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Dimensionality expansion for the dirty-boson problem
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We apply the double-dimensionality expansion of Dorogovstev to derive renormalization-group
recursion relations for a Bose fluid in a random external potential. We find a nontrivial zero-
temperature fixed point. The onset of mean-field behavior for dimensions d )d, 4 is unconven-

tional, yielding discontinuous exponents, consistent with previous scaling arguments. Including
positive temperatures, we give a clear picture of various crossover regimes, depending on the
strength of the disorder and the boson density. This answers previous questions about the behav-
ior of He adsorbed in Vycor glass.

Over the past decade, enormous efI'ort has been invested
in trying to understand random-electron systems at zero
temperature. In contrast, until recently, the correspond-
ing boson problem has remained essentially unaddressed.
This is in spite of the many experimental realizations of
such systems, for example, He adsorbed in various
porous random media. ' Of particular interest is the na-
ture of the insulator to superAuid onset transition as the
boson density n is increased through some critical density
n, at T 0, and also how this onset transition aff'ects the
finite temperature A, transitions at fixed densities n & n, .

The system that has received the most attention is He
adsorbed in porous Vycor glass, ' ironically, for the
reason that it primarily displays the behavior characteris-
tic of a pure nonrandom Bose fluid. In fact, for very low
coverages, n —n, &&a, where a is the range of interac-
tions, a crossover to ideal Bose-gas critical behavior is ob-
served.

The reasons for the apparent invisibility of disorder in

Vycor were explained qualitatively in Ref. 4 on the basis
of scaling arguments, and the process of spinodal decom-
position by which Vycor is made. However, a true quanti-
tative understanding of the nature of the onset transition
was still lacking. In this Rapid Communication we fill
this gap by analyzing a model of bosons in a random
external potential. using the double-dimensionality expan-
sion of Dorogovstev, deriving lowest-order renormal-
ization-group recursion relations. The resulting fixed-
point structure clearly elucidates the relation between on-
set at T 0 and scaling near T&. In particular, for very
weak disorder, there is a range of coverages over which
the pure crossover to ideal gas behavior should be ob-
served. Only at very low coverages is the T =0 disorder-
dominated onset regime encountered, and should devia-
tions from pure behavior become visible. The Vycor ex-
periments' have probably not yet entered this regime.

Once inside the random onset region, various predic-
tions can be made. For example, the temperature can
be treated within a finite-size scaling formalism, and this
allows the prediction of various exponents, such as that
which gives T~ as a function of n —n, . The scaling forms
also predict universal shapes for constant density profiles
when properly normalized and plotted versus T/Tz. The
lack of universal shape in the Vycor data is further evi-

dence that random onset has not yet been observed.
The work of Refs. 7 and 8 has come a long way toward

understanding the nature of the zero-temperature onset
transition. What is still lacking is a quantitative under-
standing of the transition in higher dimensions. In partic-
ular, one would like to have a dimensionality expansion,
analogous to the e expansion for classical spin systems,
about the upper critical dimension d, above which mean-
field theory is valid.

We will apply the Dorogovstev ideas ' to the coherent
state path integral formulation of the Bose-gas Hamiltoni-
an. ' When dealing with quenched disorder it is con-
venient to use the well-known replica trick" to derive an
effective Lagrangian in which the random external poten-
tial has been integrated out. The final form with which we
work is

+r I y;(r, r) I'+ v I y;(r, r) I']

where 2U is the on-site soft-core repulsion, —r =p is the
chemical potential, P = (ktt T) ', and the randomness has
been taken as Gaussian, &function correlated, with am-
plitude 2g. Units have been chosen so that I'i 2m I,
and an underlying spatial lattice with spacing ao = a is as-
sumed. Equivalently, a momentum space cutoff kA —tr/ae
is imposed. The classical complex field y;(r, z) replaces
the usual Bose-field operator, and the quantum-mechan-
ical nature of the system is embodied in the extra imagi-
nary time variable, r The linear . time derivative

