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A Car-Parrinello-type first-principles molecular-dynamics approach capable of treating the par-
tial occupancy of electronic states that occurs at the Fermi level in a metal is presented. The algo-
rithms used to study metals are both simple and computationally efficient. We also discuss the con-
nection between ordinary electronic-structure calculations and molecular-dynamics simulations as
well as the role of Brillouin-zone sampling. This extension should be useful not only for metallic
solids but also for solids that become metals in their liquid and/or amorphous phases.

Recently, Car and Parrinello! have proposed a new
technique for molecular-dynamics simulations which
does not require pair (or other) potentials as input. Rath-
er the ion-ion interactions are calculated in an ab initio
fashion using the (local)-density-functional theory in con-
junction with the Hellmann-Feynman theorem. Most of
the systems? studied with this method to date have been
insulators or semiconductors in their solid phases where
there is a gap at the Fermi level. This results in an im-
portant simplification because it is known in advance
what the occupancy of the various states will be.

We are interested in studying ordinary metals such as
sodium or aluminum and have had to contend with the
possibility of nearly degenerate states at the Fermi level
Ey. In addition, in metals it frequently happens that dur-
ing the course of the calculation a level moves through
Ep. Therefore some sort of dynamic change in the occu-
pancy of the level is needed. The purpose of this paper is
to point out a fairly simple and fast algorithm for includ-
ing partial occupations of states which we believe will
greatly benefit the Car-Parrinello method. The main at-
‘tractions of the Car-Parrinello approach with pseudopo-
tentials and a plane-wave basis are (i) the ability to calcu-
late forces from first principles, (ii) the simultaneous up-
dating of ionic and electronic coordinates® (global simula-
tion instead of a local one), and (iii) the use of iterative di-
agonalization of the occupied subspace techniques that
avoid the need to diagonalize large matrices.

In this paper we describe (a) our technique for calculat-
ing the electronic structure of metallic systems with a
Car-Parrinello-type approach, (b) an efficient algorithm
for calculating the electronic structure during an “elec-
tronic quench,” and (c) how to carry out molecular dy-
namics for metals with this first-principles approach.

In brief, our test system is a unit cell of 16 sodium
atoms with periodic boundary conditions. The density is
taken to be 0.93 g/cm?, which is the experimental density
of sodium at its normal melting temperature of 371 °K.
Kohn-Sham orbitals are expanded in plane waves with an
energy cutoff of 9 Ry, resulting in 1100 plane waves at
the sampling I" point. The pseudopotential used here is a
seminonlocal one* with s nonlocality. This system is an
ideal test case for metals since for I' there are six degen-
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erate states (with two electrons in them) at the Fermi lev-
el when the atoms are in their perfect bce positions.
Before starting molecular dynamics (MD), one must
“quench” the electrons to the self-consistent ground state
for a given configuration of the atoms. If during the MD
simulation, the electrons move off the Born-Oppenheimer
surface substantially, a quench with the ions frozen will
again be necessary. For metals, treating both occupied
and unoccupied states by including the Fermi occupa-
tions is both physically and computationally desirable: if
one does not allow for partial occupation of states near
E, the convergence may be very slow, diverge, or as in
Fig. 1, continue to oscillate. In addition, in cases of de-
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FIG. 1. Various iterative schemes for calculating the total
ground-state energy of unit cell of 16-Na atoms. The dashed
line shows the total energy using the improved algorithm dis-
cussed in the text, the solid line is for the steepest-descent algo-
rithm of Ref. 6, and the dotted line (shifted up by 0.1 eV for
clarity) is for the Car-Parrinello steepest descent used according
to the original scheme, without diagonalizing the A matrix and
without using the Fermi functions. Note that the last curve
does not converge during the 100 time steps.
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generacies, not allowing partial occupation can lead to
symmetry breaking.

