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Incompressible quantussi Hall states
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Considering each electron as a superposition of fictitious fractionally charged particles allows,
with the help of a natural ansatz, a systematic identification and characterization of the in-
compressible quantum Hall states at noninteger filling factors. Explicit Laughlin-type wave func-
tions are obtained for all the incompressible states and their quasiparticles. The order of stability
of the various states predicted on the basis of physically plausible rules is in agreement with ex-
periments. Although in principle all rational fractions are observable, these rules imply that the
even-denominator fractions are in general much less stable than the odd-denominator ones.
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There is interaction only between particles of the same
species, and the choice a e /(gqeP) produces the physi-
cal Coulomb interaction. We will not need the explicit

Fractionally charged excitations are a truly remarkable
outcome of the theories of the fractional quantum Hall
effect (FQHE). ' In this paper we assert that a decom-
position of the electrons into fictitious fractionally charged
particles at the very outset straightaway brings out the
complete elementary structure of FQHE. This is made
possible by a natural ansatz relating incompressibility in
the electron system to that in the 6ctitious particle system.
This theory reproduces in a very transparent and uni6ed
fashion all the essential characteristics of the FQHE, in-
cluding identification and the order of stability of various
fractions, experimental scarcity of the even-denominator
fractions, the quantized Hall resistance, and the charge
and statistics of the quasiparticles. It also produces expli-
cit Laughlin-type wave functions for not only all the in-
compressible quantum Hall states but also their quasipar-
ticles. It emphasizes a fundamental connection between
the FQHE and the integer quantum Hall effect (IQHE),
and makes it clear that even though repulsive interactions
are required for FQHE (gapless excitations would exist in
the absence of repulsive interactions), the driving mecha-
nism is, as in IQHE, the Fermi statistics. Unlike previous
theories, it predicts a possibility of FQHE at all rational
6lling factors, but at the same time provides reasons for
why odd-denominator fractions are experimentally so
much more abundant.

We artificially divide each electron into m particles of
m distinct species (labeled by X), solve the problem for
these 6ctitious particles, and in the end enforce the con-
straint that the coordinates of the m particles belonging to
the same electron be equal, i.e., zj"' zl for all X and j.
We start by writing the following Hamiltonian for the
fictitious particles.

p= Zp ' (6)

form of interactions in this paper. The masses m)„are of
no relevance.

Solution of the problem amounts to specifying the state
of the particles of each individual species. We identify the
state obtained after setting zj(") zl for all X, and j with
the electron state. This state is formally an eigenstate of

P(a) =— Qdz; b(z; —z; ) H(a) . (4)

Here we make the following physically plausible ansatz:
An incompressible electron state is obtained if and only if
the particles of each individual species are in an in-
compressible state. The rest of the paper will examine the
consequences of this ansatz and show how it leads to a
natural and consistent description of FQHE.

The physics of the problem makes the following
demands: (i) The particles of all the species must be fer-
mions, because only then can they use their Fermi statis-
tics to produce incompressible states, in analogy to IQHE.
This implies that m must be an odd integer. (ii) Since
each fictitious particle sees the physical magnetic 6eld, AJ
must produce the physical magnetic Seld for all A, . (iii)
The density of each species must be equal to the density of
electrons. As the density is related to the filling factor vi

by density Bei,vi/hc, the 6lling factor of a given species
is inversely related to its charge ei,. The same density of
all the fictitious particles requires the product eipi, to be
the same. (iv) Let us denote the filing factors corre-
sponding to incompressible states of the Sctitious A, parti-
cles by pi, and those corresponding to the incompressible
electron states by p. Clearly, p)„'s can assume any integer
values, which will be our starting point. As we will see
later, integer values of~ generate incompressible states at
fractional filing factors, and more incompressible states
can be obtained by allowing pi, 's to also assume the frac-
tional values thus obtained. In this paper, for simplicity of
illustration, we will assume p), 's to be integers unless men-
tioned otherwise. A given set of filing factors p ), . . . ,p
occurs simultaneously only for the system with e~

const, or, with the condition gi, ei e, when

P&A (5)
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The eigenstates of Ho when the fictitious X, particles fill

