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The inelastic polarized and depolarized scattering of light from the vibrations in aerogels recently
studied experimentally by Courtens, Vacher, and collaborators are analyzed with use of fracton-
model scaling and crossover considerations. We discuss the implications of the short-range fractal
structure and the way the strongly localized vibrations on the short-range fractal structure of the gel
(fractons) show up in the scattering. For this purpose we extend existing discussions of the implica-
tions of assuming a connected self-similar fractal structure for the vibrations, and also discuss the
relationship of fractons to elastic-scattering theory and to Anderson localization. The disordered
fractal structure of the underlying mass density and the three-dimensional character of the vibra-
tions are included by treating the inelastic light scattering as Mie scattering from the vibrating frac-
tal blobs. We find a maximum in the scattering cross section when the wavelength of the scattered
light is comparable to the size of the fracton and smaller than the coherence length of the structure,
and discuss the difFerent frequency dependence of the polarized and depolarized scattering. The re-
sults contradict extrapolations of the Brillouin-scattering expressions from the low-frequency Ray-
leigh regime. We also discuss the structure of the vibrational eigenmodes and show that the indices
measured are new phenomenological indices which are not related to standard fractal dimensions or
to superlocalization.

I. INTRODUCTION

The direct motivation for this paper arises from the de-
tailed experimental investigations of light scattering from
silica aerogels by Courtens, Vacher, and their collabora-
tors. ' Together with the elastic and inelastic neutron
diffraction results, and other experiments of these au-
thors reviewed in Ref. 8, these experiments constitute a
very detailed test of the scaling considerations of the frac-
ton model ' for the eigenmode spectrum of fractals and
of materials with a short-range fractal structure. They
also require a reconsideration and extension of the quali-
tative results in these references. Neither the specific as-
pects of light scattering from the vibrations nor the vec-
tor character of the vibrations and the way it shows up in
the obseruable strains were properly considered in these
references or elsewhere in the literature. The purpose of
this paper is to try to obtain as much theoretical informa-
tion on this problem as is possible without a specific
physical model.

In Secs. II and III we derive the scaling predictions of
the fracton model for the vibrations. In Sec. II we dis-
cuss the vibrations of a fractal (fractons) and the associat-
ed strains. We emphasize the distinction between an in-
trinsic strain (when such a quantity can be defined) and
the externally observable strains of the mass distribution
in the embedding space which are actually measured. In
Sec. III we discuss crossover effects for a real material,
such as aerogels, which are macroscopically homogene-
ous and are only fractal below some crossover length
(g„).We also discuss the relation of these results to
scattering theory and the way fractal correlations in the
disorder overcome the difhculties encountered in

straightforward perturbational scattering calculations
and can generate a low-frequency, strong-scattering re-
gime. We believe these considerations are relevant to
numerous experimental situations with tenuous connec-
tivity. They may also have some relevance to glasses and
to the design and interpretation of experiments on optical
localization.

In Sec. IV we derive our results for polarized and depo-
larized inelastic light scattering from fracton vibrations
of disordered fractals including both the large- and the
small-scattering-wave-vector limits and the crossover to
the Brillouin scattering from longitudinal phonons using
an approach related to Mie s'cattering —as in Ref. 3. In
Sec. V we discuss the problems encountered if one at-
tempts to do this calculation using an explicit ansatz for
the fracton eigenfunctions. In Sec. VI we discuss the re-
sults and conclusions and the interpretation of experi-
mental results.

Experiments have shown that silica aerogels, when
carefully prepared, show a fractal self-similar structure
for a considerable range of length scales, between the
grain size (a) and a density- (p-) dependent crossover
length (g„):

p ~ (g„/a) (1.1)

where D is the fractal dimension of the aerogel. Depend-
ing on the preparation conditions, the experimental
value of D is either -2.4 or —1.8. Experiments also
determine a scaling form for the elastic constants,

and for the velocity of sound, '2 v o-A/p. Polarized
Brillouin-scattering experiments' also show that
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phonons —for which co=Uq —only describe the long-
wavelength (A, «g„)vibrational excitations below a
crossover frequency (co„):

~co U~kco ~ (1.3)

and are also consistent with a scaling ansatz for the densi-
ty of states per unit mass at higher frequencies:

J

N(co) = Cco (1.4)

The Brillouin-scattering experiments' also measure
the elastic scattering Rayleigh width of the phonons (I ):

I (co)—co(ci)lcoiR) (1.5)

They show that, for these materials, the Ioffe-Regel fre-
quency' for elastic scattering [co;R—defined by Eq. (1.5)],
at which strong elastic scattering sets in, can be identified
with co„(or,at least, scales with co„).

The results in Eqs. (1.1)—(1.4) agree with the detailed
scaling predictions of the fracton model ' for the vibra-
tions of fractals and for crossover effects. Equation (1.5)
confirms the identification of the fracton regime with the
strong- (elastic) scattering, strong-localization re-
gime. "' ' ' Since the three-dimensional Anderson-
localization edge occurs' at a frequency (co~„)which is
comparable to the elastic Ioffe-Regel frequency (coiR) but
somewhat lower (co~„&coiR), it also shows that the cross-
over occurs at a frequency higher than the localization
edge for the phonons. While this is not a proof, it cer-
tainly supports the assumption of Refs. 11 and 12 and of
14 and 15 that the vibrational eigenmodes in the strong-
scattering regime —fractons —are controlled by a single
length scale which simultaneously plays the role of a
wavelength, a scattering length, and a localization length.
We note that this is a much stronger claim than that
made by Rammal and Toulouse' when they applied the
Abrahams-Anderson-Licciardello-Ramakrishnan weak-
localization arguments' to fractals showing that the frac-
ton (spectral) dimension determines localization.

This suggests that one try to check other predictions of
this model and, in particular, work out the scaling predic-
tions for inelastic light scattering from the high-
frequency (fracton) vibrations, ' which, except for a
brief discussion of Raman scattering in Ref'. 3, are not at
present available. This is the main object of this paper.

We note that there exists fairly extensive literature,
both experimental and theoretical, on somewhat related
problems —e.g. on "superlocalization" —which is actual-
ly irrelevant to the problems we want to discuss and, in
our opinion, often misleading in the present context. We
neither use nor discuss this work, except implicitly in Sec.
V.

In the context of theoretical treatments of amorphous
materials, the fracton model constitutes an attempt to see
how far one can go with a harmonic model, having only
elastic scattering by a disordered medium, in explaining
universal features observed in amorphous tenuous struc-
tures, in glasses and in other such materials. For this to
be meaningful one needs a large strong-scattering fre-
quency range with strongly localized vibrational eigen-
modes. It is therefore crucial to have an Ioffe-Regel fre-

n (r, t)-pp(r, t), (1.6)

where p is a material constant and p the (average) local
density. Any depolarized scattering is then due to the
shape anisotropies of the vibrating region. While one
could use a more general tensorial notation, there is, ob-
viously, no way one could really say something meaning-
ful about locally anisotropic couplings even if they were
of significance. We also believe that Eq. (1.6) must be a
good approximation. To emphasize the fact that the
scattering is due to the strains, we shall frequently talk
about the strains (e) due to the vibrations below without
repeating the above argument and stating explicitly that

quency for elastic scattering [co',R—Eq. (1.5)] that is low
compared to the Debye frequency.

