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We consider a semiconductor superlattice built of quasi-two-dimensional layers of narrow-band-

gap material sandwiched by barriers of wide-band-gap material. We show that when the elec-
tromagnetic wave with frequency below the band gap of the superlattice propagates along the super-
lattice axis, it induces intensity-dependent gaps in the spectrum. The connection between these
unusual gaps and spatial chaos is explored. The possibility of bistable devices is discussed.

The concept of optical bistability' is important both for
optical switching, logic, and signal processing and the ex-
ploration of various routes to chaos. Optical bistability
results from the nonlinear response of the medium to in-
cident radiation. The nonlinearity may arise either via
resonant (absorptive) or nonresonant (dispersive or Kerr)
excitation. Recently both the room-temperature exciton-
ic optical bistability in GaAs-Gal Al„As multiple
quantum wells and nonresonant optical nonlinearities
have been observed and studied theoretically. These
studies were focused predoxninantly on the microscopic
origins of the phenomenon and reduced dimensionality of
a single quantum well. The superlattice aspect of this
problem is addressed here. The related problem of the
optical response of dielectric superlattices constructed
from layers with different, intensity-dependent, dielectric
constants has been studied theoretically. The authors of
Ref. 4 were, however, primarily concerned with the
effects of dispersive nonlinearities on stop gaps of a linear
theory.

We present here a new approach emphasizing the three
crucial aspects of optical bistability in nonresonantly ex-
cited multiple quantum wells: the spatial periodicity,
discreteness, and nonlinearity. We do so by considering a
phenomenological model which is trivial in the absence
of either periodicity or nonlinearity but yields unusual
results when both effects are present. Such a situation
can be realized in semiconductor quantum wells by the
excitation of virtual exciton states concentrated mainly in
the narrow layers of a lower gap material.

The superlattice is modeled by an array of N very thin,
nonlinear layers, positioned at z = la, where l = 1,
2, . . . , N and a is the layer separation. The space be-
tween layers is filled with a medium of dielectric constant
e independent of the intensity of the electric field. The
system is placed in a Fabry-Perot cavity with mirrors of
reAectivity r and transmittivity t (1=t + r ) located at
z =0 and z =a (N + 1). The dielectric constant e' of non-
linear layers depends on the intensify of the electromag-
netic wave as e'=e (1+gEE*),where g is the nonlinear
coefficient (coupling constant). ' The stationary wave
equation describing the propagation of a transverse elec-

tromagnetic wave E in the superlattice can now be writ-
ten as

d E N
+ k E = gk EE '—Eg 5(z —la ),

dz 1=1

where k =(e co Ic )' is the wave vector of a wave with
frequency co in the linear medium, and c is the speed of
light. We wish to emphasize that both the nonlinearity
and periodicity are introduced on the same level and nei-
ther one can be treated as a perturbation. The equation
of motion for the complex electric field has a useful
mechanical analog. It can be viewed as describing a de-
generate pair of harmonic oscillators, kicked periodically
with a force depending on the displacement.

Because the medium between the layers has linear
response, we can write the solution to Eq. (1) be-
tween layer m and m + 1 in the form E~ (z)
=A exp[ik(z —ma)]+8 exp[ —ik(z —ma)]. The re-
lation between ( A i,B,) and ( A, B~ ) can be ob-
tained by integrating Eq. (1) across the mth layer and us-
ing the continuity of E. After some algebra we have

, =e "[A —
—,'kgi~A +8 ~'(A +8 )],

B,=e+' '[8 + ,'kgi~A —+8
~

(A +8 )] .

