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Electrons and phonons in polymeric sulfur nitride
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Results of first-principles calculations on a large number of geometries of a single, isolated, pla-
nar, periodic, infinite (SN) chain are reported. The results are used in theoretically determining all
four geometrical parameters, the single-particle energy bands, as well as frequencies and displace-
ment patterns for frozen, zone-center, intrachain, in-plane pQonons. The calculated values are com-
pared with those derived from experiments and from other theoretical approaches. Finally, cou-
plings between the electronic orbitals at the Fermi level and intrachain phonons are discussed.

I. INTRODUCTION

In 1910 Burt' reported the synthesis of "a new sulfide
nitrogen. " More than 40 years later the resulting com-
pound was identified as a sulfur nitride polymer (SN),
(see, e.g., Ref. 2), and it was assumed that each chain
consisted of a zigzag arrangement of alternating sulfur
and nitrogen atoms [Fig. 1(a)].

The discovery in 1973 by Walatka et al. that the ma-
terial remained metallic down to 4.2 K, which in 1975
was extended to 1.5 K by Greene et QI. , and the report
by Greene et al. later in 1975 that (SN), undergoes a
transition to a superconducting state at T, =0.26+0.03
K initiated a very large research activity in polymeric
sulfur nitride (see, e.g., Refs. 6 and 7).

The major activity concentrated on a few key issues
(see, e.g. , Refs. 6 and 7). First of all, the material was ill-

defined since it consisted of only partially parallel fibers
each containing almost parallel macromolecules. This
made it difficult experimentally to deduce a crystal struc-
ture as well as the geometry of a single polymer chain,
and not until 1975 the correct structure of each macro-
molecule was determined for the first time by Boudelle
and later by Mikulski et al. Both predict the structure of
Fig. 1(b) to be that of a single polymer chain, but they
differ in the relative arrangement of the chains. Although
there were smaller differences in bond lengths and bond
angles the former were essentially assumed for the zigzag
structure of Fig. 1(a) (see, e.g., Ref. 10). The structure of
Fig. 1(b) was able to explain how polymerization of pla-
nar almost square-shaped SzN2 molecules [Fig. 1(c)] lead
to the (SN) polymer. "

The other question that attracted much attention was
why the polymer did not undergo a Peierls transition but
remained metallic down to very low temperatures and be-
came superconducting at even lower temperatures. Opti-
cal experiments and band-structure calculations (see, e.g. ,
Refs. 7 and 14, and Sec. IV) were carried through in or-
der to understand the nature of the electronic orbitals
near the Fermi level. The band-structure calculations
proposed one out of two reasons for the lacking Peierls
distortion depending on the computational method. Ac-

cording to the first explanation two bands were crossing
the Fermi level thus suppressing the Peierls transition,
but it was later argued by Berlinsky' that this explana-
tion could not hold, since in any true one-dimensional
system with two bands crossing the Fermi level one could
always find a total-energy lowering distortion that would
open up gaps at the Fermi level. The other explanation
(which now is believed to be the correct one; see, e.g.,
Ref. 16) proposed that interchain interactions —al-
though relatively small —suppress the Peierls distortion.

Although the current interest in quasi-one-dimensional
metals mostly concentrates on charge transfer salts and
conjugated polymers presently (see, e.g. , Ref. 17), there
still remain a number of unsettled questions for polymer-
ic sulfur nitride which call for a reconsideration of this

FICz. 1. (a) The earlier proposed form of a single poly(sulfur
nitride) chain, (b) the correct structure, and (c) a part of a row of
S2N2 molecules from the crystal structure of the latter. Compar-
ing (c) and (b) it is clearly seen how polymerization of S~N2 mol-

ecules can lead to (SN)„. The open (closed) circles represent ni-

trogen (sulfur) atoms.
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FIG. 2. The definition of the geometrical parameters for a
single (SN) chain of the form of Fig. 1(b). A zigzag symmetry is
assumed and the dashed lines indicate a single unit cell, whereas
the straight dotted line represents the polymer axis. The open
and closed circles represent the nitrogen and sulfur atoms, re-
spectively.

