of a given sample was not sym-
metric in magnetic field. It was subsequently shown that
this asymmetry arises from the multiprobe nature of the
measurement and that the data do satisfy reciprocity
symmetries implied by time-reversal symmetry. "'

These results make it clear that in the phase-coherent re-
gime all parts of the sample contribute essentially equally
to the Auctuations in the resistance, and simply attaching
leads along the wire in the standard geometry does not
ensure that the longitudinal resistivity is being measured.
This emphasizes the nonlocal nature of the transport
measurements in mesoscopic systems, which, for exam-
ple, leads to a saturation in the resistance Auctuations
when the probes are spaced less than an inelastic length
apart, at a magnitude corresponding to conductance Auc-
tuations of order e /h per phase-coherent volume. '

In addition to the electric resistance, other transport
properties of mesoscopic systems should show fIuctuating
behavior. '

More recent experiments have probed the ballistic re-
gime in which bulk elastic scattering is negligible and the
resistance arises entirely from the sample geometry.
Here novel behavior is observed even in the absence of a
magnetic field. For example, in four-probe measurements
such samples showed a nonlocal average resistance for
each bend in the probe geometry, and in two-probe
geometries with a constriction (point contact) they
showed a dramatic new effect, point-contact resistance
quantized in steps of approximately e /lt (per spin). '

8169



8170 HAROLD U. BARANGER AND A. DOUGLAS STONE 40

A11 of these phenomena arise from the dependence of the
linear-response coefficients on specific impurity
configurations and/or sample geometries, and an ade-
quate theoretical understanding of such effects requires a
formulation of linear-response theory valid for a given
system. We provide such a formulation below.

The relevance of our calculation to the quantum Hall
effect is somewhat different. The integer quantum Hall
effect is typically studied in larger semiconducting sam-
ples, and is observed to be relatively insensitive to the
measuring geometry and impurity configuration in these
systems. In addition, there undeniably exists an adequate
theoretical understanding of many features of the effect.
Nonetheless, relatively little of this understanding is
based upon actual microscopic calculations of the Hall
resistance of a two-dimensional (2D) quantum-
mechanical system, and there appears to be some
disagreement in the literature upon appropriate starting
points for such a calculation. This is of particular im-
portance when one considers questions relating to the
breakdown of the quantization in the region of "extended
states" between the plateaus, for which a complete theory
does not yet exist. We present an exact formal theory of
the Hall resistance, which provides a different and poten-
tially useful starting point for microscopic calculations.
In particular, the scattering formulation of the theory,
first introduced by Buttiker' on the basis of Landauer-
type arguments (and which we derive from linear-
response theory below), is sufficiently simple that the ex-
istence of the quantum Hall effect under rather general
conditions can be seen from elementary physical argu-
ments ' (as will be discussed in the final section of the
paper).

The most obvious immediate application of our theory
is to the intersection of these two areas, transport in
mesoscopic systems in a magnetic field, and, in particu-
lar, the Hall effect in such systems. This has been a sub-

ject of intense experimental interest recently. The
2D semiconductor systems that show the quantum Hall
effect on the macroscopic scale also show it on a mesos-
copic scale, but with generally poorer quantization and
with sample-specific Auctuations and resonant effects su-

perimposed. ' The statistical behavior of these Auctua-
tions is not yet completely understood. In addition, gated
samples exhibit quantization of the "longitudinal resis-
tance, " an effect which follows almost trivially from
the scattering formulation of the theory. ' ' Finally,
there are the intriguing phenomena of the disappearance
(or "quenching") of the low-field Hall effect in ultrathin
ballistic samples ' ' ' ' and the coherent electron
focusing ' and "generalized Hall effect, " which have re-
cently been studied in detail in the ballistic semiconduc-
tor point-contact systems.

With these motivations, the present work has three
major goals. (l) To provide a formulation of electrical
linear-response theory in an arbitrary magnetic field, of
particular relevance for multiprobe mesoscopic conduc-
tors, which is valid for a given sample geometry and a
given impurity configuration. (2) To express the theory
only in terms of the exact eigenstates of the system (and,
equivalently, the exact Cireen functions). Hence we pro-

vide a theoretical starting point for microscopic calcula-
tions based only on the exact relations of current conser-
vation and time-reversal symmetry, and containing no
physical assumptions about the nature of the states, im-
plicit averaging procedures, etc. other than the important
assumption of the approximate validity of the
noninteracting-electron model. (3) To rewrite the theory
in terms of the exact scattering states in order to make
contact with the Landauer-type formulations. In this re-
gard we use the term "Landauer formula" in a general
way to denote any expression for the linear-response
coefIicients in terms of the S matrix of the conductor.
We demonstrate the exact equivalence of our linear-
response formula to the multiprobe Landauer formula
proposed by Buttiker. '

There is, of course, an enormous literature on
quantum-mechanical linear-response theory, dating back
to the original work of Kubo and Greenwood, ' and our
work relates to and builds on various previous calcula-
tions. Our analysis of the principal-value term in the
conductivity-response function, which results in a
Fermi-surface expression for the Hall resistance, is simi-
lar in several respects to that of Smrcka and Streda,
and the method of making the connection between
Green-function expressions and the scattering matrix
builds on the previous work of Fisher and Lee," Stone
and Szafer, and Kucera and Streda. Our formulation
adds important new elements for two reasons.

First, most previous calculations have focused on
deriving expressions for the conductivity, or conductivity
tensor, whereas the quantities which characterize a given
system are the spatially varying conductivity-response
function o(x,x') (which describes the current density
response to an electric field) or the conductance
coefficients (defined below) that describe the total current
Aowing in and out of the system in response to voltages
applied at its boundaries. The conductivity tensor as a
set of intensive variables can only be defined as an aver-
age property of the system, usually obtained by averaging
o.(x,x') over the sample volume, "or over the impurity
configurations of an ensemble of similar systems, or
both. Obviously, this is suspect in the mesoscopic re-
gime, where sample-specific Auctuations are important.
But there is another basic problem with this procedure:
o(x,x') and the conductance coefficients describe
different physical properties of the systems and have
different behaviors which become particularly important
in the presence of a magnetic field. o(x,x') describes
both the transport current and the circulating or diag-
magnetic currents which always exist in the presence of a
magnetic field, whereas the conductance coefficients de-
scribe only the total transport currents. We show below
that only the conductance coef5cients are completely de-
scribed by wave functions at the Fermi surfaces (as
T~O), whereas o(x,x') depends, in general, on all the
states below the Fermi energy. Since it is the conduc-
tance coefficients which are measured in standard trans-
port experiments, this shows that the Hall resistance can
always be expressed as a Fermi-surface quantity (without
any additional assumptions about the existence of states
localized near the edges).
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The second new feature of our calculation concerns the
relationship between the scattering-theoretic approach
and linear-response theory. The linear-response theory
formulations proposed previously in order to describe a
given sample, ' ' such as that of Fisher and Lee, or
Langreth and Abrahams, have focused on deriving vari-
ous versions of the Landauer formula in a two-probe
geometry, whereas it has now become apparent that a
multiprobe formula such as that of Biittiker' is necessary
to describe the mesoscopic regime. . Stone and Szafer
have argued in a recent review article that Biittiker's
multiprobe Landauer formula is the relevant Landauer
formula for describing standard transport experiments.
Their conclusion is supported by the success of this for-
mula in describing the observed reciprocity sym-
metries"' and in quantitatively accounting for the resis-
tance fluctuations of multiprobe microstructures. '

The same review derived the multiprobe formula from
linear-response theory in the absence of a magnetic field,

by an extension of the arguments used by Fisher and
Lee in the two-probe case, but pointed out the nontrivi-
al and crucial nature of the extension to finite magnetic
field. Recently, Landauer formulas have been proposed
to describe the high-magnetic-field limit on the basis of a
nominally two-probe geometry. ' These approaches
have been very useful in emphasizing the role of edge
states in establishing the quantum Hall effect, and of in-
teredge scattering in its breakdown; however, these for-
mulas have not been connected to a rigorous linear-
response calculation, and indeed probably do not provide
a full description of the Hall effect and its break-
down. ' ' The calculation that we present below is
very different from the calculation of Fisher and Lee
or, indeed, any of the previous derivations of Landauer
formulas from linear-response theory. All previous
derivations have started with an expression which was
manifestly on the Fermi surface (such an expression
arises immediately in the two-probe case, or in the pres-
ence of time-reversal symmetry), whereas our derivation
starts with the general expression for o(x,x') in a mag-
netic field, which contains a non-Fermi-surface
(principal-value) term. We show that such a term leads
to a transport current that is a Fermi-surface quantity, a
result which is crucially needed in order to obtain the
correct reciprocity symmetries, implied by Biittiker's
multiprobe Landauer formula. Thus our derivation pro-
vides the final step in proving the equivalence of the
scattering-theoretic (Landauer-Buttiker) and standard
(Kubo-Greenwood) approaches to linear-response theory.
In the final section w'e derive some general properties of
the multiprobe Landauer formula of particular interest
and relevance to experiments of high magnetic field, and
show that in a simple limit the original Landauer formu-
la, and a trivial multichannel extension of it, is ob-
tained.

Before embarking on the detailed calculations, we dis-
cuss some general features of the model and of the calcu-
lation. We consider a structure which consists of a finite
region connected to Nz perfectly ordered, straight semi-
in6nite leads (see Fig. 1); in the finite region there may be
disorder or particular geometric features which scatter

FIG. 1. An arbitrary multiprobe structure. A possibly disor-
dered region (hatched) is connected to X& straight, ordered
leads which are used to feed current or measure voltage.

the electrons (including, of course, the junctions between
the leads). The transport throughout the structure is
completely coherent, no phase breaking or inelastic
scattering within the sample is taken into account. We
apply voltages to the perfect leads which are constant in
space at frequency 0, find the current response, and take
the limit of the frequency going to zero.

The calculation is not performed self-consistently in
the sense that the fields resulting from charge imbalances
in the perfect leads caused by the current Aow are not
taken into account. We argue that this is correct because
the voltages on the perfect leads are meant to represent
the chemical potentials of large phase-randomizing reser-
voirs; the voltages are not meant to represent the electro-
static potential in a true physical perfect lead (after all,
these are not present in the experiment). The perfect
leads are a construct for representing the complicated
transition from the phase-coherent region of interest to a
large reservoir. The chemical potential of a reservoir is
changed negligibly by the current Aow into the system;
thus, to worry about the charge imbalances in the perfect
leads implied by our calculation is to take the perfect
leads too seriously. A self-consistent linear-response
theory has been proposed for two-probe models in con-
nection with derivations of the original Landauer formu-
la, ' but we argue that such calculations are not needed
if one does a multiprobe calculation, which then allows
the chemical-potential difference induced by the current
Bow to be distinct from the chemical-potential difference
of the current source and sink. That the perfect leads in
such a model do indeed act like phase-breaking centers,
and hence define the boundaries of the phase-coherent re-
gion, has been indicated by physical arguments and by
numerical simulations. ' We also neglect self-consistency
in the mesoscopic region in the sense that we do not in-
clude screening of the charge inhomogeneities predicted
to occur within an interacting model. Therefore this
theory would not fully describe the current density within
the Inaterial, but as shown below, in a noninteracting
theory the total transport current is insensitive to the de-
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tails of the local current density, and this is consistent
with experiments in which materials with very different
screening lengths show quantitatively similar dc trans-
port behavior. ' '

The calculation also satisfies the general constraints
that current conservation imposes on any sensible dc
transport theory. These are, first of all, that
V (J(r)) =0, where (J(r)) is the expectation value of
the current density determined by J o(x,x') E(r')dr'.
This, in turn, implies V';V'-o. ; =0. Our formulation is
shown to satisfy this condition. It is important to realize
that current conservation does not imply V', cr,j =0 (al-
though this stronger condition holds in the absence of a
field), and the conductivity-response tensor need not be
divergenceless in order for the total transport current to
be determined by the voltages at the boundaries. This
will be discussed in more detail below.