To show how to build in the Fermi-Dirac statistics and
reach self-consistency rapidly, we proceed as follows.
The problem may be expressed as an iterative way to find
the eigenstates and eigenvalues of a Hamiltonian self-
consistently. The Kohn-Sham procedure of obtaining
single-particle equations with orthonormality constraints
is often given as

SE
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The difficulty in treating metals using Eq. (1) is that the
force 8E /8¢ } is apparently zero for an unoccupied state.
(The change in density, and hence total energy, is zero for
changes in the unoccupied states.) However, the Hamil-
tonian operator H is a Sturm-Liouville operator with a
complete spectrum—both occupied and unoccupied
levels—regardless of the occupation numbers f;. The
formally correct extension is to take the variation with
respect to f; ¢}, i.e.,

SE  _
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This distinction is important in treating metals since now
the “virtual” force 8E /6(f;4}) is independent of f; and
is well defined for both the occupied and unoccupied
states. This same connection between the wave functions
and the operator H underlies the calculation of metals in
standard electronic-structure methods.

Assigning an occupation f; to a state i; is not mean-
ingful unless the A(=A,;;) matrix is diagonalized and its
J
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J

Bi[1—exp(—w?nAt)]+B,[1—exp( —w?At)]

BRIEF REPORTS 40

eigenvectors are used to do a proper unitary transforma-
tion of the ¢’s. If U (=u;) is the matrix of the eigenvec-
tors of A, then the correct eigenstates are given by

i=3ujy, @
J

and the weights f; should be assigned to these new states.
We use a Fermi function ’

w;
" 1+expl(e;,—Eg)/kyT]

Si (3)
to determine the weights near E, where ¢; is the ith ei-
genvalue of the A matrix, w; is a weight factor to account
for the Brillouin-zone summation, and kT is a thermal
width typically 1-2 mH. We also note that in the most
general case, the Kohn-Sham total energy expression
with weight f; assigned to v, (rather than ;) may not
even be variational. For the special case when the f;’s
are independent of i, it can be shown that the states {1;}
yield the correct density. If, however, eigenvalues fall
near E or if there are accidental or near-accidental de-
generacies present during the MD simulation, then par-
tial occupations should be used. While the occupation
numbers can be thought of as another set of constraints
that enter the Lagrangian of Ref. 1, implementing them
in such an approach is difficult both in practice and prin-
ciple.

We have also devised an updating scheme for the elec-
tronic coordinates, which runs faster than the reported
algorithms">® for a number of test cases. This extension
of the steepest-descent algorithm of Ref. 6 gives the up-
dated electronic coefficients, C;(G), as

SE
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Here, 0*=w*G) represents a diagonal as defined in Ref.
5 (except there is no u), the B’s can be thought of as pa-
rameters to mix the two steepest-descent solutions, and
At and n At are two different time steps. The trick here is
to add two (or more) steepest-descent-type solutions using
different time steps during an electronic quench. The
smaller (larger) time step controls the descents in the ini-
tial (final) stages of the iterative scheme. The important
point is that the time step in an electronic quench does
not have any physical meaning and hence can be manipu-
lated effectively to suit the optimization process; Eq. (4) is
only one way of improving the scheme proposed in Ref.
6.

During the quench, we also mix the new density that is
calculated from the new (updated, orthonormalized using
the Gram-Schmidt process and transformed) coefficients
with the density from the previous time step. In Fig. 1,
we compare this method to direct steepest descent and
also to the case without self-consistent partial occupa-
tions for a typical electronic quench of the 16-Na-atom
unit cell. The algorithm of Payne et al.’ fails to converge

—A;CHG) | . 4)

3C*(G)

I

here even with the correct self-consistent partial occupa-
tions and hence is not shown. For these 16-Na atoms
near their perfect bce positions and using only the T'
point, there are unoccupied states around Ep. The
correct self-consistent solution cannot be obtained if in-
tegral occupations are used starting from our initial state.
As shown in Fig. 1, there are oscillations in the total en-
ergy that do not go away even after 100 time steps, while
with the correct occupations the quench is completed
within 40-50 time steps. Our improved steepest descent
also saves about 40—50 % in computer time compared to
the direct steepest suggested in Ref. 6 for the present
case.