Oppenheimer approximation valid and calculate thus the
electronic distribution as determined by its own field and
by the field generated by the fixed, nuclear point charges.
There is accordingly no attempt to simultaneously solve
the dynamical equations of the nuclei and the
Schrodinger-like equations of the electrons, which
might be a drawback when analyzing the phonons and
the electron-phonon couplings.

Within the Hohenberg-Kohn density-functional for-
malism we make use of the local approximation to the
exchange and correlation potential of von Barth and
Hedin. The resulting single-particle, Schrodinger-like
Kohn-Sham equations (in Ry atomic units)

[—'|)'+ V(r) ]P(r) = c, .P(r }

polymer. First of all, except for very few, all theoretical
band-structure calculations considered only a single nu-
clear geometry, and there is accordingly no attempt to
theoretically optimize the geometrical parameters.
Hence, there has been no attempt from total-energy
methods to determine the properties of the other impor-
tant ingredient for superconductivity, namely the pho-
nons. Furthermore, since the effective charge transfer
from sulfur to nitrogen is large (around 0.4 elec-
trons' ' ' } the lack of self-consistency in some of the
theoretical investigations of the electronic structures
might have crucial impacts on the results.

The purpose of this paper is to report results of self-
consistent calculations on a large number of geometries
of a single chain with the structure of Fig. 1(b). Assuming
the chain to be planar and with a periodic zigzag struc-
ture the results are —among other applications —used
in theoretically determining all four geometrical parame-
ters (d „d2, a, and P) shown in Fig. 2. The computation-
al method has in detail been discussed elsewhere, ' ' but
a brief discussion is given in Sec. II. In Sec. III we report
our optimized geometry and compare it with the experi-
mentally derived ones. The band structures and electron
densities are reported in Sec. IV, and the calculated fre-
quencies and displacement patterns of some frozen zone-
center phonons are given in Sec. V. Both in Sec. IV and
in Sec. V comparisons with experimental and other
theoretical values are carried through. A simple discus-
sion of the couplings between the phonons and the elec-
tronic orbitals at the Fermi level, which are important for
superconductivity, is presented in Sec. VI, and we con-
clude in Sec. VII. It should be pointed out that in the
present approach interchain interactions are completely
neglected. This will have some crucial consequences for
the results, and we therefore briefly discuss their impor-
tance when appropriate.

II.METHOD OF COMPUTATION

We have applied our recently developed self-
consistent, first-principles, density-functional, full-
potential, linear muffin-tin orbitals (LMTO) method for
calculating the electronic structures of an infinite, period-
ic, isolated, helical chain. We assume the Born-

are solved by expanding the eigenfunctions P(r) in
(atom-centered) linear muffin-tin orbitals (LMTO's). A
LMTO centered at R is defined as the numerical eigen-
function of (1) with V(r) replaced by its spherically sym-
metric component inside a (muffin-tin) sphere at R. On
the sphere boundary it is matched continuously and once
differentiably to a spherical Hankel function times a
spherical harmonic, and inside any other muffin-tin
sphere this product is augmented continuously and
differentiably with the numerical functions of that sphere.
The functions are thus eigenfunctions of a muffin-tin po-
tential and as such good approximations to the exact
solutions to (1), but it should be pointed out that with the
LMTO basis functions we calculate the Hamilton ma-
trices using the fulL potential as described elsewhere.

We use a basis set consisting of two subsets, each con-
taining s, p, and d functions on all sites and with one
common decay constant of the Hankel functions for all
atoms and (I,m ) values. The two subsets differ in the de-
cay constants. Nearly linearly dependent linear combina-
tions are excluded through a canonical transformation.

A single, isolated (SN) chain such as that of Fig. 1(b)
is assumed periodic and infinite. Its zigzag symmetry is
thus a special case of the screw symmetry of a general
helical polymer. For this latter we describe ' ' the primi-
tive screw symmetry operation as a combined translation
of h and rotation of v. In a global coordinate system the
position of the ith atom in the nth unit cell is

x =r;cos(u„;),

y = r;sin(u„; ),
z = (h /U )u„;+z;,

with

u„; =nu+P, .