y,*By;/Br is characteristic of the Bose fluid. ' The in-
dices i,j label the p identical replicas, with the formal lim-
it p 0 to be taken at the end. For ease of later compar-
ison to O(n) spin models, it is convenient to generalize y;
to an m-component complex vector, with helium corre-
sponding to m = 1. One expects the correspondence
n =2m.
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What makes L,p more difficult to analyze than the(p)

more standard classical spin models" is the fact that the
interreplica coupling, proportional to g in Eq. (1), al-
though local in space, is infinite ranged in time. Boyanpv-
sky and Cardy, extending earlier work of Dorogovstev,
have splved this prpblem fpr the spin- 2 Ising versipn' pf
Eq. (1). They used field-theoretic techniques to generate
a double expansion in the variables ed, the number of
"temporal" dimensions along which the interreplica cou-
pling has infinite range, and e 4 —D, where D =d+ed is
the total dimensionality. The actual physical situation
corresponds to e'd I. In this Rapid Communication we
will carry out the analogous calculation to first order in e
and ed for the Bose gas using standard momentum shell
renormalization-group techniques.

The first step in the momentum shell renormalization-
group analysis involves integrating out the components of
the fields y; with wave numbers k in a shell k&/b & k
& kA, and frequencies ro in a shell coA/b' & to & toA, where

b e & 1 is the rescaling parameter, eventually to be tak-
en infinitesimally close to 1, and z is the dynamical ex-
ponent, to be specified below. The assumption of a fre-
quency cutoff' to& (or temporal lattice spacing zo-tt/toA)
seems difficult to justify, discrete time being a somewhat
unnatural concept, but we have found no way of obtaining
sensible answers without it. However, to order e and ed,
the fixed-point properties are independent of co~ (and of
kA), and in the pure, nonrandom case where one can, in
fact, calculate sensibly with coA , the answers obtained
are the same as for finite coA. The underlying problem
seems to be in properly accounting for the analyticity
properties of the boson Green's functions: Answers de-
pend on whether frequency contour integrals are closed in
the upper or lower half plane. In the more standard cases
in which L,tt is even in ro, the upper and lower half planes
are identical, and these problems do not arise. We can
only speculate that a more careful calculation, to higher
order in e and ed, may provide some mechanism for an
effective frequency cutoff; thereby eliminating the need
for putting it in by hand.

The question arises at this point of how to analytically
continue the frequency sums away from ed 1. We do
this simply by replacing the term y 8y/8r by
g„"=~y 8y/8r„, but with the further restriction that y
contain only those frequency components for which
co„~0 for all p or m„~ 0 for all p. ' To first order in ed
it is sufficient to evaluate all frequency sums at ed =0 so
that only e 0 contributes. Hence, the lowest-order re-
cursion relations require the existence of an analytic con-
tinuation, but are completely insensitive to its form. This,
presumably, is why numerical values for the exponents ob-
tained to O(ed) converge so poorly at ed 1.

The second step in the renormalization process involves
rescaling frequency and momentum to restore the original
cutoffs kA and mA, and rescaling the fields I]II; to preserve
the coefficients of [Vy; ~

and y,*By;/8r in (1). This
determines the choice of z, and ensures the existence of a
well-defined fixed-point Lagrangian. When the resulting
renormalized Lagrangian is restored to the original form
(1), but with renormalized values of r, v, and g (we now
take P ~), the resulting recursion relations, to lowest

z =2+2g+O(v', . . . ), (2d)

where r r/k„, v Kdv, g Kdg, and Kd =2/
(4m) "t I"(—,

' d) is (2x) "times the area of the unit sphere
in d dimensions. These equations yield a nontrivial ran-
dom fixed point, Ro, at v =(c+5ed)/4(2m —1), g*