For the transmission problem, the boundary conditions
require an outgoing wave E(z) =E,e' ' outside the cavity
[for z)(N+1)a], where E, is the amplitude of the
transmitted wave. Matching the fields across the ideal
mirror yields the initial conditions for the map given by
Eq. (2): A&=E, e'" 'It, 8&=E,e ' 'r It. The initial
condition is then propagated backwards N times to ob-
tain A o and Bo. The electric field for z & 0 is a superposi-
tion of the incident and rejected waves: E (z)
=E;e'"'+E„e ' '. The amplitude of the incident wave
can now be expressed in terms of A o and Bo as
E; = Aolt Borlt hence it ca—n be related to the ampli-
tude of the transmitted wave or vice versa. This simple
procedure allows us to easily calculate the transmitted
intensity as a function of the incident intensity and thus
to obtain the nonlinear transmission coeKcient
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Q' = Q
—gkXZ+ (gk) X

R'=+ cos(2ka )R + [sin(2ka )+Xgk cos(2ka )]Z
—S(X)kgX

(4)

Z'= —sin(2ka )R + [cos(2ka ) —Xgk sin(2ka )]Z
—C(X)kgX (6)

S(X)=2 sin(2ka ) +kgX cos(2ka ),
C(X)=2 cos(2ka ) —kgX sin(2ka )

T=~E,
~ /~E, ~

. These functions turn out to be very
complex as we shall demonstrate below and the under-
standing of their complexity can be accomplished by
drawing analogies to the dynamics of the chaotic, conser-
vative systems.

The discrete map given by Eqs. (I)—(3) results from the
coupling between the gradient and the electric field
across the mth layer. The dimensionality of this map can
be reduced due to the global gauge invariance of Eqs.
(2)—(3). This is accomplished by the choice of new vari-
ables: Q=X+I; R =X—Y, Z, and J. The variable Xis
the intensity of the electromagnetic wave, X=

~
3 +B~,

the variable F is proportional to the amplitude of the gra-
dient, Y=

~
A —B~, and the conjugated variables Z and

J are defined as Z =2 Im[( 3 "+8*)(A B)] —and
J=2Re[(A*+B*)(A B)]. T—he quantity J is simply
related to the rate of energy Aow S along the superlattice
axis as S=Jc/16~. Because there are no losses, J is in-
variant under the operation of the map (conservative sys-
tem) and we obtain a three-dimensional (3D) map:

with X=(Q+R)/2. Equations (4) —(6) describe a three-
dimensional, volume-preserving map. One of the conse-
quences of the conservation of the current J is the pres-
ence of invariant surfaces o: 0=J +Z +R —Q . This
constraint allows us to eliminate the variable Q from the
3D map and obtain a 2D map, trajectories of which cor-
respond to a constant energy Aow through the superlat-
tice. An arbitrary choice of initial conditions for the 3D
map simply selects the invariant energy surface and
hence the value of J.

Let us now consider the transmission problem without
mirrors (r =0). In the absence of nonlinearity (g =0) the
plane-wave solution E (z) =E,e '"' corresponds to the
point (R =0, Z=O, Q =2~E,

~ ) and J =Q. It is con-
venient to measure all variables in the units of the intensi-
ty of the transmitted wave. This replaces the nonlinear
coupling constant g by g~E, ~

in Eqs. (4)—(6) and the ini-
tial condition for the plane wave becomes simply (0,0,2).
We now ask if in the presence of nonlinearity the plane-
wave solution remains bounded, i.e., whether it can de-
scribe a transmitting state. The initial condition for a
given value of the wave vector ka and the coupling con-
stant g~E, ~

is then iterated and the values of the wave
vector and transmitted intensity for which the trajectory
remains within a radius of 10 from the initial condition
after 100 iterations are recorded. The result is shown in
Fig. 1. For small values of ka practically all states are
transmitting, but as the value of ka increases, gaps (white
areas) begin to open. If we keep the wave vector constant
there are several possible values of transmitted intensity.
This is a manifestation of multistability. The overall
structure of the gaps depends very weakly on the size of
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FIG. 1. Shown are the values of the wave vector ka and transmitted intensity g~E, ~
for which a nonlinear orbit generated by a

three-dimensional map [Eq. (4) with g =+1] remained within a radius r =10 of a plane-wave initial condition after 100 iterations.
Note the appearance of white regions which correspond to plane solutions being unstable and the system becoming opaque.
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FICx. 2. The expanded view of the structure of one of the lowest gaps in Fig. 1 around ka = 1.2.

the system X and the radius chosen. However, an in-
creasingly complex structure emerges when small frag-
ments of the gap region are magnified, as shown in Fig. 2,
where we have selected the values of ka from 1.1 to 1.3
and the values of g~E, ~

from 0.3 to 0.6. These values
correspond to the lowest visible gap in Fig. 1.