We will assume a single (SN)„polymer to be planar.
This is a reasonable assumption since the mean deviation
of the atomic positions from the common plane was re-
ported by Boudelle to be 0.32 a.u. , whereas Mikulski et
al. and Heger et al. did- not notice any deviation from
planarity at all. For later purposes we finally mention
that thy geometrical parameters of Fig. 2 correspond to
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the following values of h, U, r;, P;, and z;:

h =d2cos[(a —P)/2] —d, cos[(o,+P)/2], (4a)

(4b)

rN =—'disown[(a+P)/2] —
—,'dzsin[(a —P)/2],

r s
=

—,
' d, sin[(a+P) /2]+ —,

' d2sin[( a —P) /2],

(4c)

(4d)

IN=Ps=0 (4e)

z~ =0,

zs =dzcos[(a —P)/2]. (4g)

For the general helical polymer we make explicit use of
the screw symmetry by forming Bloch waves from atom-
centered basis functions defined in local right-handed
coordinate systems with the z axis parallel to the screw
axis and the x axis pointing away from it. For the planar
zigzag (SN)„polymer of Fig. 2 local p„and p functions
of neighboring unit cells are thus antiparallel whereas the
local p, functions are parallel. Finally, the extra symme-
try plane containing the nuclei makes it possible to
separate the orbitals into rr (formed by local p~, d ~, and

d, functions) and o orbitals.

III.STRUCTURE

By varying all four geometrical parameters we found
the lowest total energy for a=122', p=112', di =3.30
a.u. , and d2=3. 45 a.u. (see Fig. 2). These values are to
be compared with the electron diffraction results of
Boudelle, a= 113.5, P= 111.5, d i =3.25 a.u. , and
d2=2. 99 a.u. ; with the x-ray diffraction results of Mi-
kulski et al. , a=120', P= 106', d, =3.08 a.u. , and
d2=3. 01 a.u. ; and with the neutron diffraction results of
Heger et al. , a=120', P=107, and d, =d~=3.00 a.u.

It is noticed that whereas the bond angles are found in
reasonable agreement with the experimental values, the
bond lengths are significantly overestimated. Further-
more, the calculated relative order of d& and d2 is re-
versed. In this context it should be added that we did not
find any indication of (meta)stable structures with the ex-
perimental relative order of d i and dz.

The reasons for the discrepancy can be manyfold. First
of all, the interchain interactions, which are strong
enough to suppress a Peierls transition, might also modi-
fy the bond lengths. Secondly, the density-functional for-
malism (or its local approximation) might overestimate
the S—N bond lengths, and, finally, the present method
might be responsible for the deviation. We will now dis-
cuss these possibilities.

Haddon et al. have performed ab initio Hartree-Fock
calculations on a number of finite molecules containing
S—N bonds. Among those they considered were mole-
cules formed by two or four SN units of the polymer ter-
minated with single hydrogen atoms. For those they

found S—N bond lengths ranging from 3.05 to 3.30 a.u. ,
and a=101'—102 and P=113 —117'. Due to the ter-
mination it is dificult to relate their bond lengths to d,
and d2, but for the most middle bonds of the largest mol-
ecule a simple correspondence gives d& =3.13—3.22 a.u.
and d2=3. 30 a.u. Thus, their results show the same
trend as ours except for a smaller overestimate of the
bond lengths.

Earlier reports on sulfur and selenium helices ' using
the same method as in this report gave similar results: an
overestimate in bond lengths, whereas bond angles and
dihedral angles were in good agreement with experi-
ments. Calculations on the S3 molecule ' using a related
method predicted a slightly larger bond length compared
with experimental values, whereas calculations on smaller
selenium and sulfur clusters ' using another density-
functional method gave bond lengths with only small
overestimates in bond lengths. Our calculations on the Nz
molecule overestimated the bond length, as also was
found with other density-functional methods, whereas the
Hartree-Fock calculations underestimated the bond
length (see, e.g., Ref. 20). This tendency was also found
by Jones for the S2 and S3 molecules. ' Finally, recent cal-
culations " on As2Se3 (which due to the large Se content
should be of relevance here) using another first-principles,
density-functional method also predicted too large bond
lengths.

In conclusion we believe therefore that the reversed or-
der of d] and d2 is due to the lacking interchain interac-
tions, whereas these interactions as well as the density-
functional formalism are responsible for the somewhat
too large bond lengths.