Our calculation starts by finding an expression for the
nonlocal conductivity, o(x,x'), in terms of an exact
eigenstate basis of the unperturbed Hamiltonian [Sec. II,
Eq. (29)]. By using current conservation the total current
response (conductance coefficients) are determined simply
by integrals of o (x,x') over the cross sections of the per-
fect leads. Next, we express our result for o. in terms of
Green functions of the unperturbed system [Sec. III, Eq.
(52)]. When these are used to evaluate the conductance
coefficients, we show (as discussed above) that only Green
functions near the Fermi energy and connecting points
on the perfect leads are involved [Sec. IV, Eqs. (75) and
(76)]. Finally, we connect the asymptotic form of the
Green functions to the transmission coeScients of the
scattering problem (Sec. V). Using these relations, the
current response is exactly given by Buttiker's multiprobe
Landauer formula' for arbitrary magnetic field (at zero
temperature). A discussion and conclusion (Sec. VI) em-
phasizing the implications of our work for the quantum
Hall effect follows the calculation. The Appendixes con-
tain a discussion of the connection between our work and
previous expressions for the spatially averaged conduc-
tivity in bulk systems (Appendix A), versions of our main
results appropriate for discrete systems that are often
used in numerical calculations (Appendix 8), and several
technical points needed in the main text.

II. LINEAR-RESPONSE THEORY
IN AN EXACT EIGENSTATE REPRESENTATION

We consider the Hamiltonian of a system of nonin-
teracting electrons in an arbitrary static potential and in
a magnetic field B(x) characterized by the vector poten-
tial A(x),

2

Ho= p ——A(x) +U(x) .1 e
2M c

V(x, t)= V(x)cos(Qt)e

which corresponds to an electric field given by

(4)

E(x, t }=E(x)cos(At)e

E(x)= —V V(x) .

(5a)

(Sb)

The only restriction we make on V(x) is that it eventual-

ly reach some constant value (in general, different) on
each of the leads, so that the electric field in the leads
vanishes far enough from the sample. In order to
represent a typical "dc" measurement (which is per-
formed at ac frequencies on the order of hertz), we take
the rate at which the perturbation is turned on, 5, to zero
before taking the frequency of the perturbation, 0, to
zero. This ensures that the system is subjected to many
cycles of the perturbation so that the frequency 0 is well
defined. Since the electric field vanishes in the leads, its
Fourier transform will have a peak at q =0 of width ap-
proximately I /L (ignoring small-scale fiuctuations).
Since such fields have a substantial q =0 component a net
current will flow for arbitrarily small 0; hence, we have
already taken the q —+0 limit in the sense of standard
linear-response theory. Thus, letting ( Jtx, Q, 5) be the
expectation value of the current-density response to V,
we wish to calculate

(6)

The system that we study is a finite region of arbitrary
shape with an arbitrary static potential connected to 1V&

perfectly ordered, straight infinite leads (Fig. l). Since we
are studying an infinite system, the spectrum is continu-
ous and we therefore use an integral sign to denote both
the integration over the continuous quantum number in-
dexing the energy of the states and summation over the
discrete quantum numbers which will characterize the
propagating states (channels) at fixed energy. The appli-
cation of a perturbing voltage V(x, t) leads to a total
Hamiltonian given by

H=HO+eV(x, t) .

We have chosen to express the perturbation in the
scalar-potential gauge rather than as a vector potential as
is often done ' in order to make some steps in the cal-
culation easier (in particular, there is no diamagnetic
term to be canceled). For the dc response, we shall con-
sider a slow enough time variation that the magnetic
fields associated with V(x, t) are negligible. Note that
we will consider the charge of the particles to be positive
throughout this calculation.

We take the perturbation V(x, t) to have the form

We ignore spin degrees of freedom throughout; the gen-
eralization to spin —, is straightforward. Ho has a com-
plete, orthonormal set of eigenstates g (x) with eigenval-
ues c. ,

Jdx g"(x)gp(x}=5(a—P),

Idaho*(x)g

(x')=5(x —x') .

We calculate the expectation value of the current den-
sity by taking the trace of the density matrix multiplied
by the current-density operator expressed in the basis of
eigenstates introduced above. In the absence of interac-
tions, this approach is completely equivalent to the stan-
dard definition of the current-density response in terms of
the expectation value of the current-current correlation
function ' The current-density operator is
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J (x)= n (x) p ——A(x)
2M C

+ p ——A(x) n (x)
C

ft3 =f(eti) —f(e ),

V ti
=Idx g*(x)V(x)pe(x),

we fnd

We simplify the notation by introducing the gauge-
invariant derivative D =V (ei—lfic ) A(x) and the
double-sided derivative operator defined with respect to
two arbitrary functions f and g by

fDg = f(x)Dg(x) —g(x)D'f (x) = —gD *f . (g)

Then the matrix elements of the current density are

i' (p&) &= —
eti (p, ) t3+ef& V icos(fit)edt

This equation and its boundary condition are easily
solved using an integrating factor. Evaluating the
relevant integral for t &0 (of course, working at t )0
gives the same result in the static limit) yields the first-
order correction to the density matrix,

[J,~(x)]ti = — [$$(x)DQ (x)]=— Wti (x),
[p, (t &0)] p= ft3 V pe—'

2

+inst

cp —AQ+ ifi6

where we have introduced a reduced current-density
operator W. W has the important symmetry

—iQt
+

Cp +RA+i A6
(16)

W &(x)= —
W& (x) . (10a)

Introducing the time-reversal operator and denoting by
V'(P) the time-reversed state corresponding to state P, we
have the additional relation

Expressions for the current density result from com-
bining the expression for the current-density operator
[Eq. (9)] with the expressions for the density matrix [Eqs.
(12) and (16)]. In equilibrium

Wp (x&8)=W~(p)g (&)(xq 8) (lob) Jo(x) =Tr(poJ, ) = — fda f(s )W (x)WO .
2M

(17)

Finally, we note that

V' W &(x') = — c,ti g*(x')g&(x'),
g2

where c&
—=a&—c. , which is simply an expression of

current conservation.
The density matrix in equilibrium, po, in terms of the

Fermi function f(e) is simply

(12)

The time-evolution equation for the full density matrix,
ikdp/dt =[H, p], implies that the time-evolution equa-
tion for p, =p —

po to first order in the perturbation is

dp)
imari =[Ho, p](t)]+[H, (t), p ],

with the boundary condition p, ~0 as t ~—~. Express-
ing the matrix elements of Eq. (13) in terms of the com-
pact notation

In a non-translationally-invariant system, the current
density is nonzero even in equilibrium because the mag-
netic field generates closed current loops which roughly
follow the equip otential contours. These circulating
currents correspond to the diamagnetic response of the
system. Application of Eq. (11) to Eq. (17) immediately
yields V.'Jo=0, i.e., no net current Qows into or out of the
system in response to the magnetic field, as one expects.
In Appendix C we show that Jo does not even generate a
net current in any single lead, thus Jo(x) does not contrib-
ute to the transport current and can be neglected in our
further calculations.

The first-order response is given by

J,(x, t) =Tr[p, (t) pJ( )x]

= fda Jd/3[p, (t)] ti[J,p(x)]p

which yields

~ 2

J,(x, t &O, A, 5)= — Jda Jdg ft3 V &W& (x)e '
4M

+inst —i At
+

c&
—AQ+i A6 c& +fiQ+i A5

(19)

To make further progress, take the limit as the turn-on rate, 6, goes to zero using

lim . = i m5(gati +f—iQ)+. P1

o cf3 +tAA+EA5
1

cp +AQ (20)

where P indicates a principal-value integral. Furthermore, we collect the dissipative terms (in phase with E) and the
reactive terms (out of phase), yielding
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J,(x, t &0, Q)= — fda fdpfz V

X ~ cos(Qt ) i—vr5(E& A—Q) —im5(E& +AQ)+P 1 +p 1

Cp +AQ
L

+i sin(Qt ) i~5—(E& A—Q)+i ~5(Eti +&Q)+P 1—P
gp +fiQ (21)

One would like at this point to take the static limit,
Q~O. However, the terms involving the 5 functions in
energy in Eq. (21) are undefined if one takes Q —+0 within
the integrals. If one were to do this, the 6 function would
set c&=c. , so that one would need to evaluate V & for
a=P. Because of the 5-function normalization of the
states [Eq. (2)] and the fact that the integral in the
definition of V & extends over the perfect leads where
V(x) is constant, the matrix element V &

is highly singu-
lar at a=p. Thus, taking the Q~O limit within the in-
tegrals involves evaluating the product of a singular fac-
tor (V &) and zero (from f& ) which would have to be
defined by an additional limiting procedure. We there-
fore look for a more amenable form for J& before taking
the A —+0 limit.

If we go back to Eq. (19) and rewrite V & in terms of an
I

integral over the electric field, E(x), which is nonzero
only in a finite region of space because of our boundary
condition that the applied voltage is constant on the per-
fect leads, then the limit as the frequency goes to zero is
well defined. In order to make the notation clear, it is
convenient to introduce some coordinates in each perfect
lead. As shown in Fig. 2, let x„be a unit vector parallel
to lead n and pointing outward from the junction region,
let y„be the coordinate perpendicular to x„[defined so
that one has a right-handed coordinate system (x„,y„,z„)
with z„pointing into the page], and let C„be the cross-
section curve of lead n at x„. Finally, denote by A the
finite region bounded by curves C„. Multiplying Eq. (11)
on both sides by V(x')ft3 and integrating using the
divergence theorem yields

g2 g2 L

f& f dx' V(x')g'(x')P&(x') = — f dx' W &(x') E(x') — g V„ f dy„' W &(x'„) x„. (22)

The left-hand side of Eq. (22) differs from the quantity f& V &, that we need in Eq. (19) only by being all illtegral over
the finite "sample" region; we thus consider the limit of Eq. (22) as x„~Oo for all n Since th. e electric field is zero in
the perfect leads, the first term on the right-hand side of Eq. (22) remains unchanged. For the second term, we show in
Appendix D that

lim dy, W
& x„x„=O

C„
tt po.'