There are essentially two reasons for rejecting such an
approach to the spectrum of amorphous materials. One
is the obvious, and dramatic, success of the Anderson-
Halperin-Varma-Phillips two-level-system theory in ex-
plaining and predicting many of the universal low-
temperature features. This makes it reasonable to assume
that inelastic scattering, from two-level systems, also ex-
plains features such as the plateau in the thermal conduc-
tivity and anomalies in the density of states. The
second reason is that it is difBcult to construct a
strong —elastic-scattering model for lattice vibrations (or
EM waves) because of the way in which the disorder
enters the wave equation. For lattice vibrations the im-
plication is that most treatments of the disorder will not
show a transition to strong scattering at low frequencies
or even a localization edge much lower than the Debye
frequency (in three dimensions). The latter problem has
been discussed extensively recently (e.g., Refs. 17 and 23)
in the context of recent interest in phonon and photon lo-
calization. The fracton model is directly relevant to this
problem and shows under what conditions one can actu-
ally have the elastic scattering play an important role at
relatively low frequencies. ' We discuss this below, in
Sec. III, and in somewhat more detail than required for
the aerogels.

The experiments on aerogels and, in particular, the ob-
servation of a large frequency range of phonon Rayleigh
scattering [Eq. (1.5)], by the Brillouin scattering of light,
demonstrates that strong elastic scattering (of phonons)
must occur and that it plays an important role in these
materials. The relevance to other materials depends cru-
cially on the question of the relative importance of elastic
and inelastic scattering.

It is standard to relate inelastic light scattering to the
modulation of the local index of refraction by the lattice
vibrations. This means that we want to calculate the
correlation function for the modulation of the local (opti-
cal) index of refraction —n(r, t)—by the vibrations. In
general this involves a (local, fourth-rank) material tensor
relating the local strains (e) to the tensorial index of re-
fraction (~). In bulk materials the dominant contribution
is usually that due to the modulation of the local density
[5n cc 5p =Tr(e) =divu]. For physical reasons it is
reasonable to assume this also for the aerogels (contrary
to the situation for small molecules). We therefore as-
sume in the following that
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p0(r) = g 5(r —R, ),

where R; is the equilibrium position of the grain i, p0(r}
the underlying static density, and 5p(r, t) the time-
dependent vibrating density responsible for the inelastic
scattering.

Formally one can write, as usual,

5p(r, t) =pa(r)Tr[e(r, t)], (1.9)

where e(r, t) [~V u(r, t)] is the local strain. One has to
remember, however, that derivatives of the vibrational
amplitudes u(r, t) are not properly defined (see Sec. V
below), and that the fractal structure factor p0(r) is essen-
tial. In studying the vibrations, it is important to
remember that the displacement u is a vector in the
embedding space, and that one may be interested in
features of the vibrations, such as the way they modulate
the density, which cannot even be defined as intrinsic
properties of the fractal. One expects p0(r), u(r, t), and
the strains e(r, t) [~V.u(r, t)] to fiuctuate rapidly on
short length scales (a &5r &g„),for the situations we
shall be interested in, so that the strains are only defined
as scale-dependent local averages. The relevant correla-
tion function is

(5p(r0 ta)5p(r0+r, ta+t))
= (p0(r0)pa(ra+ r)e(ra, t0 )e(ra+ r, ta+ t) ), (1.10)

and the scattering intensity is given, as usual, by the
Fourier transform:

I(q, to)= A ( ~5p(q, co)~ ),
which is a convolution of the Fourier transforms of the
fractal static density-density correlation function of p0(r}
[g(r)], which plays the role of a structure factor, and of
the strain —~e(r, t)—associated with vibrations at fre-
quency co =co. In this q is the scattering wave vector of
the scattered light.

An obvious approach to the calculation of I(q, to) is to
use an ansatz for the (average) form of the high-frequency
(co )to„)fracton vibrational eigenmodes:

(1.12}u (r, t)=tt f (r)exp(ice t) .

If one knew p0(r) and f (r) for a specific realization and
eigenmode, one could, of course, calculate the correlation
function in Eqs. (1.10) and (1.11) directly. These are,
however, complicated random functions with fractal
correlations. Describing them by an "average" eigen-
mode can be very misleading. At best, it is unreliable and
hard to justify. We shall discuss this approach in some
detail in Sec. V of this paper with rather discouraging
conclusions as to its viability.

To calculate the scattering, in Sec. IV, we shall there-
fore follow Refs. 2 and 3 and use a different approach re-

we assume that only the change in the density (i.e., the
mass distribution) is important in the light-scattering ex-
periments. We can write

p(r, t)= g 5(R;+u;(t) —r)=pa(r)+5p(r, t), (1.7)

lated 4o the way one describes Mie scattering from ran-
dom scatterers. %'e shall see that the correlation func-
tion [Eqs. (1.10) and (1.11)] is only sensitive to some very
general scaling features of the vibration spectrum. Any
additional details implied by an ansatz are redundant and
cannot be checked by the experiments. For the regime
most relevant to the depolarized (called "Raman" in Ref.
3) light-scattering experiments, but also to part of the po-
larized ("Brillouin") results in Refs. 1 and 2,

ql(co) «1, co„«co, (1.13)

we largely reproduce the results of the analysis in Ref. 3
but not those of Ref. 2. We find that the crossover (at
co„)to scattering from phonons is complex and expected
to be broad. In Eq. (1.13), l( t)ois the length scale
relevant for the spatial coherence of the fractal vibra-
tions. We extend these results to the large-[l(co)] (small-

q) regime.

II. VIBRATIONS OF FRACTALS:
THK FRACTON MODEL

Our purpose here is to use scaling arguments to obtain
information about the vibrations of a connected, rigid,
self-similar fractal cluster. Examples to which these re-
sults are directly relevant would be gels, frozen polymer
chains, aggregation clusters, or physical realizations of
percolation clusters. While scaling arguments similar to
those of this section are contained in Refs. 9—15 and ex-
plained in fair detail in Ref. 12, the derivation here is
different and, we believe, clearer. The focus of the discus-
sion there was on problems which could be completely
described on the fractal —such as diffusion on the fractal
or the solution of the Schrodinger equation in a fractal
geometry. The problem of vibrations is more complex
because the u; are always vectors in the embedding
(three-dimensional) space and cannot be mapped into
some intrinsic internal geometry of the connected fractal.

One result of this difference is the complex tensorial
character of the force constants —the importance of
angular (bending) and twist force constants —which tend
to dominate the large-scale mechanical properties. In
general, this makes a tenuous fractal, or, in fact, any
lower-dimensional solid object embedded in a higher-
dimensional space, much softer than it would be if no
normal components of u were allowed. For wet gels the
result is the dominance of stress-induced scalar elastici-
ty ' near criticality (just as surface tension, when
present, dominates the capillary waves of a free film). It
seems unlikely that a similar mechanism p1ays any role in
mechanically rigid, self-supporting aerogels (as can be
seen from the detailed analysis of the requirements in
Refs. 24 and 25). Since the aerogels are found to be fairly
rigid, one concludes that they must have a much more
closely interconnected structure than treelike fractals like
percolation and aggregation clusters. A model with the
appropriate properties would be very instructive, but is
not available at present.