This conclusion is also supported by our calculated
total-energy differences between the optimized structure
and the structure of Mikulski et al. The difference, 1.40
eV per SN unit, is only slightly larger than the band split-
tings due to interchain interactions (see, e.g., Ref. 16).

These results indicate that di is modified less than d2
when the chains are allowed to interact, and we believe,
therefore, that the most adequate viewpoint for discuss-
ing interactions between the electronic orbitals is to con-
sider the SN units with the bonds of lengths d, as the
building blocks. When the electronic orbitals of these
units interact they will form weak interchain bonds and
stronger intrachain bonds (the latter mainly being those
with the lengths d2).

We are only aware of three attempts to calculate
structural properties of (SN) using first-principles or ab
initio methods. Kertesz and co-workers applied the ab
initio Hartree-Fock method on three different geometries.
They concluded that the structure of Fig. 1(b) is more
stable than that of Fig. 1(a). A similar computational
scheme was applied by Bredas, who considered five
geometries of undimerized and dimerized forms of Fig.
1(b). He concluded that the dimerization, in which a gap
opens up at the Fermi level, is energetically favored. The
same conclusion was obtained by Dovesi et al. , who
considered two structures of the form of Fig. 1(b) and
also applied the ab initio Hartree-Pock approach. Due to
the very limited number of geometries considered in
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those reports it is not possible to extract detailed infor-
mation on the structural parameters of (SN) . 0.0 0.0

IV. ELECTRONIC PROPERTIES -5.0 -5.0

In Fig. 3 we depict the calculated band structures for
the optimized geometry [Fig. 3(a)] and for the geometry
of Mikulski et al. [Fig. 3(b)]. As is common practice, we
will neglect the formal lack of correspondence between
the eigenvalues c. of (1) and electronic excitation values,
since experience has shown this to be a good approxima-
tion.

In Fig. 3 we notice that the two sets of band structures
are very similar except for a general narrowing when
passing from Fig. 3(b) to Fig. 3(a). This is easily under-
stood as due to the increased interatomic distances.

In order to facilitate the discussion of the band struc-
tures we show in Fig. 4 the electronic densities of each of
the orbitals at the zone center and the zone edge for the
bands of Fig. 3(b) (i.e., for the experimental geometry by
Mikulski et al. , but those for the optimized geometry
show only minor deviations from those depicted).

The cri and cr2 bands [Figs. 4(a) —4(d)] are seen to be
formed by local s and p orbitals and to be well localized
to nearest-neighbor bonds. In contrast to this, the o.

3 and
~4 bands [Figs. 4(e), 4(f), 4(1), and 4(m)] have significant
next-nearest sulfur-nitrogen neighbor-pair interactions.
Moreover, the o~ band at the zone edge [Fig. 4(m)] espe-
cially has important sulfur d components. Also the ~
bands are partially formed by sulfur d functions. Thus,
the rt, band at the zone center [Fig. 4(g)] is mainly a ni-
trogen p function, but the sulfur d components cause
both the elongation of the electron density towards the
sulfur nuclei as well as the nodal curves close to the
sulfur nuclei. The rri band at the zone edge [Fig. 4(h)] is
mainly p functions on both sulfur and nitrogen, whereas
the rrz band at the zone center [Fig. 4(i)] has dominating
sulfur p components, -which become mixed with increas-
ing amounts of sulfur d functions as the zone boundary is
approached [cf. Fig. 4(j) for the orbital at the Fermi level
and Fig. 4(k) for that at the zone edge]. Thus, sulfur d
functions are important in this approach as they have
also proven to be in the ab initio Hartree-Pock ap-
proaches of Haddon et al. on finite molecules and of
Dovesi et al. on a single (SN) chain.

