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Surface phonons localized at step edges
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The surface-phonon structure of a simple model of fcc crystal dynamics is studied. The surfaces
consist of wide (111) terraces separated by periodic, monatomic steps. A new class of vibrational
mode is found. In addition to being localized to the surface like normal surface phonons, these

modes are also localized along the step edges.

The phonon structure of the low Miller-index (MI) sur-
faces [i.e., the (111), (100), and (110) surfaces] has been
extensively studied theoretically and experimentally. Ex-
perimental methods usually involve either electron-
energy-loss spectroscopy (EELS) (Ref. 1) or thermal heli-
um scattering.? Theoretical methods typically use ball-
and-spring models whose Hamiltonian is diagonalized by
standard techniques of linear algebra.’> On the other
hand, studies of high-MI surface vibrational modes have
presumably been hampered by the complicated assort-
ment of surface phonons that exists on them, in addition
to other experimental and theoretical difficulties.

This Brief Report discusses numerical results that,
when properly considered, show that the phonon struc-
ture of a particular type of high-MI surface is similar
than previously suggested. This type consists of low-MI
‘“terraces,” several atoms wide, broken up periodically by
unkinked monatomic steps. Due to the large size of the
(two-dimensional) unit cell, the number of surface pho-
nons is arbitrarily large. However, they separate natural-
ly into two classes. Not surprisingly, the first class con-
sists of phonons of the corresponding unstepped surface,
which are reflected and transmitted by the steps. The
second, novel, class consists of a few surface phonons
which are localized in two dimensions, rather than just
one. These “step phonons” propagate freely along the
step edges, but their amplitudes decay rapidly away from
the steps.

The fcc(111) surface has a (triangular) close-packed top
layer of atoms and exhibits a very small set of surface
phonons. However, high-MI surfaces possess a consider-
ably more complex phonon structure, due to the large
size of their unit cells. These surfaces are obtained by
slicing a single crystal at an angle which is slightly
different from a low-MI crystallographic plane, and are
often called “‘vicinal” surfaces. They are easily visualized
as consisting of low-MI terraces, several atomic rows
wide, broken up periodically by monatomic steps. For
instance, the (332) surface is oriented 10.025° from the
(111) surface and consists of (111) terraces which are
roughly five rows wide and separated by (111) step faces.

This paper restricts itself to unkinked steps, for reasons
that will become apparent later. On a (111) surface, this
means that the edge of the step must lie along the (110)
direction, which points from one surface atom to a
nearest neighbor on the surface (Fig. 1). There exist two
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possible ways of constructing such a step on a (111) sur-
face, and they correspond to either a (111) or a (001) step
face (Fig. 2). The MI of such a vicinal surface is of the
form (N N N —n), where N >>n. The number of rows of
atoms in the terrace equals roughly 2|N/n|. If n >0, the
crystal has (111) step faces, and if n <0, it has (001) step
faces.

The main difference between the phonon structures of
these vicinal surfaces and of the unstepped surface lies in
the shape of their (two-dimensional) Brillouin zones (BZ).
Take % in the [110] direction (i.e., along the step), Z per-
pendicular to the vicinal surface (i.e., almost parallel to
the [111] direction), and § perpendicular to both of these
(i.e., almost parallel to the [112] direction). The vicinal
surfaces are periodic in both the X and § directions, but
the period in the latter direction considerably exceeds one
atomic spacing. Hence, the BZ extends only fractions of
1 A !in the Q, direction, resembling a line segment
rather than a polygon (Fig. 3). Indeed, an isolated step
on an otherwise flat surface would yield only one periodic
translational symmetry and a one-dimensional BZ.

The analysis of phonons in the vicinity of an isolated
step differs topologically from that of an unstepped sur-
face and is considerably more difficult. It has been solved
for a simple cubic (sc) lattice whose nearest neighbors are
connected by springs.’ The undesirable aspects of this
model are that few monatomic sc lattices exist in nature,
that the resultant lattice is unstable, and that it exhibits
no surface phonons. It exhibits no step phonons, either.
A different system, which does exhibit edge-localized
phonons, is that of a crystal where two of its semi-infinite
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FIG. 1. fcc(111) surface atoms.
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FIG. 2. Side view of a fcc(111) surface, with the [110] direc-
tion pointing out of the page. Removing the dotted atoms (cir-
cles) creates a (111) step face, whereas removing the dashed
atoms creates a (001) step face.

surfaces meet at an angle to form an edge. Using elastic
theory, the existence of a long-wavelength edge phonon
has been proven.® However, for a surface with a mona-
tomic step, no such long-wavelength step phonon exists.
There still exists the possibility of step phonons existing
at larger wave vectors (Q #T°), near the BZ boundary.
This possibility depends on whether or not the step,
viewed as a defect, is “strong” enough to localize a vibra-
tional mode.’