(23)

when interpreted as a distribution for integrals over p. Since we do indeed integrate f& V & over p in Eq. (19), the
boundary terms in Eq. (22) can be neglected as the volume of integration goes to infinity. Using Eqs. (22) and (23) in Eq.
(19) and taking the 5~0 limit as in Eq. (20), we find that

2/3
Ji(x, t (0, Q)= fda f dpW& (x) f dx'W &(x') E(x)

8M Ep~

X cos(Qt ) ivr5(E& AQ)—i~5(E& —+RQ)—+P 1 +P 1

Cp +AQ

+i sin(Qt) —irt5(sp —A'Q)+im5(Eti +fiQ)+P 1—P
cp +AQ (24)
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Because the integrand on the first line of this equation is
obviously bounded at cp =0, the Q~O limit is now
straightforward. For the 6-function terms we use

f(c +A'0) —f(c )

0—+0
(25)

while, for the principal-value terms,

lim P
A~O

1

cp +AQ
=P 1

~pa
(26)

This last equation may seem obvious; however, note that
the limit implied by the principal-value symbol is actually
the 5—+0 limit, so that naively taking the Q~O limit in
the denominator involves switching the order of the 6~0
and 0—+0 limits, which is not allowed on physical
grounds (as discussed above and in Ref. 44). To over-
come this di%culty, it can be shown that Eq. (26) is valid
as a relation between distributions. Using these two

I

ASY
REG

L

FIG. 2. Asymptotic region of lead n. C„ is a cross-section
line in lead n located in the asymptotic region where the electric
field is zero. In each lead we define a local coordinate system
(x„,y„) and an outward pointing unit vector, I„,normal to C„.

equations in Eq. (24), we see immediately that the reac-
tive term proportional to sin(Qt) is identically zero.
Thus the total dc current-density response is dissipative
and is given by

2/3
J,(x)=+ f da fdp f'(c )5(ci3 )+— p

~ pa ~pa
Wt) (x)f dx'W &(x') E(x') .

A
(27)

Expressing this result in terms of the nonlocal response function 0.(x,x') defined by

J,(x)=fdx'o(x, x') E(x'), (28)

we arrive at the main result of this part of the calculation,

2/3
cr(x, x') =+

z fda fdP f '(c )5(c& )+—' P
4M ~pa pa

L

Wp (x)W t)(x') . (29)

Using the properties of the current matrix elements
given in Eq. (10) we can check explicitly that the
response function given in Eq. (29) satisfies the Onsager
relations. First, because the time-reversal operator is uni-
tary, the integral over states n can be written as an in-
tegral over states 'T(a), fda =f d [V(a)]. Second, Eq.
(10b) and then Eq. (10a) applied to the current-matrix-
element part of Eq. (29) yields

Wt( (x)W t3(x')=W~( )g(t))(x, —B)W~(p)g( )(x', —8) .

(30}

Finally, noting that c&~ )=c, , we see that application of
time-reversal (T) symmetry has resulted in the inter-
change of the indices a and P, which can be restored to
their original order by interchanging the spatial argu-
ments and tensor indices in the two factors W. Substitu-
tion of this relation back into Eq. (29) yields

cr, .(x,x', 8}=cr,(x', x, —8), (31)

which are the correct Onsager relations for the full
conductivity-response function. In addition, by inter-
changing the indices a and P everywhere in Eq. (29) and
noting that the 5-function term is even under this inter-
change, while the principal-value term is odd, application
of time reversal to the product of W's implies that the 6-
function term is symmetric in the magnetic field while the
principal-value term is antisymmetric. Therefore the
principal-value term is zero at B =0, and the
conductivity-response function is manifestly dependent
only on states near the Fermi surface.

As noted in the Introduction, any sensible 'transport
theory must satisfy current conservation in the static lim-
it, V.J=O, and since V JO=O, this implies V J&=0. We
first check that our Eq. (27) does obey this relation exact-
ly and then discuss the constraints that current conserva-
tion places on the response function o(x, x'). Using Eq.
(11}in Eq. (27),

r

V J,(x)=+ fda fdP f'(c )5(cf) )+— P
e Am. i ft3-
4M ~ ~pa ~pa

2M
2 cp„((t(t)(x)P (x)f dx'W f3(x') E(x') .
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(34)

The 5-function term gives zero immediately. For the principal-value term, we use Eqs. (22) and (23) to rewrite Eq. (32)
in terms of matrix elements of the potential:

2

V Ji(x)= i—f da fdP it p(x)g (x)[f(Ep)—f(s )]V p . (33)

Exchanging the dummy indices a and P in the f (E ) term, we find that

. e
V Ji(x)= —i fdP f(cp) f da Pp(x)1( (x)f dx'P'(x')Pp(x')V(x') —g*(x)gp(x) f dx'Qp(x')Q (x')I'(x')

J

V.J, = f dx'V. o(x, x') E(x')
A

= —f dx'[V o(x x')] V'V(x')
A

= f dx'[V o(x, x').V']V(x')

NL

V„V f dy„' ~(x,x') x„=O .
n=1 n

(35)

Because the form of the applied potential, V(x'), is arbi-
trary (its magnitude is constrained to be very small by
our linear-response assumption), we derive the following
independent conditions that must be satisfied by any mi-
croscopic expression for o (x,x'):

The a integral gives a 5(x —x') from the completeness
relation and thus the two terms on the left-hand side of
Eq. (34) cancel identically, yielding the expected answer,
V.J =0

Given that the current density satisfies current conser-
vation, what constraint does this put on the response
function o.'7 Without reference to our microscopic ex-
pression for o.(x, x'), one sees from the fact that E is the
gradient of a potential and the divergence theorem that

I

and the integration over x . This expression is, in gen-
eral, nonvanishing; we emphasize again that this is not
problematic, since it is consistent with current conserva-
tion.

This completes our discussion of the current density
and the nonlocal response function in terms of the exact
eigenstate basis; we now discuss the total transport
current through each lead that results from this current
density. The current coming out of lead m, I is related
to the current density and the voltage by

I =f dy J,(x )x =gg „V„, (37)
n

where we have introduced linear-response coefFicients for
the current in terms of the voltage, g „,which we shall
refer to as conductance coe%cients. The identification of
the condition V o. =0 with current conservation in previ-
ous work has led to some confusion in the literature over
whether the g „can be expressed solely in terms of the
voltages on the leads for BWO. ' We note that the condi-
tion V.o. is only sufFicient, but not necessary for this to be
the case. Instead, only the weaker condition (36b) (which
is a consequence of current conservation) is necessary, as
we now show. Writing the current density in terms of o,
expressing E as a gradient of V, and using the divergence
theorem, one arrives at

V o.(x,x') V'=0,
V f dy„' o(x x') x =0 for all n .

n

(36a)

(36b)
I„=f dx' V(x') f dy x ~(x,x') V'

Using Eqs. (22) and (23), and arguments similar to those
used above to show current conservation, it is straightfor-
ward to show that the microscopic expression for o(x, x')
given in Eq. (29) does indeed satisfy each of these condi-
tions independently.

A crucial technical point to emphasize here is that
current conservation alone does not imply the stronger
condition V.o.=o'V'=0 that has been widely discussed
in the recent literature. This stronger condition is
satisfied in the absence of a magnetic field, which is easily
seen from our earlier observation that the principal-value
term in Eq. (29) is zero at 8 =0 and noting that Eq. (11)
applied to the 5-function term immediately yields zero.
However, this stronger condition does not hold in the
presence of a field. This also can be seen easily, since V o
is simply given by Eq. (32) above without the factor E(x')

V„ f dy f dy„' x o(x, x') x„.
n=1 m n

(38)

The first term is zero by Eqs. (31) and (36b), which gives
the intuitive result

g.„= f, dy—.f, dy„'x. ~(x,x) x„.
m n

(39)

Hence the conductance coefficient between two leads is
simply the "flux" of the conductivity tensor into those
leads. For B =0 this expression was previously obtained
by Kane et al. ' in the multiprobe case.

Using our result for o, Eq. (29), we obtain the explicit
expression

g „=—
2 fda fdP f'(s )5(ep )+— P

77 Cp~
f dy x .Wp (x ) f dy„' W p(x'„).x„. (40)
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This equation simplifies considerably in two special cases.
First, as noted earlier, symmetry considerations imply
that the principal-value term in o (x,x') is zero at B =0.
Hence, the contribution of the principal-value term in
Eq. (40) is zero for B =0. Second, in the case of a two-
probe structure, g completely determines the transport
since the potential can be chosen to be zero in one of the
leads. Adding the (a,p) term to the (p, a) term using
Eqs. (10), we note that the 5-function term picks out the
real part of the product of the W's while the principal-
value term picks out the imaginary part. In the expres-
sion for the diagonal coe%cient g, the factor

f dy f dy' [x Wp (x )][W g(x' ) x ] (41)

is real for arbitrary B, so the coe%cient g depends only
on states near the Fermi surface (at the Fermi surface for
T=0). Thus, without any further work we see that
transport in a two-probe structure is determined com-
pletely by states near the Fermi energy, and is symmetric
in a magnetic field. However, a similar statement does
not hold for o.(x,x'), a result we expect on physical
grounds, since we expect circulating currents inside the
sample for nonzero 8, no matter what measuring
geometry is used.

This completes the derivation within the exact eigen-
state representation. Our central results are the expres-
sions for the current density, Eq. (27), the response func-
tion, Eq. (29), and the conductance coefficients, Eqs. (39)
and (40).

III. GREEN-FUNCTION EXPRESSIONS
FOR THE RESPONSE FUNCTION o.

In order to make the physics involved in the expres-
sions of the preceding section more transparent, as well

I

2ir—i fdaP (x)P*(x')5(c—c ), (42a)

XG, (x,x') =G,+ (x,x')+ G, (x,x')

=2 dn x * x'P (42b)

The product of the two W which enters the expression
for the response function in Eq. (29) can be written in
terms of eigenstates as

W& (x)W &(x') = —g (x)P*(x')D *D 'gp(x')gp(x) .