A second effect of the three-dimensional vector charac-
ter of u is more technical, but extremely important in in-
terpreting experiments. Experimental probes, like light
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g(r) ~ (r/a) (2.1)

where a is the size of the elementary grains constituting
the fractal, d the dimension of the external embedding
space, and D the fractal dimension. This is equivalent to
saying that a "blob" of the fractal of size r will, on the
average, have a mass

M(r) =m, (r/a) (2.2)

Since the density of such a blob is much higher than the
average density of a large fractal —of size r')) r —it fol-
lows that the fractal is mostly empty, and that this also
holds when we look at the distribution of fractal blobs in
a large fractal. ' This also means that one can heuristi-
cally think of a fracton vibration as the "free" vibration
of a fractal blob of appropriate size (l) relatively weakly
bound to its, mainly empty, surroundings. This follows
from the fractal structure and is relatively insensitive to
the detailed internal connectivity model. We note that
because of the low ramification dimension of most con-
nected fractals known, one expects "surface modes" to be
even less important than in finite solids.

It seems natural to assume, and this is confirmed in
models for which one can do the calculation, ' that the
scaling form carries over to the density of states, at least
for sufficiently low frequencies:

X(co) ~ co (2.3)

as in Eq. (1.4). This defines the spectral (fracton) dimen-

sion d, which is, in essence, an independent fractal di-

mension. d depends on the internal geometry of the
fractal —on the way it is internally connected —but for
the vibrational problem also on the way it is embedded io
the external space and on the nature of the terms in the
harmonic expansion that determine its rigidity. Be-
cause d, in this context, is a property of the vibration
spectrum and not an intrinsic geometric property of the

waves, propagate in the embedding (three-dimensional)
space and are not sensitive to the way the vibrations are
related to the complicated internal geometry of the frac-
tal. One therefore has to worry about the way the vibra-
tions of a complicated fractal object show up in the densi-
ty (or, more generally, the effective observable strain) in
the embedding space. This complication is, of course, re-
lated to the type of experiment one does. It is less severe
and easier to treat in scalar problems, like diffusion and

quantum percolation, which can be defined completely in
the internal geometry of the fractals.

To avoid these difficulties, we therefore present the
scaling argument in as general a form as possible, and in
a form which is directly relevant to the vibrations. We
derive some new results and shall also try to stress the as-
sumptions made. In essence, we are trying to see how
much one can say about the vibration spectrum using
only the self-similar dilation symmetry. The fractal
"looks" the same at different resolutions and, therefore,
presumably also "acts" the same way.

The static density-density correlation function around
a point on a self-similar fractal has the form

connected fractal (as it is for scalar problems), we follow
Rammal and Toulouse' and shall call it a (vibrational)
spectral dimension.

We can now associate a length scale i =i (co) with the
vibrations. It is easiest to do this in terms of the effect of
boundary conditions. We consider the vibrations of an
isolated fractal blob of size L. High-frequency modes (of
the infinite fractal) for which l (co ) ((L will not be
affected by the change in the boundary conditions, at
scale L, involved in disconnecting the blob from the rest
of the fractal. On the other hand, the low-frequency
modes for which l (co) &)L will disappear from the spec-
trum. The crossover occurs at some frequency coL such
that

L —l(coL ) . (2.4)

l( ) ~ —d/D (2.6)

independent of any model-dependent consideratioos for
the calculation of D and d or of the geometrical interpre-
tation of these dimensions. '

We want to clarify the meaning of this definition. If
one would apply this definition of the relevant
frequency-dependent length scale [l(co)] to free waves in

a homogeneous medium (D =d ), one would, of course,
get the iuauelength [i(co)-A(co)=2~u/co]. The lowest vi-
brational frequency of a grain of size l is, approximately,
co&-2~u//. This also holds in the weak-localization re-
gime for localized phonons near the Anderson-
localization edge. The density of states is not changed
(for weak localization) and the length scale l ( co ), as
defined above, then, is not related to the localization
length or to the scattering length, but only to the under-
lying wavelength of the scattered wave. On random
strongly disordered fractals, one can assume strong locali-
zation, "' ' so that l (co) is also the localization length.
The vibrational eigenmodes are then called frac-
tons"" ' ' and are characterized by a single unique

length scale related to co, D, and d by Eq. (2.6).
Since the fractal is denser at small length scales, it is in-

tuitively plausible that its elastic constants will also be
scale dependent. For this reason, and because of the
complicated random mass distribution, it will deform in a
complicated (usually nonaffine) way under external
stresses.

Assume the equations of motion of the fractal are

—m, co u, =T, Q ~„(u—u;),
J

(2.7)

The integrated spectral weight of the missing low-
frequency modes is lumped together in the center-of-mass
(and rotational) degrees of freedom of the disconnected
blob. This is a number that cannot depend on L and m

(Ref. 12). Therefore, using Eqs. (2.2) and (2.3),
COt

[l(co)] f deuce '~[i(co)] coi=const, (2.5)
0

from these very general dimensional considerations.
(This assumes a normalization of the density of states to
unit mass rather than unit volume. ) The dispersion rela-
tion between I and co is therefore'
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where m i is a mass at the initial scale (1), the r; ar. e cou-
pling tensors, and T& is a characteristic strength of the
force constants. %'e note that one can write the equa-
tions in this form even when one has both mass and
force-constant disorder. We assume a normalization so
that the upper cutoff "Debye frequency" for these equa-
tions is

Q, -QD)=T)/m, . (2.8)

We now coarse-grain the fractal by collapsing all blobs of
size l to points and construct a new net on this scale.
This will eliminate all modes with frequencies co) co& and
replace m

&
by m& =m

&
l . Since the fractal is self-similar,

we assume that the structure of the v; remains un-
changed (in a statistical sense) and adjust T so that the
coarse-grained model has the same low-frequency spec-
trum as the original one. This requires QD&-co& and
therefore, using Eq. (2.6),

T =m m ~l co ~l o-co)
—Pl (67( CO) co& (2.9)

As defined here, T& is a force constant relevant to the
length scale l —that is, the coe%cient for the restoring
force associated with the relative displacements of points
a distance l apart. We shall, however, need the changes
in density associated with the vibrations and, therefore,
the strains ~e.

There is some ambiguity in the definition of the strain
for a fractal object. One approach would relate the strain
to the internal geometry of the fractal defined by the way
the fractal is connected internally. This obviously has
some intuitive heuristic attractions, but is diScult to im-
plement when one does not have a detailed microscopic
model. The second approach, which we adopt here,
defines the strain directly in terms of the effect of the de-
formations [i.e., the u(r)] on the (suitably averaged) den-
sity distribution in the embedding space. This is, of
course, the definition directly relevant to the experimen-
tally measured quantities. Depending on the situation,
the internal strain (discussed briefiy later in this section
and defined explicitly in Sec. V) may or may not coincide
with the externally obseruable strain we shall use (or at
least may be simply related to it). We are not aware of
any basis on which one could make general statements
about this relationship.