We will now compare our results with those obtained
with other theoretical methods. In doing this we will not
consider the early works which solely considered the in-
correct geometry of Fig. 1(a) (for a review including
those, see, e.g., Ref. 14). We will furthermore only exam-
ine some few key quantities, these being the total
valence-band width 8'„ the width of the occupied part of
the uppermost m valence band 8'„, the ionization poten-
tial V,p (which is undefined for the methods considering a
three-dimensional, infinite solid), the density of states at
the Fermi level D(e~), and the effective mass at the Fer-
mi level nz'/m, . The first quantity will give a general
measure of the accuracy of the applied methods, and the
other quantities are important for the conducting and su=
perconducting properties of the materials. In Table I we
have collected our values together with those of other

0)
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-20.0

-25.0 -25.0

-30.0
0.0 0.5
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-30.0
0.0 0.5

k
1.0

FIG. 3. The valence and the lowest conduction bands for a
single (SN)„chain for the optimized (experimental) geometry in
(a) [(b)].The Fermi level is indicated as the dotted line.

theoretical approaches and of some experiments. In
evaluating the data of Table I some remarks should be
made.

We report two sets of values for the present approach;
one for the experimental geometry and one for the opti-
mized one. The effective mass depends on the second
derivative of the single-particle energies and is according-
ly connected with some uncertainty.

The first two reports (Refs. 38—40) are included as ex-
amples of those finding both cr and m bands crossing the
Fermi level. This is in contrast to most later findings and
we have therefore only included those two as representa-
tive.

Rajan and Falicov considered both the zigzag struc-
ture of Fig. 1(a) as well as the planar structure of Fig.
1(b), and for the latter they used bond angles and bond
lengths both as determined by Boudelle and as deter-
mined by Mikulski et al. Molecular orbitals from self-
consistent ab initio calculations on a single SN molecule
were transferred to a single (SN)„chain and a non-self-
consistent calculation giving the band structures was car-
ried through. In contrast to this the calculations of Kam-
imura and co-workers ' were pure semiempirical
tight-binding calculations.

The rest of the reports to be mentioned here found only
one (~) band to cross the Fermi level. Among the sem-
iempirical calculations are extended Huckel calculations
by Bright and Soven ' and by Friesen et aI. on crystal-
line SN and by Salahub and Messmer ' on different
numbers of interacting chains. Furthermore, the sem-
iempirical CNDO (complete neglect of differential over-
laps) method was applied by Suhai and Kertesz on one
chain and by Tanaka and co-workers on two interacting
chains. As based upon the Hartree-Fock approximation
it overestimates bandwidths. Semiempirical pseudopoten-
tial calculations on three-dimensional SN were carried
through by Schluter et aI. ' The last semiempirical cal-
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culations we will mention here are the VEH calculations
(valence effective Hamiltonian) by Bredas on a single
chain. The method is designed to reproduce ab initio
Hartree-Fock results, and the widths are accordingly too
large.

A number of ab initio Hartree-Fock calculations on a
single isolated chain have been reported. Among those
are calculations by Kertesz et al. and by Suhai and La-
dik. Finally, Dovesi and co-workers' ' have applied
the ab initio Hartree-Fock method first on a single chain

(Ref. 36) and later on two and more interacting chains
(Ref. 16). Their detailed discussion of the interchain in-
teractions demonstrates that these are of minor impor-
tance for charge densities and bond populations but have
appreciable inAuence on the electronic properties. It is
important to keep this in mind when comparing results of
calculations on one chain with those on more chains.

Also a number of density-functional calculations have
been reported. These include the non-self-consistent
OPW (orthogonalized-plane-waves) calculations by

(a) d)

(e)

FICx. 4. Contour curves of the electron densities outside the interior of the muffin-tin spheres for some of the orbitals for a single
c ain with the experimental geometry. Shown are those of the o, [(a),(b)], the o 2 [(c),(d)], the a 3 [(e),{f}],the m, [{g),(h)], the n2 [(i),(k)],
and the o 4 [(1),(m)] orbitals at the zone center [(a),(c),(e),(g),(i),(1)] and zone edge [(b),(d),(f),(h), (k),(m)] together with those of the n 2 or-
bital at the Fermi level (j). Those of the o orbitals are shown in the plane of the nuclei where the largest (smallest) spheres are those of
sulfur (nitrogen), and the densities of the m orbitals are shown in the same plane but lifted 1.75 a.u. above the plane of the nuclei. Con-
tour values are 0.10, 0.08, 0.06, 0.04, 0.02, 0.01, 0.005, 0.002, and 0.001 a.u. , and the size of the planes is 10X 10 a.u.
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Rudge, Grant, and co-workers. ' The experimental
three-dimensional geometries of Boudelle and of Mi-
kulski et al. were considered and the results differed only
little for the two structures.