(43)

It is convenient to treat the part of o that involves the 6
function separately from the part that involves the
principal-value integral; we call these parts o., and o.„,
respectively, because of their symmetry under reversal of
the magnetic field as discussed after Eq. (31). In treating
o „we replace the energy c by a dummy variable c, in or-
der to separate out the energy dependence of the Fermi
function, obtaining

as to make quantitative calculations possible, we trans-
form from the exact eigenstate formalism to Green func-
tions. The basic quantities that will enter our expressions
are the retarded and advanced one-particle Green func-
tions,

G, (x, x')= fdaP (x)ttj"(x')/(c —c ii)),

and their sum and difference, which we denote by

AG, (x,x') =G,+ (x, x') —G, (x,x')

e A~o.(x,x')—: f da fdP f '(c )5(c& c)W& (x)W—&(x')
4M

f dc f'(c)fda fdP5(c c)5(c——c&)W& (x)W &(x') .
4M

(44)

By using Eq. (43) to replace the W by eigenstate expressions and then Eqs. (42) to convert to Green functions, we arrive
at the desired expression for the Fermi-surface part of the response function,

o, (x,x')= — f dc[ —f'(c)]bG, (x, x')D*D'bG, (x', x) .
16aM

(45)

When averaged over space, assuming a uniform electric field in the sample, this expression yields the well-known Kubo
formula for the longitudinal conductivity. '

The principal-value part of o. is

1
W& (x)W &(x') . (46)

By exchanging a and p in the term involving f(c ) and then replacing c& with a dummy variable c by introducing a 5
function, we arrive at

ie A 5(c—c&)o„(x,x')= f" dc f(c)fda fdP P
4M E E~

[Wp (x)W &(x') —W &(x)W& (x')] . (47)

Note that the dependence on c, can be written more compactly using
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1 1
(48)

Expressing the W in terms of eigenstates using Eq. (43) and then using the definitions of b, G, and &6, yields the basic
Green-function expression for o.„:

e A do.„(x,x')= — dE f(el XG, (x, x')D*D'DG, (x', x) —bG, (x,x')D*D' XG,(x', x)
16~M dE dc (49)

In order to combine o., and o.„into the total response function o., it is convenient to write out the Green-function
expressions in terms of 6,+ and G, . First, for cr„noti ecthat the G,+G, and G, G, terms in Eq. (49) form total
derivatives with respect to c. These terms, then, can be integrated by parts, which moves the energy derivative onto the
Fermi function; note that the boundary terms vanish because 6; ~0 as e~ —~ while f(E)~0 quickly as E~ co.
Thus we have

(x x')= f de[ f'( e)]—[6+( x, x)D*D'6, (x', x) —6, (x,x')D*D'G,+(x', x)]
16~M

d Ef(e) G,+ (x,x')D *D 'G,+ (x', x)—
dE

d6+ (x, x )D *D ' 6,+ (x', x)+ G, (x,x')D *D ' 6, (x', x)
E E

(50)

For o.„we leave the G,+6, and 6, 6,+ terms as they are in Eq. (45); however, for the G,+6,+ and 6, 6, terms we in-
tregrate by parts so as to cancel two of the terms in Eq. (50). This yields

o, (x,x')=- f de[ —f'(e)][G,+(x,x')D*D'G, (x', x)+G, (x,x')D*D'G,+(x', x)]

e A de f(e) G,+(x,x')D*D'6,+(x', x)+ G, (x, x')D*D'G, (x', x)
16aM

+6,+ (x,x')D *D ' G, (x', x)+6, (x„x')D *D ' G, (x', x)
dE, dE,

(5 l)

Adding Eqs. (50) and (51) to form o =o, +o „,we find that the nonlocal response function in terms of the Green func-
tions is

2 3
o.(x,x')=, f dE[ —f'(E)]G,+(x,x')D*D'6, (x', x)

2/3 f de f(e) 6,+(x,x')D*D'G,+(x', x)+G, (x, x')D*D' G, (x', x)8' dc dE,
(52)

As the temperature goes to zero, the limit of Eq. (52) is simply obtained using f ( e )~e(EF —e ) and—f '(e) ~5(E—EF).

IV. GREEN-FUNCTION EXPRESSIONS
FOR THK CONDUCTANCE COEFFICIENTS

The current-response coefficients, g „, can be found
from Eq. (52) by integrating over the wire cross sections
as in Eq. (39). We now show that this leads to an enor-
mous simplification for mWn because the terms involving

6,+6,+ or 6, 6, in Eq. (52) are identically zero when
integrated over the cross sections. To show this, we
proceed in two steps. First, we show that these terms are
zero in the asymptotic limit x ~~, x„~~, with
mWn. Second, we show that the derivatives of the
6,+6,+ or 6, 6, terms are zero and conclude that these
terms are zero for any x and x„' (with mWn) To fix the.
discussion, we consider a typical term involving 6, 6,+:
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S(x,x„' )
—= J dy f dy„' G,+ (x,x'„)

X(D" x )(D' x„)G,+(x'„,x ) .

(53)

0, —:— dy e 'g„+k y *Dx

Xe 'y„+k(y);

note 0, )0. The g satisfy the reduced equation

(57)

A(x )=B y x (54)

That such a gauge can be chosen for an arbitrary
configuration of wires is shown in Appendix E. The
eigenstates of an infinite perfect lead are solutions of the
Schrodinger equation,

2

p ——A + U(y) g~(x)=s„g„(x), (55)
1 e

C

where 3 denotes a complete set of quantum numbers.
Because of the translational symmetry in the x direction
in the Landau gauge, one can write the g„(x) as

g,
—(x)= —e ' g„—k (y) . (56)a ~ n

In order to discuss the asymptotic behavior .of the
Green functions most clearly, we present the quantum
mechanics of the perfect leads in a particular gauge at
this point. We suppose that the magnetic field, B, is per-
pendicular to the leads and constant in each lead n for
x )x„. We choose the gauge to be Landau-like in the
asymptotic region,

d
, + ,'~„'(—I&k,+y)'+U(y) y„+— k (y)

dy2 2 c B a a' a

=E., k x;,I, (y» (58)

V.W„ii(x)=0, E~ —Ee . (59)

where lz —=Ac/eB and ~, =eB/Mc. We normalize the g
so that Jdy ly„— k (y)l =1. For a fixed energy c.„k =E,

a

the g„—k are not orthogonal because of the dependencea' a

of the reduced Hamiltonian on k, . Thus, one cannot ex-
pand arbitrary functions of y simply by projecting onto
the set y(y) as one does in the B =0 case. Note that
we have normalized the g

+—so that they carry unit fiux; in
this way an S matrix defined in terms of these g [see Eq.
(79)] will be unitary, which will be useful in making the
connection to scattering theory in the next section.

The states defined in the preceding paragraph are use-
ful because of a fundamental identity between states at
the same energy which we derive from current conserva-
tion. For states at the same energy, c, =eb, Eq. (11) im-

plies

Here, a denotes a complete set of quantum numbers (n, is
the channel number), except for the direction of the
wave: k, )0, so that outgoing and incoming states are
explicitly labeled + and —,respectively. 0, is the outgo-
ing particle Aux through the wire cross section C car-

+ik x
ried by e ' y„+ I, (y) and is defined in terms of matrix

elements of the current-density operator [Eq. (9)] as

I„li(x)=— dy x W~ii(x)=const, s„=E~ .
m

(60)

Remembering that W &(x) is proportional to a matrix
element of the current operator [Eq. (9)] and that the
momentum operator generates translations, we have

This implies that the current matrix element integrated
over a cross section of lead m is constant,

Igni(&+»)= Jdy— x .&g, lJ.,(x+», y)lgii)
eA

f d (g l

—~ph /fiJ ( )
+~ph /Rlg )

e m

(61)

i (k~ —k~ )b,x
I„ii(x +»)=e ' I~ii(x) . (62)

For Eqs. (60) and (62) to both be valid, one must have
I~& =0 whenever c.~ =c~ unless 2 =B. This is the
desired identity. It will be of most use to us slightly
rewritten in the form

Since g is chosen to be an eigenstate of the translation
operator, e 'P "/" acting on a g simply produces a phase
factor,

I

The symbol 5,& means that the states must be exactly the
same in all discrete quantum numbers; we have used a
Kronecker 6 here rather than the Dirac 5 used previously
because the restriction to equal energies means that none
of the remaining quantum numbers is continuous.

The next step is to use the special states and the identi-
ty introduced in the preceding two paragraphs to analyze
the asymptotic behavior of the Green functions. For
convenience of notation, we define a restricted sum over a
at energy E by

f, dy

f dy

J Zy

g',—*( )(D x )gb ( )=+ o,b, E, =Eb

g,+*(x )(D x )g'„(x ) =0, E, =sb

g, *(x )(D x )g'b (x )=0, s, =sb .

(63)

g'= J da 5(s —e, ) .

Be definition, the boundary condition on G,+ (x,x') is that
it is outgoing whenever either x or x' goes to infinity in
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any lead. Choosing x and x' in different leads, we then
have

G+(x,x'„)~g'd, (x„')g, (x ) as x —+Do .

G,+ (x,x'„)~ g' f;,g,+(x )g', *(x'„)
a, c

as x,x„'~~, mWn .

A very similar expression holds for G, ,

(66)

G,+(x,x„')~ g'b, (x )g, *(x„') as x„'~oo . (65)

Combining Eqs. (64) and (65), we obtain the asymptotic
behavior of 6,+ as both arguments tend to infinity,

The asymptotic behavior of G, (x,x'„) as x ~ ~ is ob-
tained from Eq. (64) by replacing g,

+
by g, . The relation

between G,+ and G, , G,+(x,x'„)=[G, (x'„,x )]*,
yields, then,

G, (x,x„')~ g'(f/')*gb *(x~)gd (x„')
b, d

as xm, x„~~, mWn (67)

Using the asymptotic behavior of the Green functions,
we are now ready to show that the G,+G,+ and 6, G,
terms in o [Eq. (52)] do not contribute to the current-
response coefficients g „ for mWn. Using the expansion
(66) to evaluate S(x,x„') defined in Eq. (53), we find
that, for mWn as x,x„' —+ ~,

S(x,x„')~ g" f dy f dy„' ff.', g.+(x g, *(x.')](D* x )(D' x. )fbgjgb (x.')gd '(x~) (68)

The energy derivative in the expression for S can be expanded to yield three terms:

[f,', g,+(x )g, *(x'„)]= (f,', )g, (x )g, "(x'„)+f,', [g,+(x )]g, *(x'„)+f;,g,+(x,„) [g, *(x'„)) . (69)

Using the relation

f, (x)g, (x')D *D 'f2(x)gz(x')

= —«2Df1 )(glD g2) (70)

f dy f dy„' G, (x,x'„)

X(D* x )(D' x„)G,+(x'„,x )=0, mWn .

(74)

we see that all three terms which result from using Eq.
(69) in Eq. (68) contain one or both of the factors

dyn c Xn D 'Xn g Xn

f dy gd *(x )(D x g,+(x )=0 .

(71a)

(71b)

Both of these factors are equal to zero because of the
current-conservation identity (63). Thus we conclude
that S(x,x„' ) is asymptotically equal to zero,

S(x,x„')~0 asx, x„'~~, mAn . (72)

a S(x,x„')= S(x,x„')=0 . (73)

Thus, in fact, S is zero for any x or x„',

Note that if one considered a case where two energy
derivatives were present either on the same or different
Green functions, there would be terms in which neither
factor shown in Eqs. (71) was present; these terms would,
in general, be nonzero.

While the asymptotic behavior, Eq. (72), is valuable, we
would like to evaluate the current, and hence S, at finite
x and x„'. We show in Appendix F that the derivative
of terms involving 6,+G,+ and 6, 6, with respect to ei-
ther spatial variable is zero,

Analogous arguments will hold for any G, G, term or
for terms with the energy derivative on the second Green
function.