We now calculate the dependence of transmitted inten-
sity on the incident intensity using Eqs. (2)—(3) for the
value of the wave vector ka = 1.2 (r =0, g = + 1, N = 100)
corresponding to the gap in Fig. 2. As anticipated from
Fig. 1 for low transmitted and incident intensities (less
than 0.3) the system is transmitting. As the intensity
exceeds 0.3 the sample becomes opaque to return to the
transmitting state for the incident intensity range of
0.5 —0.9. The transition from the transmitting state to a
rejecting state is extremely sharp. However, in contrast
to the continuous systems one can find several very nar-
row transmitting states in the gap region, as is clear from
the gap structure in Fig. 2. General features of the gap in
the transmission spectrum are independent of the system
size, the sign of the coupling constant (for g = —1 we find
the gap at lower intensities), and the presence of mirrors.

The understanding of the origin of the nonlinear-
induced gaps in the transmission spectrum can be ob-
tained from analysis of the structure of the 3D discrete,
nonlinear map. This is comprised of the understanding
of the position and stability of fixed points and periodic
orbits, basins of stability which contain quasiperiodic or-
bits, and the presence of stochastic layers known to exist
in conservative systems. In what follows we embark on
a less ambitious task, i.e., we concentrate on the region in
the vicinity of the plane-wave solution (0,0,2) for the
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FIG. 3. The illustration of the multistability of the transmis-
sion. Shown is the transmitted intensity as a function of in-
cident intensity for 100 layers and wave vector ka =1.2 (as in
Fig. 2). The mirrors are fully transmitting (t =1). Note the
opening of a gap in the spectrum for incident intensities be-
tween 0.3 and 0.5.

range of parameters corresponding to the gap shown in
Fig. 3.

In the absence of nonlinearity (g =0) the linear map
corresponds to a rotation by $=2ka in the (R,Z) plane
leaving Q unchanged. Invariant surfaces are cylinders
centered around the (O, O, Q) line. This line is a collection
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of elliptic fixed points. The nonlinearity breaks the sym-
metry of the linear transformation and moves the elliptic
fixed point. For small values of the coupling constant
g ~E, ~

the initial point remains in the basin of stability of
the fixed point. The value g~E, ~

=0.3 corresponds to the
case when the initial point has left the basin of stability of
the fixed point of the map. In Fig. 4(a) we show examples
of the trajectories generated by a 3D map projected on
the (R, Z) plane. The deformed ellipses mark the basin of
stability of the fixed point. The initial point is on the
edge of the basin. We should remember that these orbits
correspond to different values of current J. As the cou-
pling constant increases the initial point remains outside
the basin of stability of the fixed point resulting in escap-
ing orbit (a gap in the transmission spectrum). As the
coupling constant increases further the fixed point under-
goes a bifurcation and period doubling.

For the coupling constant g~E, ~

)0.5 the initial point
enters the basin of stability of the periodic orbit and be-
comes a transmitting state again.

We illustrate the trajectories in the (R,Z) plane in the
presence of a doubly periodic point in Fig. 4(b). The ini-
tial point is in the basin of stability of the lower periodic
point. We also note the presence of a stochastic layer
surrounding these two periodic points. This layer is par-
tially responsible for the fuzziness of the upper edge of
the gap in Fig. 2. We stress that the transition from low
to high transmitting state as shown in Fig. 3 is associated
with period doubling. The effect of mirrors is to move
the initial point from the origin so the position of the gap
versus ka or coupling constant may change but the basic
mechanism remains the same.

In summary, we have shown that the electromagnetic
wave with the frequency below the band gap of the super-
lattice can induce gaps in the transmission spectrum.
These nonperturbative gaps arise from the combined
effects of periodicity and nonlinearity and lead to optical
multistability. The gaps can be tuned by changing the
separation between layers, the strength of nonlinearity,
and the properties of the cavity. Their origin has been
linked to a complex dynamics of a discrete, nonlinear
map. While much remains to be learned about the con-
nection of this problem to the spatial chaos, it is hoped
that this tunable mechanism will lead to a new class of
optically bistable devices and better understanding of
chaos in condensed mater.
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