We assume a phenomenological scaling form for the
strains:

~e
= ((u; —uj )'), /s, ', s, l (2.10)

where ((u; —u. ) )& is the average relative motion of two
grains a distance l apart. The trace of e&, defined in this
phenomenological way, is the change in density used in
Eq. (1.9). This is an explicit and separate scaling assump-
tion. It is the closest one can get to the definition of an
externally observable strain for a fractal. It should be re-
garded as a purely phenornenological scaling ansatz relat-
ing the strains one observes in the embedding space to the
amplitude of the vibrations. e& measures the relative
changes in the average density (and the strains of the
averaged mass distribution) associated with the vibra-

tions. In general, the scaling index 0. is expected to de-
pend on the actual mechanical properties, on the internal
geometry, and on the way the fractal is embedded in
space. While o =1 cannot be ruled out, it is almost im-
possible to imagine a situation in which the fractal vibra-
tions will arrange themselves nicely to give an ordinary
homogeneous strain of the mass distribution. It is, for ex-
ample, easy to convince oneself that even in the heuristi-
cally simplest cases, such as a fractal polymer chain or a
crumpled sheet with purely internal vibrations, one finds
0 %1. We claim that, in general, o should be regarded as
an independent scaling index which cannot be determined
from the fractal and spectral dimensions (D, d) or, as has
repeatedly been implied in the literature, from the "su-
perlocalization" index.

The elastic constants (A) are defined as the coefficients
of the strain e in the elastic deformation-energy density
(E,i). Using the definition of the strains in Eq. (2.10), we
can also define the equivalent of an elastic constant for
the fractal (A/&):

~f CC Z s 2/id ~ i(D/d)(d —2)+2o —d

E,] = T(u( =
(~e

(2.11a)

(2.1 lb)

It is heuristically attractive, and meaningful at least for
simple situations, to look for an intrinsic definition of the
strain related to the internal geometry of the fractal, and
try to identify this internal strain with the external strain
defined phenomenologically in Eq. (2.10). Qne interprets
s as an internal length scale defined on the fractal.
This obviously implies 0. + 1. One can then try to relate
T& directly to the intrinsic lengths and to an internal di-
mension of the fractal (5) in the usual way:

T~sst OC Q)i (2.12)

where we have defined o =do/D. The meaning of Eq.
(2.12) is that we assume that the force constant between
the two ends of a "string" of springs, of strength T&, con-
nected in series is T, /s& when the ends of the string are a
distance l apart and that s&

" such strings appear in
parallel for the effective force constant of a "cube" of size
/ . Assuming a (and s) defined by the strains [Eq. (2.10)],
this may be taken as the definition of 5. Even this way
one notes that the procedure cannot be simply extended
to explicit bending forces, which show up as three-body
terms in the harmonic expansion or to four-body twist
terms ' [because Eq. (2.12) does not hold]. If such
forces are important, 5 no longer has a simple geometric
interpretation and can only be regarded as a formal, al-
ternative parametrization of o. Comparing Eq. (2.12)
with Eq. (2.9) gives

o =(D/& )[(&—2)/(& —2)],
cr =(d/D)o =(d —2)/(5 —2),

which may be a somewhat better, or at least more intui-
tive, parametrization of the scaling ansatz (2.10). This
sort of interpretation is implicit in discussions of the
"chemical distance" and, appears in somewhat more gen-
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eral form, in Refs. 35—37. All these discussions assume a
constant ramification (5=1), and this was also used in
Ref. 3. We note, however, that a simple geometric inter-
pretation of 6 as a "ramification" dimension is meaning-
less when bending forces, whose existence depends on the
embedding space, are dominant, so that T no longer
scales with s like a resistance. Thus the geometric inter-
pretation of 6, o., and s should not be taken too literally.

III. CROSSOVER AND SCATTERING

1 —(d/D) ~ p —[(D/d) —] j
co &co (3.1)

One now notes that one cannot simultaneously assume
smooth crossover-scaling relations for the vibrational fre-
quencies (as implicit in the above argument) and for the
elastic constants.

The macroscopic bulk elastic constants [Ab(p)] must
be related to the density and to the velocity of sound in
the usual way:

%'b(p)=pv ~(g„)r, y=(&/d)(d —2)+2 —d, (3.2)

where we have used Eqs. (1.1) and (3.1). This is clearly
consistent with the fractal result for %'& at l =g„—Eq.
(2.11)—only for cr =1. The origin of this discrepancy is
in the definition of the strains in Eq. (2.10) (eI ~u/l ),
which reflected the fact that the vibrations of the fractal
are not directly related to changes in the density (or to
other deformations of the vibrating "blob" ) and are
therefore less effective in inducing such deformations (for
o ) 1). A fracton with l =g„is less effective in modulat-
ing the density than the "phonon" vibration, at the same
frequency, of a homogeneous medium with the same
average density (p) and the same stiffness force constants
(T). The implication is that one predicts a qualitative
change in the structure of the eigenfunctions f (r) in the
crossover region that is not fully reflected in the disper-
sion relation between l and co.

Just as a comment, we remark that this is not simply a
question of mixing longitudinal and transverse modes.
Because of the nonafBne nature of the deformations asso-
ciated with the vibrations of a fractal, the averaging sim-
ply eliminates part of the local effects of the u. The sub-
stance of the effect is somewhat analogous to situations
where optical modes are mixed into the low-frequency

A solid material, such as an aerogel, has a finite density
and is of course never a fractal on a macroscopic scale.
At most, it can be fractal locally up to a crossover length
(g„).Qualitatively, one can then think of such a material
as a dense packing of connected fractal blobs of sizeg„—analogous to the description of a semidilute poly-
mer solution and to that of the infinite cluster in the
percolation problem. On large scales the material is
homogeneous with matching crossover relations at g„
determining the macroscopic properties. Using Eq. (2.1)
the macroscopic density is then given by Eq. (1.1).

Using standard crossover-scaling considerations for the
dispersion relating frequency and length scales, and com-
bining Eqs. (1.3) and (2.6), one finds for the velocity of
sound

phonons in crystals. Our argument above shows that
these effects cannot be incorporated into a universal
crossover function for %'.

The low-frequency vibrations are propagating pho-
nons. They are scattered elastically from fluctuations in
the local velocity of sound —v (r) =A(r)/p(r) —and this
shows up in the Rayleigh width I [Eq. (1.5)]. Scattering
is enhanced by the fractal correlations at short distances,
and the characteristic length scale for disorder becomes
g„rather than the grain size a. ' This is one of the most
striking effects of the short-range fractal correlations.
We want to discuss it briefiy in the context of (Rayleigh-)
scattering theory, extending the brief discussion in Ref.
15. Because of the importance of the problem in other
contexts, we do this in a somewhat more general form
than is actually relevant to the aerogels.