~ Landau levels (LL's) are

$ e~g~=c~[[zJ'"']]exp ———g Iz;"'I '
l

where the z's are measured in units of the magnetic length
(hc/e8) 'J . This yields the electron states

4 i, ",p ] -IIxp,

[[ ]]exp ——'gI;I '. (8)

These are the incompressible fractional quantum Hall
states according to our ansatz. We emphasize that since

g~ are also approximate eigenstates of Ho+aV, the
states [pi, . . . ,p ] are also valid in the presence of in-
teractions [i.e., are approximate eigenstates of the fully in-
teracting Hamiltonian R(a)]. We adopt the convention
Pi~P2~ . ~Pm.

These states are the main result of our paper. These
can also be regarded as generalizations of the Laughlin
states; the Laughlin states are a product of an odd number
of incompressible integer quantum Hall state gi, whereas
the states in Eq. (8) are a product of an odd number of
any incompressible states. All the results of this paper can
be derived by taking these states as the starting point.

The states in Eq. (8) can be easily shown to be transla-
tionally and rotationally invariant. The filling factor of a
state can be determined by counting the number of occu-
pied single particle states in each LL. Taking a disk-
shaped geometry, this amounts to determining the largest
power of a coordinate zJ in the product ~@~[[zJ]l.
Since the largest power of zJ in each factor @~[fzJ]]
is N~ ', the largest power in the product is pi Npi, ',
which yields the 611ing factor to be p de6ned in Eq. (6).

In order to determine the Hall resistance, we apply the
gauge argument of Laughlin to the fictitious particles.
For a Hall voltage of VH, the Hall current carried by each
species is Ii cpiei VH/pi where pi hc/ei. The total
current is then I Pi,hei VH/h which is equal to
pe VH/h, because ~ei pe and gi, ei. e. This yields the
Hall resistance RH h/pe, where p is fractional as
deffned in Eq. (6). In analogy with IQHE, impurities and
inhomogeneities present in the physical sample produce a
plateau at this value of the Hall resistance so long as the
Fermi level lies in a mobility gap.

The quasiparticles can be obtained trivially in this
framework. The lowest-energy quasihole, which is an ex-
citation of the smallest possible charge, is obtained by
creating a hole in the state g~, . Similarly, the lowest-
energy quasielectron is obtained by adding a particle in
the (p~+1)th LL of this state. States containing an arbi-
trary number of quasiparticles can be constructed analo-
gously. Due to charge conservation the charge of a quasi-
particle is simply e~. As explained later, the quasiparticle
gaps will be determined by interactions, and not by the cy-
clotron energy.

Now we consider some speci6c cases. We de6ne ma to
be the number of pi's different from 1.

(i) m 1: This corresponds to IQHE. The quasiparti-
cles have charge e.

Zl Z2 Z3

1 1 1

exp —t Z Iz I
' zi z2 z3 . .

Z2 Z2 Z2 ~ ~ ~

1 2 3

(10)

This is different from the trial states considered in the
past. ' We note here that this is the 6rst approach that
allows an exact construction of the quasielectron state,
which illustrates its power. We now ask how many elec-
trons there are in the higher LL in this state. First expand
the polynomial multiplying the exponential in Eq. (10).
Each term contains one z, and the terms with the largest
coefficients are such that almost all zJ's appear with a
large power of order —,

' (m —1)N. Now express the wave
function in terms of single-particle eigenstates

Q, (z) (2+2's!) ' z'exp( —
4 Iz I ), (11)

gi, ,(z)-(2+2'+'s!) ' 'z' '[2s —Iz I']exp( —
4 Iz I')

(12)

where gl, corresponds to the 1th LL with s being the an-
gular momentum index. If each term contained exactly
one g~,, (none can have more than one), there would be
exactly one electron in the higher LL. However this is
clearly not the case, since the coordinate zJ of the jth par-
ticle appears in the combination zJ zJ, which expands as

z, zJ'exp( ——,
'

I zJ I )
(2K2'+'s!s) '

[$0,,—/(zJ) —s '
gi,,(zJ)], (13)

and, in general, has 6nite amplitude in the lowest LL. In
fact, when s is a big number, which is typically the case,
zJ zJexp( —