In showing that the 6,+G,+ and 6, 6, terms are zero,
our argument depends crucially on the fact that we calcu-
late the conductance not the conductivity, and that we
calculate the current response rather than, say, the
particle-density response. In fact, a simple generalization
of our argument shows that the contribution of the oft:
Fermi-surface part of the current density to the current
through any cross section of the system is zero. The
current through any cross section within the system, C
can be written in terms of the voltages on the leads using
Eqs. (37)—(39). The off'-Fermi-surface or circulating part
of the current density contributes to the current through
terms such as S [Eq. (53)], where C„are the cross sections
in the asymptotic region as before. However, these terms
are zero by exactly the argument which leads to Eq. (74),
showing that the circulating current through any cross
section of the system is zero. In addition to being of use
to us here, the identity (74) (and the version demonstrated
in Appendix F without the energy derivative) has impli-
cations for diagrammatic calculations of conductance
fiuctuations.

Because terms involving 6,+6,+ or 6, 6, do not con-
tribute to the conductance coefficient between different
leads, the g „ that result from the o. in Eq. (52) are
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g „=,f dE[ —f'(E)]f dy f dy„' G,+(x,x'„)(D'x )(D' x„)G, (x'„,x ), mWn .8' C C„
(75)

This is the fundamental equation for the current response in terms of Green functions. For the diagonal part of g, we
noted in the preceding section that g depends only on states near the Fermi surface because the principal-value con-
tribution is identically zero. Thus, in the notation of this section, the contribution of o.„to g„, is zero, so that

2/3
g = ' ",fdE[ —f'( s)]f dy f dy' bG, (x,x' )(D".x )(D' x )bG, (x', x ) .

16aM m Cm
(76)

Equations (75) and (76) are the central results of this pa-
per. They show that the conductance coefficients g „de-
pend only on states near the Fermi level for arbitrary
magnetic field or number of leads. Since there exist a
variety of numerical and analytic techniques for calculat-
ing the Green functions in various microscopic models,
these equations provide a natural starting point for calcu-
lating the basic linear-response coefficients of particular
structures in a magnetic field, exactly what is needed to
make contact with experiments in the mesoscopic regime.

Using these expressions for the asymptotic behavior of
the Green functions, we can express the conductance
coefficients g „ in terms of the asymptotic coefficients

f,', . Inserting Eqs. (66) and (67) into Eq. (75), we use the
identity (63) to reduce the integrals over C and C„ to 5
functions and find

(77)

An explicit expression for the asymptotic coefficients f„
follows from Eq. (66) by multiplying by appropriate g and
using the identity (63); the result is

f;,= — f dy f dy„' G,+ (x,x'„)

X(D* x )(D' x„)

Xg,+*(x )g, (x'„), mWn .

(78)

V. CONNECTION TO SCATTERING THEORY

A very appealing and intuitive way to think about
quantum transport is through the connection to a scatter-
ing problem as pioneered by Landauer. In this section
we transform our result in terms of Green functions into
the scattering language. We find that the response
coefficients g „are simply proportional to the total
transmission coefficients between the two leads as
Buttiker has proposed. '

It is not surprising that the asymptotic behavior of the
Green functions is closely connected to the transmission
amplitudes appearing in the scattering-wave states; such
an expression is now well known for zero magnetic
field. ' We now derive this connection explicitly for
the case of arbitrary magnetic field. Let P„+,(x) denote
the scattering-wave states at fixed energy c of the Hamil-
tonian Ho in Eq. (1), where n, a labels the input lead and

input channel [in the sense of Eq. (56)] for the wave; itt
the asymptotic region,

g, (x„)+g't„„„g,(x„), x in lead n

g't „„g,(x ), xinleadm. (79)

g, (x„)+g't„„„g,(x„), x in lead n

„+,(x)~ '

g't „„g', (x ), x in lead m
(80)

Here, t „„denotes the transmission amplitude for going
from mode a in lead n to mode c in lead m, and with our
choice of normalization for the g the t „„form a uni-
tary S matrix. It has been stated previously in the litera-
ture ' (including, unfortunately, in a recent article by
one of the authors) that the scattering states g„, do not
form an orthogonal set for any choice of normalization,
for these multichannel systems, in which the confining
potential extends to infinity. This is incorrect; there is a
natural choice of normalization that makes the states or-
thogonal, even though they are not orthogonal when nor-
malized as in Appendix A of Ref. 44, Thus it is admis-
sible to use the scattering states as the exact eigenstates in
Eq. (40), and if one were interested only in making the
connection between exact-eigenstate linear-response
theory and an S-matrix formulation, one could proceed
directly from Eq. (40} using the scattering states to obtain
an expression for the g „ in terms of the elements of the
S matrix. In Refs. 43 and 44 it was found that such a
procedure gave exactly the same results as that obtained
using the Green-function expressions; however, the
reason for this agreement was unclear since substituting
nonorthogonal states into Eq. (40), which assumes ortho-
gonality, was suspect. This minor technical puzzle is now
resolved; however, Green-function expressions such as
Eqs. (75) and (76} for the g „are both interesting in their
own right and, in general, are more useful for microscop-
ic calculations, so we have chosen to extend the Green-
function approach used in Refs. 43 and 44.

To establish the relation between the t „„and the
asymptotic coefficients f;, that we are looking for, it is
useful to introduce a second set of scattering states corre-
sponding to the same geometrical structure but without
any disorder —U(x)=0 in Eq. (1). We call these states
P„+, and in the asymptotic region:
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where the transmission amplitudes for this case are la-
beled with a B for ballistic. The two sets of states g and

P are related through the Green function for the com-
plete problem by the standard equation

g„,( ) =P„,(x)+ f dx' G,+ (x,x') U(x')P„+, (x') .

which, when used in the scattering equation, Eq. (81),
with x in A, yields

g„+,(x)=f d'xP„+, (x') e+ (D*)

(81)

The integral extends only over the region 3 because
U(x)=0 outside of A. The equation of motion of the
Green function can be written in the form

G,+ (x,x')U(x') = s+ (D *) G,+ (x,x')

XG,+(x,x'), x within A .

The formula

f dx[D* F(x)]f(x)=—f dxF(x) Df(x)

+ dSFx x

(83)

(84)

—5(x—x'), (82)
allows one to integrate easily by parts. Employing this
formula twice, we find

f dx'P+. (x')D'* [D'*G,+(x,x')]= f dx'G, (x,x')D''P„+, (x) —fdS' [ G,+( x, x')D'P„+, ( x')] . (85)

When the first term in this equation is evaluated using the
Schrodinger equation for P, and then Eq. (85) is used in
Eq. (83), the resulting equation for iIj is

fi
g„+,(x)= — f d S'.[G,+ (x, x')D 'P„+, (x')],

x within A . (86)

Combining the asymptotic behavior of both P [Eq. (80)]
and G,+ (x,x') for fixed x as x' tends to infinity [Eq. (65)]
with the current-conservation identity [Eq. (63)], we see
that only the surface integral in lead n contributes in Eq.
(86) because P„, has an incoming wave only in lead n
Thus the final integral equation for g„, in terms of the
Green function at the boundary is

2

g „= f dE[ —f'(e)] g' t „„I2, mWn .
a, c

(90)

g T „(E)=N,„,„, T „(E)—= g'It
a, c

(91)

where N, h,„ is the number of propagating states, called
channels, at energy E. These two constraints fix the diag-
onal conductance coefficient to be

gmm g gmn

The physical fact that no current fl.ows when the voltages
on the leads are all the same provides a constraint on the
g „, g„g „=0. On the other hand, unitarity forces a
constraint on the total transmitted intensities given by

g„+,(x) = — f dy„' G,+ (x, x„')(D ' x„)g,(x'„),
2M c„

x within A . (87) h f dE[ —f'(E)][N,„,„—T (s)] . (92)

The transmission amplitude t „„can be extracted
from P„, by simply applying a projection operator sug-
gested by the current-conservation identity [Eq. (63)],
yielding the fundamental relation between transmission
amplitudes and the Green functions:

The final step is to specialize to the zero-temperature
case using —f '(e )—+5(E—EF ); the conductance
coefficients per spin are then

2

g „= T „(EF), mWn.

mn, ca

~ 3

4~2 c dym c dy

XG,+ (x,x'„)(D * x )(D '.x„)g,+*(x )g, (x'„),

(88)

2 NL

Nh, „V +gT—„V„
n=1

(94)

At zero temperature, the explicit relation between the
current coming out of lead m and the voltage on lead n is,
then,

which is valid for all m and n.
For m Wn, comparing to Eq. (78) yields

tmn, ca
= t~fmn, ea ~ (89)

Using this in Eq. (77) to express the conductance
coefficients in terms of the transmission amplitudes, we
arrive at the final central result of this paper,

which is the multiprobe Landauer formula as derived by
Buttiker. '

In order to calculate the resistance, one must apply the
constraints for the experimental situation with which one
w'ants to compare and solve Eq. (94) for the voltages in
terms of the current. Since Eq. (94) is noninvertible (be-
cause the zero of potential is arbitrary), some additional
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linear algebra is involved, which is discussed in Appendix
8 of Stone and Szafer.

VI. CONCLUSIONS

A. The multiprobe Landauer formula
and linear-response theory

The simplicity and intuitively appealing nature of the
scattering formulation of the linear-response theory [Eq.
(94)], as compared to the equivalent exact eigenstate ex-
pression [comprised by Eqs. (37), (39), and (40)], suggest
that there should be a simple physical argument for Eq.
(94). In our opinion, that argument is simply Biittiker s
original phenomenological derivation of the multiprobe
Landauer formula. For completeness, we summarize that
argument briefly here; the original argument can be
found in Ref. 12.

Consider a multiprobe conductor of the type shown in
Fig. 1, except that instead of the infinite perfect leads one
imagines that each lead is attached to an ideal "reser-
voir. " A reservoir in this context has four important
properties. (1) It is,in equilibrium at a chemical potential
p„(for the nth lead). (2) It is large enough relative to the
conductor and to the chemical-potential differences in-
volved that any steady-state current fIowing from the
reservoir is negligible deep within the reservoir (so a mea-
surement in the presence of current fIow would still yield
p„). (3) No particle entering the reservoir returns to the
conductor without an inelastic (phase-randomizing)
event. (4) The interface between the reservoir and the
"sample" generates no additional resistance (this can be
achieved by adiabatically widening the lead to a large re-
gion which is the reservoir).

Suppose now that the XL chemical potentials p„—=e V„
are given some fixed values, which shall be measured
from the lowest of those, po. For carriers below po the
net current into all reservoirs must be zero because all in-
coming and outgoing states are occupied (at T =0). The
total current injected into reservoir m from reservoir n
(summed over all N incoming channels) in the energy in-
terval between p„and po is just

dn.I „=e+U, (p„—p )QoT „,
a b

={e /h)T „(V„—Vo),

where dn, /dE is the density of states for channel a, and
we have used the well-known cancellation of the velocity
and 1D density-of-states factors. The current injected
into the conductor from reservoir m is, by a similar argu-
ment, just (e /h)(N, &,„—R )( V —Vo); hence, the to
taI current I into the conductor from reservoir m is
given by the difference of this term and the total outgoing
current, g„& I „, which is just Eq. (94) (with VO=0).
Note that the argument apparently is completely in-
dependent of the presence of a magnetic field (since the
necessary cancellation of u, and dn, /dE still occurs in an
arbitrary field). This surprisingly generality led to the
question addressed in this work of whether microscopic
calculations supported the validity of Eq. (94) at all mag-

netic fields. We agree with Ref. 12 that the validity of
Eq. (94) in arbitrary field is remarkable, and add, given
the complexity of the intermediate steps leading to Eq.
(94), that it appears that this simple and useful expression
would have been very difficult to obtain from a linear-
response model in the absence of Buttiker s original argu-
ments.

