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Calculation of optical transport and localization quantities
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By combining a coherent-potential approximation with our previous work on localization, we cal-
culate the mean free path l, the diffusion coe%cient D, the localization parameter kl, where k is the
renormalized wave vector, the localization length L„and other related quantities. Our results for D
near the critical regime are in surprisingly impressive agreement with recent experimental data by
Drake and Genack in a sample of titania spheres in air. Our calculations indicate that optical local-
ization can be experimentally realized by either lowering the concentration of the titania spheres or
lowering the standard deviation of the radii distribution.

The question of optical or, more generally, classical
wave localization (CWL) has been examined' both ex-
perimentally and theoretically. " Until recently,
there was no conclusive evidence supporting the proposal
that CWL is indeed possible in disordered systems
characterized by a positive-definite random dielectric
function. Recently, Soukoulis et al. ' studied the ques-
tion of CWL in a lattice model by employing a reliable
numerical technique; they found that localization does
indeed take place in their model, and they argued that
CWL is more easily attainable in a realistic system of
spheres of dielectric constant e2) 0 randomly embedded
in a host material of dielectric function e,(0(e, (e2)
rather than in their discrete numerical tight-binding
model. In the same work, ' a coherent-potential approxi-
mation (CPA) was developed which is equally applicable
to scalar or vector wave equations and which is almost
free from spurious multiple solutions and other related
misbehaviors quite common when simple CPA is applied
to continuum models. This CPA combined with the
potential-well-analogy (PWA) approach' to the localiza-
tion problem yields results consistent with the numerical
data in the regime where the latter are relevant, i.e., for
not so high co and x (co is the frequency and x is the
volume fraction occupied by the spheres).

In a recent paper Drake and Genack' reported mea-
surements of the 'optical diffusion coefFicient D and ab-
sorption time in a sample of closed-packed titania spheres
[(e2)' =2.2] of average radius a =3000 A in air
[(e,)' =1]. They found values of D as low as 1.45X10~
cm /sec showing clearly that the critical regime very
close to localization has been reached for the first time.

In this Brief Report, we report theoretical results based
on our simple CPA (Ref. 12) and the PWA (Ref. 13) for
values of the parameters pertinent to the Drake and
Genack experiment. ' Our simple CPA replaces the ran-
domly varying dielectric function e(r) [e(r) =@2 for r in-

side a titania sphere and e, = 1 outside] by an effective,
complex, uniform e, from which an effective propagation
constant q =(e, )'~ co/c is defined, where c is the velocity
of light. The quantity e, is determined by the condition
( C ) =0, where ImC is the total cross section (TCS) times
Req/4'. This TCS is associated with the scattering in-
duced by the replacement of e, within a sphere by either
e2 or e, . The average is over these two possibilities arid
over the distribution of sphere radii, if any. The TCS is
defined as the total normalized Aux of the outgoing spher-
ical wave just outside the sphere plus the normalized ab-
sorption (if any) within the sphere minus the normalized
"absorption" of the incident wave of propagation con-
stant q within a sphere of equal size. ' The CPA equation
(C) =0 was brought to the form q„+,=q„+ A (C),
where q„=[(E—X„)2m /A' ]', X is the self-energy, n is
the order of iteration, and A is chosen using the weak
scattering limit and demanding as good a convergence as
possible. We used A =3/2q„and the CPA equation was
solved numerically by iteration, which in almost all cases
converged to a unique solution. Once q has been deter-
rnined, one can find immediately the mean free path
l=0.5/Imq, the renormalized wave vector k =Req, the
dimensionless localization parameter kl, the effective
phase velocity v =co/k, and the Boltzmann diffusion
coefBcient Do= —,'Ul. In this formula, l is supposed to be
the transport mean free path, l„, which is defined as the
length over which momentum transfer becomes uncorre-
lated. This is different from scattering mean free path
which describes the decay length of the single-particle
Green's function. The two mean free paths are related by
l„=(1—cos8)l in the most simple circumstances. Here
we have used that I„=l, which is certainly not true for
the p-spherical harmonic Mie resonance. Using these
CPA results, one can obtain various localization quanti-
ties on either side of the critical point by employing the
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proach reliable. Thus, in the absence of a direct calcula-
tional test of the CPA at such high volume fractions x, it
is not clear whether the CPA tends to overestimate x
or, more generally, whether the CPA results are as accu-
rate as their agreement with the experimental data is sug-
gesting. At the point A, , /a =1.7.1, the value of kl is 1,
i.e., very close to the critical value (0.844) for localization;
the meaii free path is I =0.19X 3000 A=570 A, close to
the estimate given in Ref. 14; the reduction factor is
f ' =0.176; and the renormalized phase velocity is
1.84 X 10 m/sec =0.615c, where c is the velocity of light.
The localization that was almost observed at A, , /a =1.7
is due to the combined effect of the second resonances of
the I = 1 and I =2 components. The positions of these
resonances, denoted by p2 and d2, respectively, are
shown in Fig. 1. As can be seen from Fig. 1, we have
speci6c predictions for the quasi-one-dimensional locali-
zation length L„as a function of the wavelength A, , /a.
These predictions can be tested experimentally.