I zJ I /4) lies almost entirely in the lowest LL.
This strongly suggests that the number of electrons in the
quasielectron state of Eq. (10) in the higher LL vanishes
in the limit (rn —1)N~ oo. Explicit analytic calculations
for few-particle systems indeed show a rapid decrease in
the number of electrons (( 1) in the I 1 LL as either m
or N is increased, thus lending support to this assertion.
This would imply that the quasielectron energy is not the
cyclotron energy of the fictitious particles, but is instead
determined by interactions, and vanishes in the absence of
interactions. With the help of the explicit wave functions,
computation of the quasiparticle energies is in principle
straightforward.

(ii) mo 0: In this case the 611ing factor is I/m and the
state [1,1,. . .] is identical to the Laughlin state because

QJ & k (zJ —zk ). The quasiparticles have charge e/m
in agreement with Laughlin's theory. The quasihole is ob-
tained by creating a hole in gi. The wave function for the
state g~ with a hole at the origin is (+JzJ)g~ so that the
quasihole state is

gzJ &/exp —
4 Z I

z'
I (9)

~ J l

Encouragingly, this is precisely Laughlin's trial wave
function for a quasihole at the origin. The quasielectron
at the origin is similarly given by
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[2,2, 1]-e,e)exp' ——,
' g (z, (', (is)

l

corresponds to filling factor v —,'. Notice that when
mo & 1, the charge of the quasiparticles of the P/Q state
is not e/Q. For example, the charge of the quasiparticles
of the state [2,2, 1l at v —,

' is e/4.
Incompressible states exist for all rational fractions.

We prove this by explicit construction. A state at P/Q,
where Q is odd, can be constructed by choosing in Eq. (6)
m Q and pi, P. Similarly, a state at P/Q, where P is
odd, Q is even, and P (rQ, where r is an even number,
can be obtained by choosing m rQ+r —P, r of the pi, 's
equal to r, and the rest equal to rP. These states are ob-
viously not unique. Given an incompressible state at a
fraction p, one can construct states at 1 —p (Ref. 13) and
at n+p (Refs. 4 and 11) where n is an integer. As indi-
cated earlier, more states can be generated by choosing g~
in Eq. (7) to be one of the states obtained above corre-
sponding to a noninteger filling factor. In general, there
will be several incompressible candidates for a given ra-
tional fraction, but usually the most stable one can be
determined uniquely with the help of the rules given
below. It must be emphasized that only rational filling
factors are generated in this theory; incompressibility is
not possible at nonrational filling factors.

A state with a larger quasiparticle gap is more stable
than a state with a smaller quasiparticle gap. Since one
important parameter in the calculation of the quasiparti-
cle gap is the charge of the quasiparticles, ' we assume
that in the case of two sufficiently similar states the state
with the smaller quasiparticle charge has smaller gap and
is therefore less stable. This implies that the state
[pi, . ..p~] is more stable than [pi+i, .. .p ] and the state

Thus our simple model has reproduced the Laughlin
states, and its essential characteristics, including its insen-
sitivity to interactions and its fractionally charged quasi-
particles. We believe that our derivation of the Laughlin
states gives further insight into the origin of their in-
compressibility.

(iii) mo 1: In this case the states [pi, i, l, . ..] corre-
spond to filling factors

pi
p ~

(m —i)pi+ i

These have odd denominators. Interestingly, these states
are precisely the trial states propsed in my composite fer-
mion approach for the FQHE. In fact, the present work
has resulted from a desire to gain a better understanding
of these trial states. In analogy with the quasielectron
state in Eq. (10), these states are also expected to lie
largely in the lowest LL. The charge of the quasiparti-
cles is e/[(m —1)pi+1], which is in agreement with the
charge of the quasiparticles of the hierarchical states
for these filling factors. The quasiparticle states can be
written exactly as was done for the Laughlin states.