Quite generally, one can relate Rayleigh scattering to
the fiuctuations in the local velocity of sound [v (r)] in a
disordered medium, averaged over the wavelength (A, ).
Macroscopically,

v =(v (r)), cv=vq=2ir/A, , (3.3)

and, from standard statistical considerations, the vari-
ance would be expected to be

V(A, )=[(v'(r)) /(v'(r))'] —1

-V(b)/(A, /b)", A, /b»1 (3.4)

where b is the length scale at which the elementary fluc-
tuations occur.

Scattering at co(A, ) is proportional to the variance
V(A, ), and one obtains the Rayleigh result—
I (cv) ~tv'"+"—as long as Eq. (3.4) holds and V(A, ) is
not too large, say

V(tv)-(co/cilia) ~ Vi~=0(1) . (3.5)

Except for numerical coeKcients, this qualitative argu-
ment is equivalent to the treatment of the fluctuations in
v [v (r) —(v )] as a perturbation in the wave equation
and is therefore implicit in the Born-approximation (Ray-
leigh) result for I (cv). This approach can, however, nev-
er be extended to situations where V(b) becomes large.

One might naively argue that when V(b) is large at the
elementary scale (b), the limit V(cv)=V, a is reached at
some low frequency:

IR +(Qb ~ 2mU/b (3.6)

where cv', ~ is defined as in Eq. (1.5). As noted in the In-
troduction, this is clearly the experimental situation in
the aerogels. The disorder occurs at the scale of the grain
size (a), but g„/a&) 1 cadiz((Q, .

When one tries to do an actual scattering calculation
(e.g., Refs. 17 and 23), one finds, however, that it is
dificult to construct a model which will exhibit this type
of behavior [Eq. (3.6)]. Even when one starts with
V(b) ))1, one finds cv;~-Qb for the low-frequency Ray-
leigh scattering [Eq. (1.5)]. The reason for this is that the
simple averaging process implied by Eq. (3.4) cannot de-
scribe the wavelength dependence of the scattering when
V is large. The variance experienced at some larger scale
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is not given by the simple average of U (r). Most detailed
descriptions of the strong-scattering regime give a much
faster decay of V(A, ) than Eq. (3.4), in the large-variance
regime, and are essentially inconsistent with the inequali-
ty (3.6).

It is of some interest to see where the difhculty origi-
nates and why the problem does not arise in the aerogels
and in other situations with strong short-range correla-
tions in the disorder.

Consider first the purely formal meaning of having a
large variance in U (r) at some length scale I —V(l) )& l.
Since U (r) is always positive, the only way this can occur
is by having a small number of "hard" regions for which
U is much larger than the average (U -v„))(U )),
which dominate the variance, and a much larger number
of "soft" regions for which v is smaller than the average.
The probability of finding a region with velocity v,
PI(U ), must be double-humped or have a long, high-u,
tail. Thus, in essence, V)&1 implies a dilute scattering
situation with a small concentration of "hard"
(u »(U )}scatterers embedded in a soft, low-u, medi-
um (and possibly a much larger concentration of "soft"
scatterers).

Consider the effect of the coarse-graining process. We
are interested in the (average) local velocity of s6und,
U (r), of a box of size pl (p ))1) (to be definite, we could,
for example, define v as the velocity of sound of a medi-
um obtained by applying periodic boundary conditions to
the box, or as in Ref. 15}. One notes immediately that
one cannot simply use the average of v in calculating the
effect of the hard scatterers [as assumed in Eq. (3.4)] be-
cause of the mismatch between them and the soft back-
ground. The proper averaging procedure is very sensitive
to the correlations in the distribution of the dilute, high-
v regions. Fluctuations in the elastic constants and in
the average density should be treated separately.

If the hard scatterers (of size I) are isolated, the only
propagating modes are those of the soft background
medium. The scatterers act as rigid inclusions in the
medium. Roughly, the hard scatterers simply increase
the effective elastic constant by a factor proportional to
the (small) volume fraction they occupy:

larger than U, (-%', /p, ). A more careful averaging pro-
cedure does not change the qualitative features of this re-
sult. The variance in v at the scale pl is controlled by
fiuctuations in fz ((f~ ) I(f„)) and loses all memory of
the large V~. The implication is, of course, that the vari-
ance becomes much smaller than one would expect from
Eq. (3.4).

The argument above neglects the "local niodes" cen-
tered around the hard scatterers. For a single scatterer
they would be localized and have a high frequency—
analogous to localized defect modes in a solid. When
they are dilute and uncorrelated, so that they are coupled
weakly, they can only form a high-frequency "optical"
impurity band. On the other hand, when they are corre-
lated and coupled sufficiently strongly, they can dominate
the elastic properties and the low-frequency velocity of
sound. In other words, even a low density of hard re-
gions can dominate the rigidity if they form a sufFiciently
rigid connected net. In a way this is the inverse of the
"slow-sound" situation for fiuids in porous media (e.g.,
fourth sound for He).

For aerogels we have the extreme limit of this last situ-
ation. Fluctuations occur at the scale of the grain size (a)
and V, » 1. The "hard" grains form a connected fractal
net and dominate both the rigidity and the density. The
result is that the velocity of sound [(U (l))] is scale
dependent [Eq. (3.1)], but the variance V is scale
invariant —up to the scale g„—because of the self-
similarity. ' This was expressed in the scaling relations
for the fractal regime that we discussed in.Sec. II and in
Eq. (3.1) for the velocity of sound.

In the fractal regime there are two types of Auctua-
tions. One relates the "velocity of sound" of the "blobs"
(vI —

T& L /m&) to those of the empty background
(Uz -0). The second one, which is relevant for the Ray-
leigh scattering, is the Auctuation in v& among different
blobs. In the spirit of the definition of a Haussdorf-
Besicovitz dimension, one could, for example, cover a
fractal with spheres of radius I and look at the
distribution —P&(U )—of U& among these blobs. One ex-
pects a scaling form

%', ~%', (1+fI, ), (3.7)
P, (U') =(1/( U,') )f(U'/( U,') ), (3.10)

ps ps (ps ph )fh ~ (3.8)

where p, and p& are the two densities. The Auctuations
in p can become large only when the hard scatterers are
also heavy and dominate the mass (pl, fz )p, ). Thus the
rescaled velocity of sound is

Up -~s(1+fh }/[ps (ps —
ph }fl,1 . — (3.9)

Assume p, & p& ) 1. Fluctuations in vz are then
small —of order fl, —even when Uh (-Al, Ipz) is much

where %', is an elastic constant of the soft medium and

fI, («1) is the volume fraction occupied by the hard
scatterers. This is a small correction essentially indepen-
dent of the magnitude of the (large) elastic constant Az
of the hard scatterers. The mass is, of course, the total
mass, and therefore

where f (x) is a scale-invariant function of its argument.
This implies a scale-invariant variance —VI =V~. The
implication is that the elastic Ioffe-Regel frequency co&R

for different gels should scale like the crossover frequency
co„.The fact that the two frequencies are comparable
shows that f (x) is broad, so that V —1 for the actual
fractal structures of these gels.