[(2—m)@+3(m+2)ed]/8(2m —1), and r* = —[3m'
+(7m+4)ed]/8(2m —1) with z -2+2g* and cor-
relation-length exponent v ' 2 —[3m'+ 7(m+ 4) ed ]/
4(2m —1). As in Ref. 5, the eigenvalues associated with
small deviations of v and g from their fixed-point values
are complex, with negative real part, and hence, can give
rise to oscillatory corrections to scaling. The crucial term,
without which the fixed point would not exist, is the—4(m+1)gv term in (2c). It is this term which disap-
pears when mA

In Fig. 1 we plot the Aows in the critical hyperspace,
defined by (2b) and (2c). For d &4(a+ed &0), the
Gaussian fixed-point 60 at g =U =0, is unstable to the
random fixed point, and the flows are plotted in Fig. 1(a).
For d&4(m+ed &0) both fixed points are stable, and a
separatrix S divides the basins of attraction. This is
shown in Fig. 1(b). Which of the two that governs the
critical behavior depends on the strength of the random-
ness. As d increases further, the separatrix moves up-
wards, and for sufficiently large d it intersects the random
fixed point which then becomes unstable. In all cases (ex-
cept e ey 0) there are two distinct fixed points with
different eigenvalues.

We see then that the transition tp mean-field theory as
d increases through d, =4 is quite unconventional. The
exponents change discontinuously to their mean-field
values, whereas the conventional mechanism, involving
the coalescence of the two fixed points, yields continuous
exponents. In fact, it can be seen on very general grounds
that precisely this kind of behavior must occur. A recent
theorem of Chayes etal. '" states that in any d-dimen-
sional system with spatially uncorrelated disorder one has
the bound v~ 2/d. The mean-field value is vMF= 2,
which immediately implies d, ~ 4. However, one also has
the generalized Josephson hyperscaling relation

(d+z —2) v for the superffuid density exponent g, val-
id for d & d, . The mean-field value is gMF =1. However,
if d, ~4 and z &0 (in fact, scaling arguments yield
z =d), this relation implies g& 1 for d approaching d,
from below, i.e., a discontinuous change in g must occur as
d passes through d, For the metal-insulator transition in
noninteracting Fermi systems, this problem is apparently
avoided by having d, =~. ' For classical systems, one
has z =0 so that one can have v= —,

' and /= 1 in d, =4
without contradiction.

The present method gives the dynamical exponent z as
a nontrivia1 expansion in e and ed. As mentioned, various

nontrivial order in e and ed, are

dr/dl =2r+2(m+1)v/(1+r) —2g/(1+r)+O(v, g,gv),

(2a)

dv/dl=(e —ed)v —2(m+4)v +12vg+O(v, . . .), (2b)

dg/dl (a+e )g+8g —4(m+1)gv+O(v', . . . ), (2c)



DIMENSIONALITY EXPANSION FOR THE DIRTY-BOSON PROBLEM 815

Go

0

0

cI& 4

them here. However, the onset of classical behavior as
P 0 is of interest. Various technical problems arise, and
it becomes necessary to change the rescaling procedure for
small P in order to obtain a well-defined fixed point. '

Thus, when P reaches 1 we keep it fixed and allow the
coefficient of @*8'/ter to vary instead, yielding the plausi-
ble classical result z =0. This coef5cient then diverges as
l ~ and suppresses all but the ro 0 Matsubara fre-
quency. The recursion relations, in this limit, reduce pre-
cisely to the usual ez-independent classical spin random-
bond recursion relations, with the identification n 2m. "
These same recursion relations can be derived simply by
setting eq 0 in Eq. (2). For m &2 they possess an
O(e 4 —d) random fixed point R at v* e/4(2m —1)
and g -(2 —m)Z/8(2m —1). In fact, for d 3(Z 1)
and n 2, the best estimates yield a negative specific-heat
exponent a & 0, and hence, by the Harris criterion" ran-
domness should be irrelevant for m ~ 1. The O(e) results
therefore give a misleading picture of the flows for m 1.
Qualitatively correct flows can be obtained by taking
m 2 in the O(e) recursion relations, which yields only a
pure fixed point [at g* 0 and v* e /2( m+4)l which is
stable against disorder. Of course, quantitative estimates
(for exponents, etc.) can only be obtained by going to
higher order in Z.