In contrast to these calculations those on both a single
(SN) chain and on three-dimensional crystalline SN by
Ching et a/. were self-consistent. Another difference
was the use of an atom-centered basis set in the calcula-
tions by Ching et al. It is surprising that they found the
total valence-band width to be smaller for the three-
dimensional structure than for the single chain.

Both Ching et al. and Batra and co-workers ' have
compared crystalline SN and crystalline SzN2 using first-

principles, density-functional methods, but the calcula-
tions by Batra et al. were not self-consistent. Batra and
co-workers examined the effects of including sulfur d
functions in the basis set (these were omitted in most of
the works mentioned above) and found them to be small
in contrast to our findings and to those of Haddon et al.

Mihich applied the self-consistent, density-functional,

so-called intersecting spheres model on a single chain of
polymeric sulfur nitride. He found only small differences
between the values for the structure of Boudelle and for
that of Mikulski et al.

The last theoretical work on the band structures of
(SN) we will mention is the self-consistent, first-
principles, density-functional calculations by Oshiyama
and Kamimura on the crystalline material. They used a
basis set of numerical atom-centered functions.

In comparing our values with those above we notice
more features. First of all, the calculations based on the
Hartree-Fock approximation (i.e., the CNDO, VEH, and
ab initio Hartree-Fock calculations) yield significantly
larger bandwidths than the other calculations. Our value
for 8'„ for the experimental structure is slightly smaller
than that of the other non-Hartree-Fock calculations. On
the other hand, the values of 8' show only little sys-
tematic trends and for this we find a somewhat larger
value than that of most other non-Hartree-Pock calcula-
tions. We propose that the sulfur d functions explain the

TABLE I. Various band-structure properties for (SN) as obtained with theoretical (present, Refs. 16, 35, and 38—54) and experi-
mental (Refs. 4 and 66—69) methods. Listed is the total valence-band width (W„ in eV), the width of the occupied part of the m2 band
(W, in eV), the ionization potential (V,p, in eV), the density of states at the Fermi level [D (eF ), in states/(spin eV molecule) with one
molecule being one SN unit), and the effective mass at the Fermi level (m /m, ). We report values both for the experimental geometry
(labeled "expt.") and the optimized geometry ("optim. ").The semiempirical theoretical methods include tight-binding (TB), extended
Huckel (EH), pseudopotential (PP), complete neglect of differential overlaps (CNDO), and valence-eff'ective-Hamiltonian (VEH)
methods. HF labels ab initio Hartree-Fock calculations, and first-principles calculations using orthogonalized plane waves (OPW),
atom-centered basis functions (LCAO), and the intersecting-spheres method (IS) are listed. The calculations labeled non-SCF were
not self-consistent. The experimental results have been obtained from x-ray photoelectron spectroscopy (XPS), and specific-heat (SH)
and optical reAectivity (OR) experiments. The reader is referred to the text for further details.

Ref.

Present work
Present work
38
39,40
41
42
43,44
45
46
47,48
49
16
35
50
51,52
53
54
56
57

22.0
19.6
~19

22
32

34
22
28

—32.5
~34

-27.5
26
24
24
23

F 1
2.7

1.4
0.9
-2.3
6.3

5
2

2.6
6.5
5.6
2.0
-2.5
—15
1.7

-2.3
—1.6

Theory
5.6
5.5
—12
~9

7 7
-56

6

D(cF)

0.18
0.22

0.16

0.12
0.14
0.085
0.1

0.14

0.01

0.23
0.14

m /m,

1 —3
1—3

2.2
1.7

Comment

expt.
optim.

non-SCF LCAO
TB
EH
EH
EH

CNDO
CNDO

PP
VEH

HF
HF
HF

non-SCF OPW
LCAO

non-SCF LCAO
IS

LCAO

58
4

66
67
68
69

24.4
Experiments

0.18
0.14

5.2
2

2.5

XPS
SH
SH
OR
OR
OR
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differences. These are less important for the lowest
valence bands, as the discussion of the electron densities
showed, but are important for the m2 band. Exclusion of
the sulfur d functions will give a poorer description of the
~2 band and thus a too narrow band. Inclusion of them
will move the occupied part of the m.