To make the connection between electronic-structure
calculations and MD simulations, we invoke the Born-
Oppenheimer approximation. If we define a Lagrangian
consisting of the ionic kinetic energy and a potential
given by the ground-state electronic total energy as a
function of the ionic coordinates, then clearly the total
energy of the electrons and (classical) ions is conserved.
The resulting equations of motion of the ions (with the
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forces given via the Hellmann-Feynman theorem) will
generate the physical trajectories if the Born-
Oppenheimer approximation is valid. (If it is not valid,
both electronic and ions must be treated quantum
mechanically and then the Hellmann-Feynman theorem
cannot be used to obtain the forces.) As is the case in any
microcanonical MD simulation, the degree to which the
total energy is actually conserved depends on how accu-
rately the various equations are solved numerically.

In our approach to first-principles MD, we demand
that the electrons are on the Born-Oppenheimer surface
(BOS); any numerical technique (e.g., fictitious dynam-
ics,! perturbation expansions, or second variations) that
yields the instantaneous ground-state electron wave func-
tions can be used to update the electronic degrees of free-
dom. In practice, during the MD simulation we calculate
the A matrix (=(4;|H|¢;)) and then use the diagonal
elements to determine E, and the partial occupations
{fi]. If needed, one can diagonalize the A matrix and
make the unitary transform as done during the quench,
but we find it faster and more convenient to avoid this
since the off-diagonal elements of the A matrix are small.
There is no density mixing during the MD runs. Finally,
we use the Verlet algorithm’ (or other algorithms such as
Beeman®) to update (extrapolate) both the ionic and the
electronic coordinates.

In Fig. 2 we show a typical MD run for the 16-Na-
atom unit cell. To extrapolate the electron wave func-
tions, we used a fictitious electronic mass p=100 and
At =35 (in atomic units; see also Ref. 1 for details pertain-
ing to p). The simulation was started with the atoms
near the perfect bce positions and the partial occupancies
were ~ + for each of the six nearly degenerate states near
Ep at T'. After 800 time steps—during which the occu-
pations change continually due to crossings at E—each
f; changed by about 0.1 for these six states. The total en-
ergy is conserved although, since the system is not yet in
equilibrium, the kinetic energy (i.e., the temperature) of
the ions dropped by about 120 K and the Kohn-Sham po-
tential energy increased. This simulation shows that it is
possible to carry out MD calculations using Car-
Parrinello-type techniques for systems without gaps in
their electronic band structure at Ep with little or no in-
creases in the computational time.

Formally, we consider the evolution of the BOS elec-
trons to be determine by the real time-dependent
Schrodinger equation rather than by a fictitious Lagrang-
ian: The wave functions at times ¢ and ¢, are related by
the (unitary) time evolution operator U(¢t,t,)

[W()) =U(z,10)|9(25)) , (5)
where U(t,t,) satisfies
d =4
o Ult,ty)= ﬁH(t)U(t,to) , (6)
U(to,to)zl ’ (7
—_ __L t ’ ’ ’
Ult,ty)=1 ﬁftoH(t YU(t',t0)dt" . (8)

If H were independent of time, Eq. (8) would reduce to
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the familiar exp(—iHt /#). In the present case, H does
depend on time through the implicit dependence on the
time-dependent wave functions and the ionic positions.
If changes in occupation numbers are handled
consistently—a necessary condition—then in principle
the electrons evolving via Egs. (5)—(8) will remain on the
BOS. Approximations to the integral equation for
U(t,ty) clearly involve the virtual force of Eq. (1'). Our
formulation suggests that new efficient algorithms taking
into account the physics underlying Egs. (5)—(8) are pos-
sible; we are currently investigating some.
Molecular-dynamics simulations for metals can also be
done treating only the (discrete) occupied states, but then
when the occupations of the electronic states change,
there is a rather rapid rise of the electrons off the BOS
and the total energy is no longer conserved. This is
demonstrated in Fig. 2 where the total energy for a MD
run with identical initial conditions, but considering the
“occupied subspace only,” is also shown. (Systems that
do not have nearly degenerate states at £y may not show
such large changes during times possibly orders of magni-
tude longer.) The increase is easily understood from Egs.
(5)—-(8): Including only the occupied states requires that
the wave functions change discontinuously as levels cross
Ep whereas the true time evolution given by U(t,¢y) is
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FIG. 2. Total energies per particle (relative to E,= —74 700
K) for typical microcanonical MD runs of the 16-Na unit cell
using either the “extended subspace” (extra unoccupied elec-
tronic levels included) with (a) fractional and (b) integral occu-
pations, or (c) the “occupied subspace only” (only the states oc-
cupied at =0 are included in the simulations). Also shown for
case (a) are the temperature (starting at 300 °K) and the Kohn-
Sham potential energy. All runs had the same initial conditions,
same total energy at the first time step, and were not quenched
during the MD runs. Note that the total energy (a) is conserved
for fractional occupations, (b) fluctuates about an average
(higher) energy for integral occupations, and (c) goes off scale
for the “occupied subspace only.” Clearly (c) requires frequent
quenches while for (a) no quenches are necessary during the
time interval shown.
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continuous. These discontinuities necessitate more fre-
quent quenches; in cases were the symmetry of the states
differ, even a quench will not recover the correct states
since the occupied and unoccupied states belong to or-
thogonal representations. Including Fermi-Dirac occu-
pations and unoccupied states as suggested here greatly
reduces such problems.