In Fig. 2 we show a schematic plot of the Aows in the
three-dimensional critical hyperspace defined by the vari-
ables U, g, and T. The picture is only schematic due to the
different renormalization procedures used in different re-
gions of parameter space. On this diagram various possi-
ble behaviors are shown, depending on the relative sizes of
the starting parameters vo, go, and Tz. Since the pictured
ffows lie in the critical hyperspace, T& is in fact the physi-

I

FIG. 1. Renormalization-group flows in the T 0 critical hy-
perplane for (a) d & 4(e/ey —0.5) and (b) d )4(e/ey —2).
The onset of mean-field theory occurs by way of a separatrix S,
which separates the basins of attraction for the zero-temper-
ature Gaussian Go, and random Ro fixed points.
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scaling arguments predict the exact equality z d for
eq = l. ' It is not at all clear how such a precise resum-
mation of the series might come about. A better under-
standing would be obtained if the scaling arguments could
be carried out for general eq, however, they seem rather
special to eq 1, and we have found no way to generalize
them.

To end, we discuss the behavior for T & 0. For P & ~,
a gap 2x/P, opens up between the Matsubara frequencies.
It is therefore convenient to change the renormalization
procedure and integrate out only the momentum space
shell kA/b & k & kA, allowing the frequency cutoff to re-
normalize. This circumvents the problem of counting the
number of discrete frequencies in a thin shell, especially in
the classical regime where the gap between frequencies is
very large. The flow equation for P becomes

(3)dP/dl - —zP,
which therefore ffows toward p =0. The general p recur-
sion relations are rather messy, and we will not display

IDEAL
PLANE
(g -0)

CLASSICAL
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FIG. 2. Schematic plot of renormalization-group flows for
d & 4, including finite temperatures. Nonrandom flows remain
in the g 0 plane, and crossover to ideal gas behavior involves
flows that pass close to Go, G, and finally C. The random onset
regime involves flows which pass close to Ro before collapsing
into the classical plane. Depending on the sign of the specific-
heat exponent, a, a classical random fixed point exists (a) 0,
dashed line) or does not exist (a &0, solid lines). The latter
case probably holds for helium.
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cal transition temperature, while Uo and gz are fixed by
the atomic properties of "He and by the random medium,
respectively.

Suppose go 0: Then one is in the pure limit, a case
that has been treated in great detail elsewhere. When
Ti, vo«1, one explores the crossover to ideal gas be-(d —2)/2-

havior. This is described by Aows which, due to the small-
ness of T&, closely approach the T 0 Gaussian fixed point
60 before collapsing down into the neighborhood of the
classical Gaussian fixed point G, from which they cross
over to the critical fixed point C. ' Now suppose that
there exists a range of Ti for which Tq~" )

Uo&& 1

«Ti )/ /go. Within this range of Tq, the onset fixed
point Ro will play essentially no role. The Rows will be
dominated by pure crossover, being pulled down into the
classical plane where randomness is irrelevant before Ro
has a chance to act. This range of T~ corresponds to the
range of coverages, alluded to in the Introduction, over
which pure weakly interacting Bose-gas behavior is seen.
Only for Tx " / /go 5 1 do the fiows spend enough time

near the T=O plane to be attracted towards Ro. For
T~~ )/ /go&& I the flows are dominated completely by a
direct crossover from Ro to C. The scaling form that re-
sults from this crossover (essentially finite-size scaling in
1/T) predicts, as mentioned earlier, constant density
profiles with a universal shape. ' This shape is deter-
mined by the asymptotic trajectory that connects Ro to C,
and could, in principle, be calculated within the e, ed for-
malism. Although the Vycor data' does not enter this
true region of random onset, this regime should be much
more accessible in materials that are more strongly ran-
dom '
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