2 band to lower ener-
gies, whereas the o.

&
band is only little affected. Thus, the

total valence-band width will be decreased upon inclusion
of sulfur d functions.

We find the effective mass and the density of states at
the Fermi level in good agreement with the findings of
other theoretical approaches although the theoretical
values of the latter vary much.

The interchain interactions make a comparison with
experimental values of the quantities close to the Fermi
level difficult. However, with this in mind we will now
turn to a discussion of the experimental results on (SN)„.

X-ray photoelectron spectroscopy (XPS) on (SN) has
been performed by Ley and by Mengel et al. , and ul-
traviolet photoemission spectroscopy (UPS) has been car-
ried out by Koch and Grobman. Although matrix-
element effects will modify the relative heights of the
peaks when comparing calculated density-of-states curves
and XPS and UPS data, the positions of the peaks will
not be changed, and we will here simply relate the Oat
parts of the bands in Fig. 3(b) for the experimental
geometry with the peaks in the XPS and UPS spectra.
Due to different cross sections XPS gives information
mainly on the s-like orbitals whereas UPS has its largest
amplitudes for p-like orbitals.

Ley noticed four peaks in his XPS spectra. These
were placed at 21.0, 15.2, 7.4, and 3.6 eV, respectively,
below the Fermi level, cF. The first peak agrees fairly well
with the position of the bottom of the o.

&
band, which we

calculate to be 22.0 eV below cF. The third and fourth
peaks might be related to the o.

3 and o.
4 bands; we find

these to be at 5.9—8.6 eV and 2.2—4.3 eV below cF, re-
spectively. For the second peak (at 15.2 eV) we do not
find any direct counterpart. It is, however, low and broad
and could therefore be related to the o. , and 0.

2 bands at
the zone edges. Finally, the total valence-band width was
reported by Ley to be 24.4 eV. This larger width and a
shoulder at 0.7 eV below c.F we believe to be due to inter-
chain couplings.

The XPS data by Mengel et al. differ only a little
from those of Ley, except that the second peak is split
into two. This is consistent with our interpretation of the
origin of this peak.

In their UPS measurements Koch and Grobman con-
sidered both films and single crystals. They have listed a
number of peaks in the region 0.2 —16.2 eV below the Fer-
mi level. Two peaks at 1.2 and 2.5 eV might be related to
interchain couplings and to the top of the o.

4 band, re-
spectively. Their four peaks in the region 4.9—10.2 eV we
will relate to the m& and o 3 bands, and finally, we believe
the o.

2 and o.
&

bands at the zone edge to be responsible for
their peaks at 14.3 and 16.1 eV, respectively.

In total we find the agreement with the XPS and UPS
spectra and our band structures for the experimental
geometry good.

Valence- to conduction-band transitions as measured
by synchrotron-radiation-reAectivity experiments have
been discussed by Bordas et al. ' and by Mitani et
al. As is well known, calculations based on the
density-functional formalism usually predict conduction
states lying too close to the Fermi level, and a compar-
ison between our band structures and the experimental
dielectric constant ez will be complicated by this "band-
gap" problem. We will therefore only compare here with
one of the more recent and detailed experimental studies
on (SN)„, namely, Ref. 64 by Mitani and co-workers. It
should be noticed that when comparing we are to use a
translational symmetry of the polymer, and the unit cell
is thus to be doubled and the bands of Fig. 3 to be folded
about k = 0.5. However, in the discussion below we will
refer to the unfolded band structures of Fig. 3.

Mitani et al. reported seven peaks at 2.7, 4.1, 4.9, 5.8,
7.5, 11, and 15 eV, respectively. The first they have
ascribed the m2(k=0)~m2(k=1) transition and is
thus considerably smaller than our calculated width of
4.9 eV. The peaks at 4.1 and 4.9 eV they ascribed
vr2(k =0)~cr~(k =1) transitions, which we find to be 5.4
eV, and the peak at 5.8 eV they believed to be due to
cr~~cr~ and a'~~m&(k =1) transitions, which is in
reasonable agreement with our findings. Finally, they as-
cribe the peaks at 7.5 and 11 eV partly cr4~o. 5 (7.5 eV),
0 3~cT 5 ( 1 1 eV), and 7r, ~m.