Finally, we point out the role of Brillouin-zone sam-
pling in these types of calculations. Since the underlying
assumption in any first-principles MD method is the va-
lidity of the Born-Oppenheimer approximation, one is in
principle doing a standard electronic-structure calcula-
tion at each time step to get the electronic density which
in turn defined the forces on the ions. As is well known
from general symmetry arguments, the wave functions
for a system consisting of N unit cells with periodic
boundary conditions are labeled by N distinct k points in
the first Brillouin zone. Thus there is a one-to-one rela-
tionship between the number of k points sampled and the
total number of unit cells (and atoms) in the system, i.e.,
k-point sampling is a form of finite-size scaling but with
constraints on the ionic configuration. Since the internal
order (or disorder) does not enter into the symmetry ar-
guments, these comments are applicable to models of
crystalline and amorphous solids, as well as liquids, that
use finite-size cells with periodic boundary conditions.

For example, consider a large unit cell and the single k
point I'. If there are an even number of electrons in the
cell, then except possibly for degeneracies, the discrete
one-particle density of states (DOS) will have a gap at Ep
(an insulator). By increasing either the number of atoms
in the unit cell or the number of k points, one is
effectively changing the total number of atoms in the sys-
tem, and not surprisingly, the DOS also. For the case of
the I' point and a 54-atom unit cell of Na atoms at their
perfect bee positions, there will be a gap (~1 eV) at Ej.
(For the 16-atom cell there are degenerate levels at Ef.)
Obviously, one should not conclude from the 54-atom
cell that Na is an insulator, but rather that the DOS ob-

BRIEF REPORTS : 40

tained from small k-point samplings must be interpreted
with care. General experience, however, has shown that
k-point samplings which are inadequate for a faithful rep-
resentation of the DOS can still provide accurate integral
properties such as total energies and charge densities.
The accuracy of ensemble averages (calculated as tem-
poral averages) depends on the accuracy of the spatial
(k-point) averages for each time step, except in the spe-
cial case that temporal and spatial averages are
equivalent. In a strongly diffusing system, i.e., a liquid,
this last assumption may be satisfied well enough that
reasonable DOS can be obtained from small
(~100-1000-atom) systems; where there is no diffusion
(both crystalline and amorphous solids), accurate DOS
may be difficult to obtain in this way.

In conclusion, we have presented an extension of the
Car-Parrinello ideas to systems with partially occupied
electronic states, both for the electronic quench and
molecular dynamics. As we have pointed out, there is a
direct connection between these types of methods and
standard electronic-structure calculations; thus both, in
principle, should give identical answers. An independent
approach for calculating the (occupied) electronic states
for metals has recently been proposed,” but that paper
does not consider the MD aspects of the technique. We
have demonstrated that our proposed method works in
practice for a test case that has all the difficulties associ-
ated with partially occupied near-degenerate states at the
Fermi level. The results of a MD simulation for a 54-
atom unit cell of sodium will be reported elsewhere.!?
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