We note that these large Auctuations do not follow
from the fractal structure, but are model dependent and
depend on the detailed nature of the disorder in the frac-
tal geometry. Models where such Auctuations are large
(for other properties) are, however, frequently encoun-
tered for complicated fractals (see, e.g. , the extensive re-
cent literature on multifractals '). We are not aware of
any attempt to study these fluctuations for the velocity of
sound or other properties relevant to the vibration spec-
trum. As already noted, the experimental results for the
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Rayleigh scattering in aerogels demonstrate that V is

large for the fractals generated by the specific preparation
process used. It also seems large for percolation clusters.

IV. SCATTERING FROM FRACTONS

I" (q co) ~I (q, to) ~5@ o-l (e() . (4.2)

We want to calculate the scattering of light from frac-
tons using Eqs. (1.6)—(1.11). For frequency shift to and
scattering wave vector q, we need the Fourier transform
for a single fracton mode (a):

5p (q, co)=5(co to—)fdrpo(r) e (r)exp[i(q r)], (4.1)

where we have introduced the strain e explicitly. More
accurately, one should say that the source of the scat-
tered radiation is a vibrating polarization induced by the
incoming field, P (r, t), in the vibrating region of size
l (co).

Consider first the case ql (co) « 1. The electric field of
the incoming wave is then essentially constant over the
region, of size -l, for which e has an appreciable ampli-
tude. The geometric considerations are the same as for
the Mie scattering from a small particle. The source of
the scattered wave is the induced dipole (5)M) of the vi-
brating region. Its magnitude is proportional to the mass
of the strained region and it will have a transverse, depo-
larized, component if this region is anisotropic. The
dominant fractron scattering is coherent from the vibra-
tionally strained region (assuming strong, single-length-
scale localization). Also, one expects this region to be
anisotropic and therefore to have an anisotropic polariza-
bility as in scattering from sma11 particles with shape an-
isotropy. One therefore predicts comparable amplitudes
for the polarized [I" (q, co)] and depolarized [I (q, to)]

components of the scattered light:

(s). /s, )' "Tt u) = T,u, , (4.g)

as would follow from a naive interpretation of the argu-
ment at the end of Sec. III. This assumes that the force
on the face of a "cube" of size l is carried in parallel by
(st/si )' "strands of thickness 1,. While this is a geome-
trically plausible picture, we emphasize that we certainly
cannot claim that it is necessarily correct in all cases.
This leads to

where 0 is defined in Eq. (2.12), where, as usual in this
context, we factor out the Bose function (b-kT/co).
Equation (4.7) is our final result for the scattering when
ql (& 1. An equivalent result was obtained in Ref. 3 using
the superlocalization index d& for o. and subsequently fol-
lowing Ref. 36 in assuming 5=1. This resulted in an ex-

pression for o in terms of d (and D). There is no
justification for the latter assumption or for identifying cr

with the superlocalization index. We therefore conclude
that the measurement of this frequency dependence in
Ref. 3 should be interpreted as a measurement of cr (or,
equivalently, of 5) rather than as a check on the value of
d.

We now consider the high-q (or low-frequency) limit.
There are two modifications.

First, because of the random structure factor po(r), the
correlations between scattering from different blobs of
size A, =2m/q are small [Eq. (2.1)]. This reduces the
coherent scattering from the whole fracton by a factor
—(q/) and makes it comparable to the incoherent
scattering from blobs of size A, (q =2'/A. ).

In addition, the deformation of these blobs can also be
different. One cannot assume a priori that the strain of
the blob of size A, (« l), as a result of the vibration at
scale l, is the same as the average strain at the scale l.

We try a naive estimate. Assume that the force acting
on such a blob is related to the force at the scale l by

Since scattering from different fractons is incoherent, the
total scattered intensity is then (e ) =(T /T ) (s /s )

( s)(e ) =(e ) (4.9)

I(q, to)= +5(to to )I (q, co)=—N(to)(I (q, to)), (4.3)

where N (co) is the density of states.
We have to estimate the strain, the relative change in

density. From Eq. (2.9) we can estimate the mean-square
amplitude of the vibrations:

([(u; —u~)&] ) ~ kT/T& ~co

and, therefore, using Eq. (2.10) for e,

(4.4)

( e2) ~ —(2 2(r —d)—
~e

c cu (4.5)

$(q, to) =(co/kT)I(q, co) ~ (1/co )(1/s() (4.6)

so that

S( ) ~ 2(cr i) 2[(5—d)/—(2 —s)l i( ) (( 1 (4 7)

Using this result with l(to) ~to " [Eq. (2.6)] and Eq.
(1.4) for N(to), in substituting Eq. (4.2) into Eq. (4.3), one
gets

so that the strain is uniform —at least in this model —in
spite of the hardening of small blobs. This is, of course,
the usual result for strains in a homogeneous material.
Multiplying Eq. (4.7) by (ql), one ends up with

S(q, co) ~ co ' "(co/coi )", ql(co) &&1 . (4.10)

We have introduced a numerical factor in Eq. (4.10) to
ensure that the two results (4.7) and (4.10) match at toi
[l(to&)=A,]. At least for the experimentally observed
values' of the indices (o -0.8, d —1.3) the scattering
[S(q,m)] at fixed q (=2'/A)is predicte, d to have a max-
imum for [l(co)/A, ]—1, as one would expect intuitively
and contrary to the predictions of Ref. 2. For sufficiently
light samples one should be able to observe this. In such
a measurement, Eq. (4.7) would describe the high-
frequency (small-l ) and Eq. (4.10) the low-frequency
(large-i) behavior.

While the argument leading to Eq. (4.7) is, we believe,
unique and follows from the general scaling assumptions,
we are less certain of the validity of the derivation of Eq.
(4.10). One could imagine fractal models in which the
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elastic energy, and therefore the strain, is not uniformly
distributed among all the small blobs (of size A, ). It has,
for example, been suggested that only the backbone is
stressed in the vibrations, while those parts of the mass
which are located on "dead end" side branches are car-
ried along rigidly without being strained. Behavior of
this type is possibly even indicated by simulation results
on percolation clusters. " Such behavior is certainly ex-
pected in the application of a static stress to a fractal.
For the vibrations, it is, however, hard to imagine a
mechanism which would accelerate a blob situated on a
"dead end" without straining it, irrespective of its posi-
tion with respect to the backbone. We would therefore
expect equipartition of energy to hold.

A more delicate question is the distribution of strains
on much smaller scales. The resistivity of very tenuous
structures is known to be dominated by a small concen-
tration of separating bonds (called "red" by Coniglio and
Stanley ). This must also be true for the vibrations of,
say, percolation clusters, and certainly has important
effects on the detailed structure of the eigenmodes. It is
less obvious how important it would be in the averaged
strains that one measures in the scattering experiments.
Aerogels are also relatively rigid and air is certainly a
very poor "solvent" for the silica grains. One would
therefore expect a much more tightly interconnected
fractal structure with 5& 1 and relatively few dead end
side branches, quite different from the tenuous structures
one expects in wet gels. All this supports the assump-
tions we made in deriving Eq. (4.10). This should, how-
ever, be subject to reevaluation if experiments and a
reasonable mechanical model for this regime become
available.