This introduction to the theoretical aspects of step
phonons uses a very basic model of lattice dynamics, con-
sisting of atoms connected to nearest neighbors by linear
springs. For this simple model, the spring constant and
the crystalline geometry in the vicinity of terraces and
steps are assumed to remain unchanged from their bulk
values. The model has only one free parameter and
works fairly well for a sizable class of monatomic fcc
crystals at predicting the characteristics (i.e., frequency,
polarization, and amplitude) of phonons, both in the
bulk® and on the surface.® The harmonic approximation
causes the quantum and classical results to coincide.
Reference 4 performs the calculation for many vicinal
surfaces, and much of the “data” to be discussed can be
taken directly from that extensive numerical work. For
this report, the method of calculation was a Green’s-
function technique, !° slightly different from the “slab”
method used in Refs. 3 and 4. The widths of the terraces
were increased until the step-phonon characteristics sta-
bilized, usually after the terraces were only a few atoms

FIG. 3. BZ for fcc(11) and (332) surfaces. The scale is ap-
propriate for Pt.
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wide. Since no step phonons exist at the origin of the BZ
and since surface phonons tend to become more prevalent
at BZ boundaries, the calculations were performed at the
point Q=X. At this point in the BZ, the atoms oscillate
180° out of phase with their nearest neighbors in the X
direction. The magnitude of X is inversely proportional
to the periodicity along the edge, which is the reason why
this paper restricts itself to unkinked steps.

In addition to one band of bulk phonons and one band
of “ordinary” surface phonons, three step phonons ap-
pear for either type of step. The squared amplitudes of
the row vibrations decay rapidly away from the steps, in
both the § and Z directions. This behavior is depicted for
one of the step phonons in Fig. 4(a) and contrasts with
that of bulk phonons and ordinary surface phonons, typi-
cal examples of which are depicted in Figs. 4(b) and 4(c).
The polarizations of the step phonons change from row
to row, but one step phonon is strictly longitudinal and
the other two are strictly transverse (and perpendicular
to each other) at the step edge, where the amplitudes are
maximum. The characteristics of the edge phonons are
summarized in Table I. The nomenclature introduced for
the edge phonons is analogous to that coined for surface
phonons in Ref. 3. In units of V'k/m, where k is the
spring constant and m is the atomic mass, the bulk fre-
quency band is V2=<w <2V2 and the (substantially nar-
rower) surface phonon band is 1.227 <w < 1.241. The
frequency of E, is below both bands and E, is within the
band gap. The longitudinal mode ME; (where ME
denotes mixed-edge phonon) is degenerate with the bulk
band, so technically it is not a truly localized step pho-
non. Instead, it is a finite-lived ‘“‘step resonance” whose

FIG. 4. Squared amplitude of vibration for rows of a (111)
surface in the vicinity of a (111) step face, for (a) E, step pho-
non, (b) surface phonon, and (c) bulk phonon. The normaliza-
tion is different for (a), (b), and (c), so the values should not be
compared.
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TABLE 1. Step-phonon characteristics. The squared amplitude is normalized to unity.

Step Frequency Polarization Squared amplitude
face Mode [X(k/m)'?] (T or L) at step edge
111) E, 1.21 [110] transverse 0.74

117) E, 1.29 [001] transverse 0.77

(117) ME;, 2.35 [170] longitudinal 0.57

(001) E, 1.10 [110] transverse 0.58

(001) E, 1.28 [001] transverse 0.77

(001) ME, 2.38 [110] longitudinal 0.36

lifetime exceeds the inverse of its frequency by more than
2 orders of magnitude.

A full study of the phonon structure in the vicinity of a
step will be reported later. This will include dispersion
relations for the step phonons throughout the (one-
dimensional) BZ and the dependence of their characteris-

tics on realistic force-constants deviations in the vicinity.

of terraces and steps. As stated earlier, edge-localized
modes are not expected to survive in the neighborhood of
I'. Instead, they will become degenerate with surface
and/or bulk phonons, radiate away their amplitude into
the terraces and/or the bulk, respectively, and become
step resonances. A study will also be made of the step-
phonon structure on a surface with (100) terraces. Pre-
liminary investigation of the data in Refs. 4 and 11 does
not reveal any such modes for the unrelaxed step on a
(100) surface, when evaluated at any of the high symme-
try points of the BZ.

This author is aware of only two inelastic scattering ex-
periments that have been performed on vicinal sur-
faces.!>!3 Both were EELS experiments, were performed
at T (.e., at specular reflection), and demonstrated evi-
dence for vibrational modes localized (at least temporari-
ly) at the step edge. To agree with theory, both results
required a modification of the force constants in the vi-
cinity of the step edge, a not unexpected result. The first
experiment, on Pt(332), detected a mode at 205 cm™ L,
considerably higher than the maximum bulk-phonon fre-
quency, at 190 cm ™!, This is surprising, considering that

Rayleigh’s theorem predicts that surface (and step) -pho-
non frequencies should fall below corresponding bulk-
phonon frequencies.” Also, no such high-frequency
modes have been seen on the Pt(111) surface. An ex-
planation was later provided which required the use of
substantially stiffened force constants in the neighbor-
hood of a step edge.!* Ab initio calculations of step re-
laxation have provided theoretical support to this model
of stiffened force constants for Pt(332).!° The second ex-
periment, on TiC(310), detected a phonon whose frequen-
cy fell below that predicted for the surface phonons. By a
process of elimination, the mode was determined to be lo-
calized to the step edge. To agree with theory, the force
constants near the step edge had to be decreased, thereby
contrasting with the Pt(332) results.

In conclusion, I report the existence and characteris-
tics of edge-localized vibrational modes for the simplest
model of fcc surface lattice dynamics. Two recent EELS
observations of such step phonons proved to be sensitive
to force-constant changes near edges. It appears that for
Pt (a metal) the atoms ‘‘tighten” near a step, whereas for
TiC (an ionic insulator) the atoms “loosen” near a step.

I am indebted to S. J. Sibener and U. Fano for discus-
sions leading to the development of this paper and for
critical readings of the manuscript. This work was sup-
ported by the National Science Foundation Materials
Research Laboratory at The University of Chicago.
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