In Fig. 2, we plot our calculated values for D and kh for
the same parameters as before except x, which is now
taken to be 60%. We see that the second resonances, p2
and d2, are not now as efFective as they were for higher x
(the minimum at A, , /a = 1.7 disappeared), while the
lowest (i.e., the first) resonances of l = 1 and I =2 charac-
ter (denoted by pl and dl, respectively) now produce
strong effects. Indeed the p1 is responsible for the true
localization for 3~A, i/a ~3.6 and the dl for the local
minimum at A, &/a =2.4. The minimum value of the lo-
calization length is obtained at A. &/a =3.45 and is equal
to 6.6a; the corresponding values of I and U are 0.3a and
0.89'; respectively. The results shown in Fig. 2 are im-
portant because they suggest that true localization can be
observed in a system of polydisperse titania spheres in
air. What is needed is to lower the volume fraction of the
titania spheres (this can be achieved by diluting them
with spheres of dielectric constant equal to 1) and choose
their average radius and the wavelength so that
A, , /a =3+0.5. Our calculations also show that it is possi-
ble to obtain localization for a given concentration x by
decreasing the width of the distribution of the sphere ra-
dii. As a, decreases, we observe strong variations of D,
kl, and other transport quantities as a function of the
wavelength. In particular, for x =0.60 and o „/a =0.05,
we obtain localization not only at A, , /a =3.0, but also
around A, , /a =2.0, which is close to the p2 resonance.
The same is true for x =0.73 and o, /a =0.05, where we
obtain localization at A, , /a =2.3, which is close to the d 1

resonance, as well as at A, , /a =1.5, which is due to the
d 2 resonance.
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FIG. 2. Diffusion constant (10 D/ca) and the localization
parameter kl as a function of the wavelength A, &/a for a sample
of tinania spheres (@2=4.84) in air (e& = 1). All the parameters
are exactly as those in Fig. 1 except that x =0.60. The arrows
d2, p2, d&, and p& in the A, &/a axis represent the positions of the
second and first resonances of the l =2 and l =1 components,
respectively.

In conclusion, we have calculated, through a well-
converged CPA, different transport quantities for elec-
tromagnetic waves, such that D, l, kl, L„and L„/A
agree very well with the experiment of Drake and
Genack. This is so, provided that the one free parameter
of our theory, the concentration x of the titania spheres,
is 73%. Our theory predicts that true localizations can
be achieved with a sample of titania spheres in air provid-
ed that either the sphere concentration x is lowered by
about 15% or the standard deviation of the radii distribu-
tion cr, /a is lowered to about 5%. Although the impres-
sive agreement of our CPA results with the experimental
data makes our method a serious candidate for obtaining
reliable quantitative results, it will nevertheless, be very
interesting to check the CPA results for the EM case
against more reliable numerical techniques, as has been
done for the scalar wave equation. '
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