As we noted, one expects both the polarized and depo-
larized light scattering to be described by the same ex-
pression [I(q, co)], Eqs. (4.7) and (4.10), when co is in the
fractal range co»co„.This rejected the large Auctua-
tions and anisotropy in the vibrating density on the small
relevant length scales.

On the scales relevant for phonons, the material is
essentially homogeneous and one expects only polarized
scattering (from longitudinal phonons). One therefore ex-
pects very different behavior for the polarized (Brillouin)
and for the depolarized (Raman) scattering in the cross-
over region co-m„and in the phonon frequency range.
Roughly, one would predict that the depolarized scatter-
ing from phonons is dominated by fluctuations in the lo-
cal index of refraction and is therefore coherent only for
regions of size g„.The depolarized scattering will always
decrease as co decreases (and A, increases) in the phonon
frequency range. One therefore expects a maximum in
the depolarized scattering —S~(q, co)—somewhere in the
fracton frequency range even for small q (qg, «1). In
particular, one expects no resonant maximum in the
depolarized scattering when Uq =co «co„. Since for
small q the position of this maximum is determined by
crossover effects, one predicts a density dependence of its
position, but the details cannot be derived from our argu-
ments.

On the other hand, the polarized scattering can have a
maximum in the phonon range, for sufficiently small q,

which is the phonon equivalent of a Lorentzian. This
should cross over to Eq. (4.7) or (4.10), depending on the
value of qg„.

A theoretical estimate of the crossover effects is com-
plicated by the direct crossover effects on e that we dis-
cussed in Sec. III. As shown there, one expects the strain
to increase by a factor s&/l because of a change in the
form of the fracton eigenfunctions as l ~g„.One would
guess that this will also decrease the depolarized scatter-
ing. Since this effect is not understood in detail, and may
be model dependent, we cannot describe the details of the
broad crossover region observed for the depolarized (Ra-
man) scattering.

In this context it is interesting to compare our results
with the expression used in Ref. 2 to fit the Brillouin-
(polarized-) scattering results. In Ref. 2 an attempt was
made to extrapolate the standard expression for phonons
[Eq. (4.11)] into the fracton regime by introducing a
frequency-dependent velocity of sound v =u (co) and
I (co) arranged so that they would have their proper
values in the phonon range and cross over to

u(co)/l(co)-I (cu)-co, co»co„ (4.12)

in the fracton frequency range. This gave a very impres-
sive fit to the experimental results up to quite high fre-
quencies. There are, however, serious problems with this
approach quite aside from the fact that the derivation of
Eq. (4.11) assumes coherent scattering (from phonons)
over regions larger than the wavelength and, like all
Lorentzian-broadening descriptions of scattering. In
essence I /co « l.

Using Eq. (4.12) in Eq. (4.11), one finds

(4.13a)

and

S(q, ~)~~ "' "'D', ql))1, ~)&co,. (4.13b)

Thus the scattering, at constant q, is monotonically de-
creasing throughout the fracton regime with a weak
crossover in the form of the decay —from (4.13b) to
(4.13a) when ql —1. When there is no maximum in the
phonon regime, the interpolated function has a maximum
in the crossover region that is completely controlled by
the interpolation formulas for u (co) and I (co). Obvious-
ly, Eq. (4.13a) predicts a much steeper decay (with co)

than Eqs. (4.7), and (4.13b) even has a slope with the
wrong sign when compared to (4.10). One concludes that
the extrapolation of Eq. (4.11) into the fracton frequency
range can, at most, be meaningful only in the crossover
region and for the polarized scattering.

and will then decrease rapidly with increasing co in the
crossover region.

The standard expression for the polarized scattering in
the phonon regime is'

I(q, co) ~(v q /ro )I [(ru +I u—q ) +4t u q ]
(4.11)
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V. THE FRACTON WAVE FUNCTION

As noted in the Introduction, the most straightforward
approach to the scattering problem is to write an ansatz
for an eigenmode [Eq. (1.12)],

u (r, t)= gu (R;, t)5(r —R;)

wave. Thus one wants, for scattering wave vector q,

e (q) ~iq*.@ (q),
where the Fourier transform f (q) is

g (q)= fdrpo(r)P (r)e''i'~ g e'

(5.6)

(5.7a)

I ti)=u @ (r)po(r)e (5.1) f (r)= f dqg (q)e 'q'= g @'5(r—R, ) . (5.7b)

and proceed from there. Our purpose in this section is to
point out the difticulties and pitfalls of this approach and
also to discuss the eigenfunctions.

The vector "eigenfunctions" f are orthonormal on
the fractal:

f drpo(r)[@ (r) f&(r)]= g c/r' /&=5(a, P) .
l

(5.2)

This is, of course, just formal. g(r) is only defined on the
fractal —i.e., only for r=R,-. In general, one does not ex-
pect that the vector field f (r) can be interpolated with
any degree of smoothness in the embedding space, at least
for a random fractal. One can, nevertheless, make some
general statements.

If the function g is localized in a region of size l, one
must have, from normalization,

(q2) I
—D (5.3)

in this region and small elsewhere.
Because of the factor po in Eq. (5.2), there are no exact

orthogonality relations for the Fourier components of the
g in spite of the fact that the low-frequency vibrations
are plane-wave-like phonons with a well-defined (longitu-
dinal or transverse) average polarization. Nevertheless,
for any vibration one must have

drpor r = '=0 (5.4)

(e;);„,= lim g (f; P. )/lR; R.
l

.
J~l J

(5.5)

It is reasonable to assume that @ is smooth along the con-
nected paths of the fractal and the strains should be
definable if the limit (j~i) in Eq. (5.5) is taken along
these paths and not along general directions in the
embedding space. What one really wants are, however,
the changes in density in the embedding space, which are
not necessarily simply related to these internal strains.
To calculate the scattering, one needs the true external
changes in shape and density as seen by the scattered

from the translational invariance of the equations of
motion, and this has to be approximately true in the re-
gion of size l in which P is large. The sign must change.
This should certainly be remembered in thinking about
the g. By continuity, it also has some (not very serious)
implications for the small-q Fourier transforms.

As already noted in Sec. III, there is some ambiguity in
the definition of the strains for a fractal geometry. The
stresses must, of course, follow the fractal geometry. A
local internal strain should presumably be defined by the
limit

This is exact and one can, of course, calculate the scatter-
ing directly from Eqs. (5.7). Written in this way, the
difhculties in handling the dependence of the vector field
P(r) on r are then hidden in the dependence of its
Fourier transform g(q) on its argument q. Both are
clearly very messy functions of their arguments. No one
has, we believe, come up with a plausible direct ansatz for
g(r) or for its Fourier transform that one could really
use.