(iv) mo) 1: Even denoniinator fractions now appear.
It is worth emphasizing that FICHE at even-denominator
fractions is possible in our theory even for spinless elec-
trons, in contrast to the earlier studies. '0 '2 For example,
the state

[[pJ] is more stable than [[pJ,1,1]. The strongest corre-
lations are expected to be due to the binding of electrons
and the zeros of the wave function, z' indicating that the
change in stability is most pronounced when the two states
differ in their rno. Thus the most stable states are the ones
with small m and mo. Analogous rules hold for nonin-
teger values of pi, . In general, if g is less stable than g~,
the state [p i, . . .pi', ,. . .p ] is less stable than
[p i s ~ p4. pe l.

The order of stability predicted by these rules can be
shown to be in excellent agreement with experiments.
The experimental scarcity of the even-denominator states
can be understood because they are quite rare in the
favorable parameter range. For example, in the parame-
ter space mo~ 2, m ~ 5, and pi, & 10, there are only four
even-denominator states ([2,2, 1] at v —,'; [2,2, 1,1,1] at
v —,'; [6,6, 1] at v —,'; and [6,6, 1,1,1] at v +&) com-
pared to 95 odd-denominator states. The most stable
even-denominator state is predicted to be v —,'. The
states [6,6,1] and [6,6,1,1,1] are extremely unlikely to be
observed, because the much stronger state [6,1,1l at
v —„ is barely observable in the best available samples
of the day. ' Thus there is little likelihood of the observa-
tion of any even-denominator fractions other than —,', —,',
and its hole analog state 4 .

Electron spin is included in the formalism by assuming
that when an electron is divided into m particles, one of
them, say the A, 1 particle, carries the spin with it, and
the rest of the particles are spinless. Let q q~+qi be the
filling factor of the X 1 particles such that q ~ (q i) spin-
up (spin-down) Landau bands are occupied. The filling
factor of the resulting state, denoted by [qt, qi,p2, . . .], is
given by Eq. (6) with pi q. When qt qi (qtWqi) this
state is spin-unpolarized (partially spin polarized). The
states [1,1;1,.. .] are precisely the spin-unpolarized states
at 2/(2m —1) considered by Halperin'0 and Haldane.
The state [1,1;2,ll is a spin-unpolarized state at v
and is expected to be more favorable than the spin-
polarized state [2,2, 1] for sufficiently small Zeeman ener-
gy because of its smaller mo, and by analogy with the nu-
merical work that shows that the spin-unpolarized state
[1,1;1,...] has lower energy than the corresponding spin-
polarized state for small Zeeman energy. ' This is in
agreement with experiments. '5' Note that the states ob-
tained here satisfy the Fock criterion.

Finally we calculate the adiabatic statistics of the
quasiparticles. Even though the fictitious particles are
fermionic, the quasiparticles are obtained after the
identification zJ i zj and hence their statistics must be
calculated from first rinciples. Following Arovas,
Schrieffer, and Wilczek, ' the excitation described by the
wave function Q;(z; —zo)[[pJ] has charge —ep and
obeys p statistics (i.e., interchange of two of these excita-
tions produces a phase np). It can be shown that
Q; (z; —zo)g~, consists of pi holes at zo, one in each of the
p ~

LL's, so that the above excitation has pi quasiholes at
zo, a special case of which was encountered in Eq. (9).
Thus from simple counting arguments we expect a single
quasihole to have charge —ep/pi —e i and obey (p/pi )
statistics. A similar analysis for quasielectrons is difficult
because of their more complicated wave functions, but
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since a quasielectron-quasihole pair is a neutral boson, the
quasielectron must have charge e~ and obey (—p/pf)
statistics. We would like to point out that wave functions
for the many electron state containing an arbitrary num-
ber of quasiparticles can be written without regard to
their statistics.

It is greatly satisfying that our simple approach is suc-
cessful in explaining the phenomenology of QHE not only
at the odd-denominator rational 611ing factors but also at
even-denominator fractions. This success combined with
the fact that we recover the Laughlin states, as well as the

spin-unpolarized states of Halperin and Haldane, lends
necessary credibility to our approach and strongly sug-
gests that the states obtained in this work represent the
physics of the FQHE. However, it indeed remains to be
shown that these states are in fact legitimate representa-
tions of the true ground states. Further work in this direc-
tion is in progress.

In summary, incompressibility in a partially 611ed LL
obtains when parts of electrons individually occupy in-
teger quantum Hall (or, in general any incompressible)
states.
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