Biittiker's multiprobe Landauer formula, Eq. (94), was
proposed at the end of a period of both controversy and
progress in our understanding of the physically relevant
Landauer formula. (We remind the reader that we use
the term "I.andauer formula" generally to denote any ex-
pression for the linear-response coefficients in terms of
the 5 matrix of the conductor. ) A recent review article
describes much of this historical development and we will
not reproduce that discussion in the present article. In-
stead, we will make some comments about the novel
features of Eq. {94), which allow a derivation from
linear-response theory to succeed, and then discuss sim-
ple limits of Eq. (94) in a high magnetic field that em-
phasize both its relevance to the integer quantum Hall
effect and its relation to the original Landauer formula,
g = T /( 1 —T), where T is the total transmission
coefficient out of the reservoir serving as current source.

Although, beginning with the work of Engquist and
Anderson, earher work emphasized the importance of
the four-probe nature of a (typical) resistance measure-
ment in deriving Landauer formulas, Eq. (94) is the first
such formula that treats the current and voltage probes
on an equal footing, and hence involves the entire S ma-
trix (scattering into all the probes) instead of just scatter-
ing between the current source and sink. Thus, other ap-
proaches, by necessity, had to assume that the voltage
difference induced by the current Aow could be expressed
only in terms of the scattering between current source
and sink (even though they did not require this induced
voltage to be the same as that between the source and the
sink). There is no reason to believe that such a general
expression, which ignores the dynamics of scattering into
the voltage probes, should exist in the mesoscopic regime,
and, indeed, the experiments on voltage fluctuations, ' '
nonlocal bend resistance, and the anomalous quantized
Hall effect in mesoscopic conductors (as well as many
others) clearly demonstrate that the measuring probes
can be of crucial importance in this regime.

More importantly, earlier approaches had understood
that the chemical-potential difference induced by a
current Aow was the chemical-potential difference be-
tween two reservoirs, adjusted so that no net current
Qows into them. However, because their approaches
ultimately wished to eliminate the scattering into the
voltage probes from the final description, they were
forced to introduce some physical assumption to charac-
terize the "efFective chemical potential" at a point along
the conductor. Since the channels in the conductor are,
by definition, out of equilibrium in the presence of
current Aow, this necessitates some hypothesis about
equilibration of different channels at the Fermi energy
which appeared to have some arbitrariness and lack of
generality. Equation (94), on the other hand, allows the
equilibration of the measuring reservoirs with the sample
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in the presence of current Aow to be determined by the
(enlarged) scattering matrix of the conductor, removing
the need to define an "effective chemical potential" along
the conductor. The induced chemical-potential
difference is that between the measuring reservoirs and is
fixed only by the condition that voltage probes draw no
current. As long as a voltage measurement is ultimately
made by equilibrating with measuring reservoirs, and one
can reasonably mell' model the scattering into that reser-
Uoir, it is hard to see how Eq. (94) can fail (although it
certainly can reduce to simpler descriptions in certain
limits, one of which we will discuss below).

It is precisely because Eq. (94) requires no assumptions
about equilibrium of carriers within the sample (or in the
perfect leads) that it can be derived straightforwardly
from linear-response theory. The boundary condition of
a large phase-randomizing reservoir is well mimicked by
the infinite perfect leads in the linear-response model. As
discussed in the Introduction, the efFect of the current
How on the assumed equipotential in the leads can and
should be ignored because the leads are representing ideal
reservoirs which are unaffected by the small current fIow.
Note, that the chemical potentials of the voltage reser-
voirs are also unaffected by the current How; instead they
are adjusted externally to cancel that How. We stress that
an understanding of the role of the reservoirs is essential
in justifying the boundary conditions imposed in the
linear-response calculation and the physical situations to
which such calculations can be applied. ' ' We believe
that our calculation, combined with those of Refs. 43 and
44, now establishes the complete equivalence of the Kubo
and Landauer approaches as long as the linear-response
calculation incorporates the correct boundary conditions
(i.e., infinite system with all leads explicitly included).

B. The multiprobe Landauer formula
and the quantum Hall e8'eet

As discussed above, a major application of this formu-
lation of linear-response theory is to the integer quantum
Hall effect, particularly in mesoscopic systems. Several
recent papers have analyzed the quantum Hall effect on
the basis of Eq. (94), ' ' ' ' and also on the basis of
simpler Landauer formulas in which the probes are not
introduced explicitly. ' One of the most basic issues
raised [given Eq. (94), which determines the "longitudi-
nal" and "Hall" resistances for any set of measurements
on a sample] is what are the necessary and sufficient con-
ditions on the conductance matrix g „such that one ob-
served a quantized Hall resistance, and/or zero longitudi-
nal resistance, for a given subset of measurements. Our
present discussion of this issue will overlap substantially
with previous work; ' ' ' however, we note that
despite the fact that many specific examples have been
analyzed (and, in particular, the four-probe
case ' ' ' ), no answer to this general question has
been demonstrated in the literature. We have been able
to prove a number of general properties of Eq. (94) relat-
ing to the integer quantum Hall effect. Here we will re-
port the simplest and most relevant of our results, and

defer a detailed discussion to a separate publication.
Assume that the sample depicted in Fig. 1 is iInmersed

in a strong perpendicular magnetic field of orientation
such that the Lorentz force exerted on the carriers
emerging from the leads into the sample pushes them in
the clockwise direction. As we have seen above, the
transverse wave functions in the perfect leads are pushed
towards the edge of the leads by the magnetic field, in a
direction determined by the sense of their longitudinal
velocity. The magnitude of that velocity, because it is
proportional to dE„/dk, is highest for states with large
amplitude nearest the edge. Hence the current is fed into
the sample from the perfect leads in edge states localized
on the furthest clockwise edge of each lead. In the sam-
ple, ~here there is bulk disorder, the edge states are
mixed and are no longer simply those of the leads;
nonetheless, if the typical energy of the disordered poten-
tial is small compared to %co, and the Fermi energy is far
from that of a bulk Landau level, then there are still
current-carrying edge states. As Buttiker has em-
phasized, it will be very difFicult for carriers in these
edge states to backscatter more than a cyclotron radius,
and therefore the clockwise transmission matrices
T +& will be very close to their maximum value, N, h,„
(for simplicity in the following discussion, we shall as-
sume the same number of propagating channels X,»„ in
all leads). Labeling the leads of the system in increasing
order clockwise as in Fig. 1, we are then led to define the
ideal system as that in which all clockwise transmission
coefficients T +& =N, h,„,and all others, including the
refIection coefficients R, are equal to zero. We use this
as our reference state for the breakdown of the quantum
Hall effect, and define a localized breakdown as a scatter-
ing path directly connecting two leads which are not con-
nected in the ideal system. While the edge-state picture
is useful for motivating this starting-point, it is not essen-
tial to our results, which only characterize the conditions
on the g matrix leading to the quantum Hall'effect.

A measuring configuration exhibits the complete in-
teger quantum Hall e6'ect if all resistances measured on
the same side of the current path (a line connecting the
current source and sink) are zero (vanishing "longitudinal
resistance"), and all resistances measured across the
current path give RH =(h /e )( I/X, h,„) (quantized "Hall
resistance"). Although less common than four-probe
measurements, two-probe resistance measurements can
be done in certain structures ' and yield the quantized
Hall-resistance value. We include the two-probe resis-
tances in our analysis as resistances measured across the
current path. A system exhibits the complete integer
quantum Hall effect if this property holds for all choices
of current leads, i.e., all measuring configurations.

We have proved the following statements for systems
with an arbitrary number of leads, based on an analysis of
Eq. (94). (l) The ideal system exhibits the complete quan-
tum Hall effect, and it is the only system exhibiting the
complete quantum Hall eff'ect. (2) An arbitrary nonideal
system still exhibits the complete quantum Hall effect for
all configurations in which the current path does not
cross a localized scattering path. (3) A nonideal system
in which there is only one localized breakdown, measured
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in a configuration in which this scattering path crosses
the current path, so that there is a probability of in-
teredge reAection R =1—T, has the following properties.
(a) All longitudinal resistances measured on the same side
of the localized breakdown will be zero. (b) All longitudi-
nal resistances measured across the line of localized
breakdown will be equal to (h /e )(1/N, h,„)R/T. (c) All
Hall resistances measured on the same side of the break-
down will be (h/e )(1/N, h,„). (d) All Hall resistances
measured across the region of breakdown will be equal to
the appropriate sum or difference of these longitudinal
and quantized Hail resistances.

To illustrate the usefulness and ease of analyzing these
questions with Eq. (94), we present a brief proof of state-
ment (1). Equation (94), written in matrix notation as
I =gV is a linear equation in an XL-dimensional vector
space in a given representation; define the orthonormal
basis vectors in this representation to be e . Feed
current into the system through lead n and take it out
through lead n') n and choose units so that this current
is unity, i.e., the "current vector' is I =e„—e„.. With
resistance measured in units of h/e, this configuration
shows the complete quantum Hail effect if the solution of
Eq. (94) is

VQii(n, n')=(1/N, h,„) g e

since this has the property of vanishing voltage difference
for all leads on a given side of the current path, and volt-
age difference 1/N, h,„ for all leads separated by the
current path. In the ideal system, where there is only
clockwise transmission, the g matrix is

g Qii N h,„(I P i ), where I i—s the identity matrix and
P, is the matrix which permutes each basis vector by one
step, i.e., P,e =e +&. But it then follows by inspection
that VQii is a solution of Eq. (94):

n' —1

gQiiVQi-i= X e
n'

m =n+1
e =e„—e„

It also follows that g &z is the only matrix for which

VQii ( n, n '
) is a solution, as any correction to gQii would

have to give zero when acting on V&& for all choices of
n, n', and it is easy to show that the only such matrix is
identically zero. Thus we conclude that the complete
quantum Hall effect occurs if and only if electrons inject-
ed into the sample ultimately arrive with probability 1 at
the contact towards which the magnetic field is most
directly driving then; it is easy to see how this might
occur in the edge-state picture as discussed in detail by
Buttiker.

We will not prove statements (2) or (3) at this time, but
pause briefly to discuss statement (3), which has very re-
cently been independently derived by Haug et al. , Jain
and Kivelson, and in special cases by Biittiker. The
striking point is that for this special situation of only a
single localized breakdown of the edge states one obtains
the original 1D Landauer formula in the one-channel
case, and a simple multichannel generalization, which, to
our knowledge, has never been proposed before in the
literature. This clarifies the point that the original Lan-

dauer formula does not necessarily require weakly cou-
pled probes, but rather probes which do not themselves
contribute to the longitudinal resistance (that probes do
cause resistance in zero field has been shown in the exper-
iments in Ref. 20). In the quantized Hall regime the
scattering into the probes is as large as possible, but this
is precisely balanced by the Aux out of the voltage reser-
voir along the same edge, and the presence of probes does
not result in any net Aux rejected back into the current
source. Under these circumstances it is only reAection in
the sample which contributes to longitudinal resistance,
and one has the conditions necessary for the derivation of
the one-channel Landauer formula to be valid. For the
many-channel case one again must consider the equilibra-
tion of the channels, and Eq. (94) leads to a different and
simpler result than has been proposed in the literature
(see Ref. 44 and references therein) for this special situa
tion.