One procedure that has been used fairly widely in this
(or related) context is to make an ansatz for the spherical
average of @:

g (r)= fdQ@ (r)-a (r)exp[ —(r/I ) ], (5.8)

(gq/g )2 q2/I2 I
—(2+D) (5.9)

for any reasonably well-behaved localized function g(r)
that is localized with localization length l and does not
oscillate wildly on some much smaller length scale. We
have used Eq. (5.3) for g, which follows from normaliza-
tion, and the estimate of the derivatives follows from ele-
mentary geometrical considerations. The asymptotic
dependence on d& does not enter at all. Thus the detailed
form of the function f, and, in particular, the superlocali-
zation index d& in Eq. (5.8), cannot show up in taking the
derivatives of such an ansatz. One obtains an identical
result if one looks directly at the Fourier transforms (of g

where l is the localization length and a (r) a unit vector
whose orientation must depend on r. d ~ is then called the
superlocalization index and it is tempting to identify it
with o. . One can then proceed to calculate the radial
derivatives (i.e., strains) from this ansatz.

As a radial average for a scalar function, this sort of
expression does, we believe, make sense for the asymptot-
ic behavior, and it is therefore useful when one is really
interested in the asymptotic, large rtails of P-. For scalar
fields it is also evident that one expects the angular aver-
age f(r) to be much smoother —in r—than the bare
function g(r) (in r). The meaning of the (in practice,
inevitable) neglect of the radial dependence of a(r) is less
clear.

The superlocalization index d& for the asymptotic de-
cay can be identified with the index o for the strain [Eq.
(2.10)] when there are geometrical reasons for doing this,
e.g. , for a linear chain or for a crumpled sheet. Even
when this is justified, one is not necessarily justified in us-
ing this expression for the strains for the elastic problem.
More precisely, the index d& in Eq. (5.8) neuer shows up
explicitly in the calculation of the strain from this ansatz.
In the region where g is significant, one must have
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or of Bp/r)r) and does the calculation correctly.
When one can define an internal length s ~ r and the

function decays like e ', it is, of course, trivially true
that d& =a. The internal strain (Bu/Bs) is then given by

(~e„,) -(dglds) -(df /dr) (ds/dr)

(5.10)

which is consistent with Eq. (2.10). The anomalous
power of / (2o instead of 2) comes from the derivative of s
and not from the functional form of 1t. It is far from ob-
vious that the assumed relationship between the asymp-
totic decay and the local strain does, in fact, hold for a
fractal geometry. Moreover, from a purely empirical
point of view the strains are accessible, as in the scatter-
ing experiments, but presumably also in properly ana-
lyzed simulations.

Other problems with such a simple ansatz are that it
does not exhibit the transition from coherent to in-
coherent scattering because the structure factor p0 is
missing and also that it cannot exhibit the depolarized
scattering. Neither the scaling behavior of the density
nor that of the rigidity are included. We therefore be-
lieve that a meaningful calculation requires an explicit
ansatz for the correlation functions —which can, of
course, be averaged. It may be possible to do this better
and in a more detailed way than we have done here.

VI. DISCUSSION AND COMPARISON
WITH EXPERIMENT

Our purpose in this paper was to discuss the implica-
tions of a self-similar scaling structure for the vibration
spectrum. This is known to be relevant for the silica
aerogels, which have such a structure at short distances.
We have tried to do this in as general a form as possible,
in part because the relevant results are not available in
the literature, so that it seemed necessary to discuss the
underlying scaling assumptions, the definition of a strain
for a fractal structure, and the role of the static fractal
structure factor in Sec. II and the way the crossover
comes in (in Sec. III) before proceeding to the Mie-type
calculation of the scattering iv Sec. IV. Much of the
literature on fractons is also concerned with scalar prob-
lems, which differ from the discussion of the vibrations in
important ways. We have also tried to avoid assumptions
based on experience with percolation clusters and other
very tenuous fractals which, we believe, cannot be
relevant to aerogels. Thus, most of this paper is devoted
to the detailed development of the scaling, fracton model
for the vibrations of a fractal object in as general a way as
seemed feasible. We have also tried in Sec. III to show
the connection to scattering theory —thus extending the
brief remarks on this subject in Ref. 15. We believe that
this discussion clarifies the discrepancies and shows un-
der what conditions fractonlike excitations can appear in
dense amorphous materials. Whether these conditions
are actually relevant to real materials is, unfortunately, a
different question, one which will have to be settled by ex-
periments and more detailed modeling.

We would also like to comment that our discussion

casts very serious doubts on the meaning of any
effective-medium calculation for this type of problem.
Any such calculation treats the disorder in a very rough
averaged way and we cannot imagine how the subtle
effects of the disorder on the polarization on coherence
and on the observable strains could conceivably be incor-
porated. We therefore feel that fits of experiments to
such calculations should be treated with extreme caution
and are probably meaningless.

As stated in the Introduction, the motivation for this
work was the experiments on inelastic light scattering
from aerogels. ' Our relevant results are Eqs. (4.7) and
(4.10). Equation (4.7) is similar to that used in Ref. 3, ex-
cept for the different interpretation of the measured in-
dices, and a scaling regime of suitable form was indeed
found in the depolarized-scattering experiments. The
analysis in that reference implicitly assumed 5= 1. If one
gives up this assumption, which is hard to justify, one
concludes that the experiment measures the scaling index
o., or equivalently 5, which is a new index. It cannot be
considered a crosscheck on other determinations of D
and d. The analysis in Ref. 8 gives 6=1.15. The Raman
experiments of Tsujimi et al. also show a density-
dependent maximum in the depolarized scattering in the
fracton frequency range that is consistent with our con-
clusions in Sec. IV. It would be very desirable to have
polarized-scattering results for the same frequency range
to check our conclusion that the two components of the
scattering must scale in the same way in the fracton re-
gime. All the available data for which one can make such
a comparison end at frequencies still well inside the broad
crossover region for the Raman scattering from the same
aerogels.

There are also no experiments for which the crossover
from Eq. (4.7) to Eq. (4.10) would be relevant for either
polarized or depolarized scattering. We note that the ob-
servation of such a crossover would constitute a direct
measurement of the frequency-dependent length scale
l(co), which could be compared with scaling predictions
of indices that have been measured. They could also be
compared directly with the determination of the disper-
sion relation from the comparison of the crossover fre-
quency (co„)and crossover length (g„)in Ref. 8. Our
analysis would predict that the "universal" position of
the Brillouin-scattering maximum —when ~ & co„—
which is observed and agrees with the predictions of the
extrapolation of Eq. (4.11) is also a crossover effect. The
maximum should become frequency dependent at higher
frequencies or for lighter samples.

Finally we note that the crossover length g, is deter-
mined independently from neutron scattering and from
the optical scattering experiments. ' ' As predicted, the
two values scale the same way, but the dynamically deter-
mined correlation length seems considerably larger (by
about a factor of 5).' The authors of Ref. 8 suggest that
this might be a question of definition, which is, of course,
quite possible. We would, however, like to add that the
two length scales do not have to be identical. As we have
shown in Sec. III the elastic Ioffe-Regel frequency, which
is the quantity actually measured in the scattering experi-
ments, is determined by the (scale-invariant) variance V .
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It follows from the scaling ansatz [Eq. (3.10)] that it has
to scale like the crossover frequency, but the numerical
factors between di6'erent determinations of the crossover
certainly depend on the actual form of the function f (x)
defined in Eq. (3.10) and therefore on the physical struc-
ture of the fractal. A scaling argument is simply not
sufhcient to say anything about this ratio, as emphasized
there.
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