It has been possible very recently to study this particu-
lar case experimentally in gated quantum Hall sys-
tems. These experiments focused on the situation in
which R/T= 1 (exactly one channel is transmitted and
one is rejected), so that statement (3) implies a striking
new effect —quantization of the longitudinal resistance as
well as the Hall resistance. This efFect was indeed ob-
served and the correctness of the conclusions following
from Eq. (94) were convincingly demonstrated. It is im-
portant to note that the samples studied in some of these
experiments were hundreds of micrometers across, far
from what is normally considered the mesoscopic regime.
This emphasizes that Buttiker's multiprobe Landauer
formula is relevant to the macroscopic Hall effect, as long
as certain phase-coherent scattering processes which
should not occur in this length scale are excluded. This
will be discussed in more detail elsewhere. We believe
that further applications of this multichannel Landauer
formula will lead to new insights into quantum-transport
phenomena in high magnetic field, in both the mesoscop-
ic and macroscopic regimes.
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APPENDIX A: CONNECTION
TO PREVIOUS WORK IN BULK SYSTEMS

Previous linear-response calculations in a magnetic
field have dealt with the conductivity tensor of bulk sys-
tems without introducing a description of the probes, and
have used either impurity averaging or spatial
averaging ' "as an essential part of the calculation.
These formulations should be obtainable in our approach
as well, and for specificity we will make contact with the
of Smrcka and Streda, "which has been used as a start-
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dxJ x =L.E1

S (A 1)

where S is the length of the region A along the direction
of the direction of current flow; we follow Smrcka and

ing point for discussions of the quantum Hall effect,
and has also been a starting point for deriving a well-
known formulation due to Streda, in which the Hall
conductivity is not expressed in terms of Fermi-state
quantities. The aim of Smrcka and Streda is to find the
Linear-response tensor, L, which relates the spatially aver-
aged current density to a constant applied electric field E,

Streda in taking S =1. The relation between L and the
conductivity-response function of Eq. (52) above, is then,

I.= f dxf dx'a(x, x') . (A2)

The expression for L given by Smrcka and Streda in-
volves a trace over a product of Green functions and ve-
locity operators. To arrive at this result we start with our
Eq. (52) for the response function and interpret Eq. (A2)
as a real-space representation of a trace.

First, integrate the first term in Eq. (52) by parts with
respect to energy and use this relation in Eq. (A2) to yield

2/3L= f dx f dx' f de f(e) G,+(x,x')D*D'AG, (x', x) —AG, (x, x')D*D' G, (x', x)
8~M dc, dc

Using four sets of complete states in real space, f dr; lr; & & r; I, and the matrix elements of the current-density operator
in real space,

&r, J, (x)lr2&= —„5(x—r, )D5(x —r~),
ieh
2

we find that I. expressed as a trace is

dG+ dG,f dxf dx'f de f(e)Tr J, (x) J,„(x')bG, —J, (x)bG, J, (x')
2% A dE, dE,

(A5)

Since the operator hG, can be expressed in terms of the Hamiltonian through AG, = —2ni5(e —H), Eq. (A5) is
equivalent to

dG,+ dG,
L =imari f dx f dx' f ds f (e)Tr J, (x) J, (x')5(e —H) —J, (x)5(c.—H)J, (x')

dE, dF
(A6)

The next step is to rewrite the trace over the current-density operator as a trace over the velocity operator. To do
this, note that for a general operator 3 the definitions of a trace and the current-density operator imply that

fdx Tr[J, (x)A, ]=fdxf dx'f da &x'IJ,&(x)la& &al A,~lx'&

. fdx f dx' fda[5(x —x')D'+D'5(x' —x)]il'j (x)&al ~„lx'&
2M'

(A7)

The integral over x can now be performed because of the 5 functions; thus, using, in addition, the definition of the ve-
locity operator,

fdx Tr[J,„(x)A,„]= . fdx' fda D'f (x') & al A,„lx' &

Mi

=e fdx'f da&x'Iv, ~la&&al~, ~lx'&

=e Tr(v, „A, ) .

We can use Eq. (A8) to greatly simplify Eq. (A6), and find that

dG+ dG,
L =iirie fde f (e)Tr v,p v, 5(e —H) —v,p5(e —H)v, p

(A8)

(A9)
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which is the result found by Smrcka and Streda [their Eq.
(31)]. From this point, all of the subsequent results of
Smrcka and Streda can, of course, be derived, including
the more standard form of the longitudinal conductivity
at zero temperature which dates back to Kubo et al. '

,tice language. We consider a nearest-neighbor 2D tight-
binding Hamiltonian on a square lattice with sites labeled
by pairs of integers n, m:

H, = g e„ ln, m & (n, ml

I. „=nAe Tr[u o(E~ H)u—6(Ep —H)], (A10)
n, m

as well as the more complex expression for the Hall con-
ductivity, which was written in terms of Fermi-surface
quantities in Smrcka and Streda, " and subsequently
transformed into the non-Fermi-surface expression used
by Streda in treating the quantum Hall regime. Smrcka
and Streda are able to obtain Fermi-surface expressions
for these response coeScients because spatial averaging
eliminates the circulating currents which are described by
non-Fermi-surface terms in Eq. (29) for cr(x, x'). Thus
the spatially averaged conductivity behaves essentially
like the conductance coefficients and is a Fermi-surface
quantity, whereas (as shown above) the current-density-
response function o (x,x') is not, and the failure to distin-
guish these quantities apparently had led to some con-
fusion in the literature. Previous work has interpreted
the Fermi-surface expression for the spatially averaged
conductivity in terms of diamagnetic currents fIowing at
the edges in certain limits. Here we emphasize that
such an interpretation is not essential to the basic result
that the Hall resistance can be expressed as a Fermi-
surface quantity; the Fermi-surface states need not be
edge states.

APPENDIX 8 LATTICE FORM
OF THE MAIN RESULTS

In order to perform computations of the resistance of
mesoscopic structures, it is often useful to work in a
discretized space rather than in continuum space as we
have in the main text. In this appendix we therefore de-
scribe how to translate our continuum results into the lat-

—& ( V„ ln, m & (n+1, ml+H. c. )

—y (V.; ln, m &(n, m+ll+H. c. ), (81)

where the hopping matrix elements are related to the vec-
tor potential by

V„' =exp(ie A „" /A'c ),
V~ =exp(ieA» /iric) .

(82)

y (V:,.In, m &(n+1, ml
1

n, m

—V:,* In+1, m &(n, ml), (83)

where a similar expression holds for U", . The current-
density operator is related to the velocity and density
operators by

J, (n, m)=e [n,~(n, m)v, +v,„n, (n, m)]/2 .

Using n, ~(n, m) = ln, n & (n, ml, this yields

In transcribing the continuum results, the basic quantity
we wi11 need to know how to treat is the derivative opera-
tor D which is related to the current-density operator
[Eq. (9)]. Thus, we first find the velocity operator in our
lattice case,

1
u, = . [x, , HQ]

sA

J,"„(n,m)= . ( V„" ln, m & (n +1, ml —V„* ln +1, m & (n, ml

+V.",.I.—l, m&&n, ml —V, , l., m&&. —l, ml). (84)

2Mi Tr[J,„(x)f, Jp( x)g, p] . (85)

To get the corresponding lattice expression, one need
only substitute the lattice form of J, [Eq. (84)]. This is a
general prescription for transcribing the continuum re-
sults onto the lattice and can be used to interpret our re-
sults for the nonlocal response function [Eq. (52)], the
current-conservation identity [Eq. (63)], the conductance
coefficients [Eqs. (75) and (76)], and the relation between

As in Appendix A [Eq. (A5)], any of our continuum ex-
pressions involving D can be interpreted as a trace over
operators where J,„ is substituted for D,

f (x, x')D "D 'g (x', x)
2

K, (n):—g ( —V„„ln,m & (n +1, ml
iA

—V„* ln +1, m & (n, ml) . (86)

the Green function and the transmission amplitudes [Eq.
(88)].

An annoying feature of this general prescription is that
it generates cumbersome equations with many terms;
since J, has four terms, D *D' will generate 16 terms.
We now show that for the cases where there is an integra-
tion over the cross section of the lead, many of the terms
are identical and the resulting expressions are consider-
ably simpler. We first introduce an operator closely relat-
ed to J, ,
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+ V„*, ln, m & &n —1, ml),
h„'"=—g c.„ ln, m ) (n, ml

(87a)

Physically, K, represents the current going through the
bonds between columns n and n +1. Matrix elements of
this operator have the two crucial properties of satisfying
the current-continuity equation [Eq. (11)] and the
current-conservation identity for states in the perfect
leads [Eq. (63)]. To show the first of these, we rewrite the
Hamiltonian in order to express IC, in terms of the
Hamiltonian:

h.'"—= y( V:, ln, m& &n+l, ml

(Pl [K.,(n +1)—K.,(n)]la &

=—((s —
Eti) g ((pin +1, m ) (n +1, m la) ) .

m

(89)

This equation is a direct analog of the current-continuity
equation, Eq. (11); in particular, if the energies of the
states are the same, the matrix element of K,„(n) is in-

dependent of n.
Turning now to the current-conservation identity in

the perfect leads, we use our general prescription to tran-
scribe Eq. (63) and get

g (g,—*lJ; (n, m)i/i —, )= e5,i„ (810)
—g ( V»

l n, m & ( n, m + 1
I
+H. c.),

H, = yh„"'—yh„"'.

(87b)

(87c)

Using g J, (n, m)=[K (n)+K, (n —I)]/2 and not-
ing that the two K, terms are equal by use of Eq. (89)
yields

Introducing eigenstates la) and lp) of Ho with eigenval-
ues c. and c&, we have

(Pl[K,p(n+I) —K, (n)]la)

= . (pl[h„"', —(h„"+, )+]la& .

Using h„'+', to act on la) and (h„'+', )+ to act on (pl,
substituting Ho and h ' "from Eq. (87), and cancelling the
contributions from h ' "= (h ' ")+,we arrive at

( g,—*lK, (n) i/i—, ) =+e5,i„ (811)

which is the desired identity.
The current-conservation relations for K, that have

just been derived can be used to simplify the general ex-
pressions for equations involving an integral over a cross
section. As an example, we consider the equation for the
conductance coefficients, g;, between diferent leads i and
j, Eq. (75). Our general transcription procedure yields

g; = — f dE[ —f'(E)] g QTr[J;~(n, m)G,+J;~(n', m')G, ], i'27T m m'
(812)

where (n, m) labels a site in the perfectly ordered part of lead i and (n', m') labels a site in lead j. Substituting K, for
J,~, we obtain

fdc[ f'(E)Trt [K,—&(n)+K,z(n —1)]G,+ [K,z(n')+K, (n' —l)]G, ), i&j .
8~

(813)

Using the equation of motion for the Green function withi' and noting that both Green functions in Eq. (813)
are at the same energy, we find by an argument identical
to that used for the current-continuity equation above
[Eq. (89)] that

Tr[[K,~(n) K, (n ——1)]G,+K, (n')G, I =0,
n far from n' . (814)

Because the connection between the Green function
and the transmission coefficients, Eq. (88), is perhaps the
most physical route to use in performing a calculation,
we give the lattice form of this connection explicitly. For
the transmission between difFerent leads, the argument
used to arrive at Eq. (815) yields

t; „=— Tr[K, (n)G,+K, (n')lg, ) (g, l]
e

Thus the four terms in Eq. (813) are the same, yielding
2 (g,+ lK,~(n)G,+K,„(n')lg', ), i'

e
(816)

g,. = — f dE[ —f'(s)]Tr[K,~(n)G,+K,~(n')G, ],2~

(815)

For the reAection coefficients, the 6 function in the equa-
tion of motion for the Green function introduces some
subtleties; we find in this case

Similar simplifications occur in the expression for g; [Eq.
(76)] t;; „= (g, lK,„(n l)G, K, (n)lg. & .

e
(817)
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APPENDIX C: THE EQUILIBRIUM CURRENT DENSITY

We show here that the equilibrium current density given in Eq. (17) yields zero total current in each lead. Integrating
the current density over a cross section of the lead and using the definition of W [Eq. (9)], one finds that the equilibrium
current through lead m is

I' '= — fda f(E )f dy i/I*(x )(D x )i/t (x ) . (Cl)

Rewriting this by introducing two new variables, c and x', which are then integrated over using 5 functions, yields

I' '= —' f de f (E)f dy fda5(E —E)fdx' 5(x —x' )g*(x' )(D x )i/j (x ), (C2)

where (D x ) now acts to the left on the 5 function. The integral over the states a simply yields the difference between
two Green functions [Eq. (42a)], while the 5 function can be expressed in terms of a Green function by using the equa-
tion of motion. These two operations yield

g2I' '= — f dE f(s)f dy fdx' + (D')' —U(x' )+8 6;-(x', x )(D x )bG, (x,x' ) .
2M Cm

(C3)

Performing the integral over dy first, we see that all
terms contain either lim dy„W p(x„) x„=O .

fp.
X oo E

n pox

(D 1)

or

f dy 6,+(D x )6+
m

f dy 6, (Dx )6,
m

We show that this is true in the sense of distributions by
considering the integral over state index /3 with a smooth
function F (/3),

g = fdPF(P) f dy„g*(x„)(D x„)i/&(x„), (D2)
~P n

Arguments very similar to those in Sec. Ip [Eqs.
(68)—(72)] show that both of these integrals go to zero

~ac; we thus conclude that I' '~0 as x ~oo. The
fact that the divergence of the current density is zero im-
plies that the current in each lead is constant; hence,I =0. Furthermore, the current through any cross sec-(0)—

tion, C*, of the structure is zero, since current conserva-
tion implies that the net current into the volume formed
by C* and the lead cross sections is zero, while we have
just shown that the current in the leads is zero. This re-
sult is expected, of course, and confirms that while there
can be circulating current in equilibrium (6,+G,+ or
6, G, terms), there can be no transport current (6+6

+ E E,

or 6, 6, terms).

APPENDIX D: THE BOUNDARY VALUE
OF THE CURRENT OPERATOR AS x ~ ao

In rewriting the current density so that the 0—+0 limit
can be taken, we used the identity

where we have used the definition of W. Notice that the
integral over p commutes with the integral over C„and
that f& IE& is a smooth function of p, so that we are led
to study simply the integral of i/&(x) times an arbitrary
smooth function of p. In order to analyze the integral, it
is convenient to choose the eigenstates to be the
scattering-wave states defined in Eq. (79). Because the
asymptotic form of the scattering-wave states is known,
we can express an integral over these states explicitly in
terms of an integral over k or energy,

dk,fdp= g g f g(E, —E', ')6(E, E,' '),— (D3)
m=1 a=1

where m labels the leads, a labels the incoming channels
in that lead, g (E) is the one-dimensional density of states,
c,' ' is the threshold energy for mode a, and ca
=Pi k, /2M. Using Eq. (D3), as well as the asymptotic
form of the scattering waves, we find that our integral
over p is

dk,f dpG( p) &i/(jx)= g g f G(m, a, k, )g+, k (x„)
0 2&

dk,f 6( , mka, )6(k, )l/+,jk (x„)
m =1a=l

f G(m, a, k, )6(k, )[r~", k (y„)e ' "+r' ', k (y„)e "] as x„~~,
rn =1 a =1
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where the functions r" involve transmission coefficients
and the transverse wave functions. The integral over k,
is simply the Fourier transform of Ge(k, )r". Since the
worst possible singularity in this product is the discon-
tinuity caused by the 0 function, this Fourier transform
decays to zero as x„~~. Thus, we conclude that

d 6 p x~ —+0 as X~~ tx) (D5)

for any smooth function G. From this we conclude that
Q~0 as x„~~ [Q defined in Eq. (D2)], and hence that
Eq. (Dl) is valid in the sense of distributions.

APPENDIX E: CHOOSING A LANDAU
GAUGE IN EACH LEAD

A&(x&)=B„y&x&, x& in lead n . (E1)

To express A in the Landau gauge appropriate to lead n

which makes an angle O„with lead I, one needs to apply
a gauge transformation,

A„(x,)= A, (x, )+Vf„(x,),
with f„given by

f„(x&)= B„x&y—|sin 8„+ 'B„(y
&

—x
&

)—sin(28„) .

(E2)

(E3)

A straightforward computation using x, =x„cosO„
—y„sinO„and y, =x,sinO„+y„cosO„shows that
A„(x„)=B„y„x„in lead n.

In a multilead structure, one wants to apply the trans-
formation (E3) so that it only affects lead n Therefor. e,
define a generalized smooth step function g„(x) by

In order to apply the results for the quantum mechan-
ics of a perfect lead given in Sec. III to our multiprobe
structures, it is necessary to show that one can choose a
gauge which is Landau-like in the ordered part of each
lead. We have already introduced a coordinate system in
each perfect lead, x„and y„, in connection with the
linear response calculation in Sec. I (also see Fig. 2). We
start by considering the Landau gauge in the coordinate
system in lead 1,

1, x in ordered part of lead n,
g„(x)= 0, x in lead mWn,

smooth interpolation for x, elsewhere .
(E4)

Now the function g„(x,)f„(x&) generates a gauge trans-
formation which turns the vector potential only in lead n.
Clearly, then, by applying the gauge transformation gen-
erated by

f (x, )= g g„(x,)f„(x,)
71 =2

(E5)

to the starting gauge in Eq. (El), one arrives at a gauge
which is Landau-like in the ordered part of each lead, al-
lowing one to use the results for the quantum mechanics
of a perfect lead as in Sec. III.

R (x,x„')=—f dy f dy„' G,+ (x,x'„)

X(D* x )(D' x„)G, (x'„,x ) .

(F1)

The asymptotic analysis presented in the text [as in arriv-
ing at Eq. (68)] implies that, for m Wn as x,x„' ~ ~,

APPENDIX F: SPATIAL DERIVATIVES
OF G,+G,+ TERMS

In Sec. III we showed that the contribution of the
G, G,+ and G, G, terms in o. [Eq. (52)] to the conduc-
tance coefficients g „ is zero as x and x,' tend to infinity
for m Wn, Eq. (72). However, in any practical calculation
the conductance coeKcients must be evaluated at finite
x and x„'. In this appendix we show that the spatial
derivatives of the G,+G,+ and G, 6, terms are zero, so
that these terms must be zero for all x and x„'. To be
specific, we will work with S(x,x„') defined in Eq. (53);
in analyzing S(x,x„' ), it is convenient to start by
analyzing a term without the energy derivative, which we
denote R(x,x„'),

R(x,x„')~ g" f dy f dy„' f:,g,+(x )g, *(x'„)(D*x )(D'.x„)f;„gb (x„')g„*(xm) .
a, b, c, d n

R (x,x„')~0 .

Some simplifying notation,

D, =(D x ),
G =G+ (x,x'„), G =G,+ (x'„,x ),

(F3)

Qx

Using Eqs. (70) and (71), we conclude that R (x,x,' ), like
S(x,x„' ), vanishes asymptotically,

form

R (x,x„')a
xm

= f dy f dy„'(GD* D„G)(D' x„)G . —

(F4)
Using the equation of motion for the Green function
when mWn,

$2
e+ (D +D ) U(x, y) G,+(x,x—'„)=0, (F5)

2M

allows one to write the derivative of R in the compact we replace the x derivatives in Eq. (F4) with y derivatives
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R (x,x„')a
Bxm

R (x,x„')=0 .
Bx~

(F7)

= f dy f dy„'( —GD* +D G)(D' x„)G,

(F6)

where the explicit dependence on e or U(x, y) has can-
celed out between the two terms. Because the Green
function vanishes at the ends of the curve C, integrating
the D* term by parts twice exactly cancels the D term;
hence,

A similar argument shows that the derivative of R with
respect to x„' is also zero. Using the asymptotic behavior
(F3), we conclude that R is zero,

f dy f dy„' G,+ (x,x'„)

X(D* x )(D' x„)G,+(x'„,x )=0, mWn . (F&)

Turning now to the term with the energy derivative,
S(x,x„') defined in Eq. (53), we write out the energy
derivative as a limit and find

8 a 6,+~ —6,S(x,x„')= lim f dy f dy„'
' ' (D* x )(D' x„)G, (F9)

Using the previous result for R (x,x„'), this immediately simplifies to

aS(x,x„')= lim — dy f dy„' G,+~(D* x )(D' x„)G, , mWn . (Flo)

Treating 0/8 as before, we note that now the energies in the equations for the two Green functions G, +& and 6 do

not cancel, and in contrast to the null result obtained above we are left with

Bx
S(x,x„')= lim —f dy f dy„' b, [G,+&(D ' x„)G,] = f dy f dy„' G, (D ' x„)G, .

m lt m

(F1 1)

Using the asymptotic behavior of 6, and 6, as x„'~~,
Eqs. (64) and (65), and the current-conservation identity
(63), we conclude by an argument similar to that in the
text that

S(x,x„')—&0 as x„'~~ for any x (mWn) .
Bx

(F12)
We are thus led to study the:second derivative of S with
respect to x and x„,

a2

Bx„Bx

mWn . (F13)

Proceeding in exactly the same way with t)/t)x„' as with

3/Bx, we find that

a2

Bx Bx
S(x,x„')=0, mWn . (F14)

From this equation combined with the asymptotic behav-
ior in Eq. (F12), we conclude that (c)/t)x )S(x,x„')=0.
A similar argument shows that the derivative with
respect to x„' is zero. Combining these results with the
asymptotic behavior of S [Eq. (72)], we arrive at the con-
clusion that S itself is equal to zero for m Wn, Eq. (74).
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