2 ( 1 1 eV) transitions. These
values agree reasonably with those we find: 7—8 eV, 9—12
eV, and 9.5 eV, respectively.

We should mention that interchain couplings, which
are fairly strong for the orbitals close to the Fermi level,

complicate the comparison. But we believe all transitions
at 2.7, 4.1, and 4.9 eV to be ~2~+& transitions. Further-
more, we would assign the F2~0.5 transition the peak at
5.8 eV, when remembering the "band-gap" problem.
And, finally, due to interchain couplings we believe the
0 3~cT 5 transition to contribute to both peaks at 7.5 and
11 eV. Taking this reassignment into account we find the
agreement fair.

Electron-energy-loss spectroscopy (EELS) makes it
possible not only to measure vertical transitions but also
transitions with nonzero momentum transfer. Among
others, Stolz et al. have performed EELS experiments
on polymeric sulfur nitride. For zero momentum transfer
their data resemble the synchrotron data of Mitani et
al. with peaks at 1.7, 4.4, 6.2, 8.2, 12.0, 17.0, and 22.3
eV, and an interpretation like that of the synchrotron
data should be possible.

A value of the density of states at the Fermi energy,
D(sF), has been derived by Greene et al. from specific-
heat experiments. They obtained D ( sF ) =0.18
states/(eVspinmolecule), whereas Harper et al. from
similar experiments derived D ( sF ) =0.14 states/(eV
spin molecule). These values agree well with ours.

There seems to be greater uncertainty about the
effective mass at the Fermi level, m /m, . Bright et al.
have reported a value of 5.2 for films, whereas Grant et
al. estimated it to be 2 for a crystalline material, and
Gutman et al. found it to be 2.5 also for a crystal. Our
values seem to be in best agreement with those derived
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for crystalline materials, but also here interchain .cou-
plings make a comparison difficult.

V. PHGNQNS

Close to the optimized geometry we expand the total
energy to second order in bond lengths and bond angles
as

E =ei, =eo+eidi+ezd2+e~a+e&P+e»di

+ezzdz+e a +e&&P +e,2d, d2

+ei dia+eipdiP+e2 d2a+e2pd2P+e paP

However, for our purpose it is more convenient to use
the parameters of Eq. (4), and by retaining a harmonic
approximation and using Eq. (4) we thus arrive at

~hp eO+ eh h +e„rN+ er rS +ez ZS +ehh h
N S S

+e „rN+e„„rs+e Zs +eh ArN
N N S S S N

+eh, hrs+ eh, hzs+ e, , rN rs
S S N S

+er z rNZS+er z rSZS'
N S S S

(6)

We calculated the total energy for the 81 geometries
defined by di =3.25, 3.30, and 3.35 a.u. , d2 =3.40, 3.45,
and 3.50 a.u. , a= 120', 122', and 124', and P = 110',
112, and 114'. The minimum was found for the "middle"
calculation, i.e., d& =3.30 a.u. , d2=3.45 a.u. , +=122',
and p= 112, as already indicated by the results reported
in Sec. III.

Least-squares fitting the 81 total energies with (5) or (6)
turned out to be very difficult due to almost linear depen-
dencies of the fitting functions (over-completeness), and
also using the so-called singular-value decomposition
technique (see, e.g. , Ref. 70) resulted often in fits predict-
ing no global total-energy minimum. We therefore, first
of all, restricted the number of parameters by requiring
c&, or ehp to reproduce the above-mentioned geometry to
be that of the lowest total energy.

Wendel ' has used a model of the form (5) extended
with interchain interactions in order to reproduce experi-
mentally derived phonon frequencies. He only kept
e» =e22 and e =e&& nonzero, but included intrachain
interactions between next-nearest nitrogen-sulfur pairs.
Since we explicitly make use of the zigzag symmetry and
furthermore only consider zone-center displacements, we
cannot distinguish between the last interaction and that
of e22. Keeping all constants of (5) zero except for e»,
e», e~~, and e&& we find e» =7.90 eV/bohr, e22=6.26
eV/bohr, e =0.0080 eV/deg, and e&&=0.0055
eV/deg . Wendel reported eii =e22=1.93X10 dyn/cm= 3.37 eV/bohr, which is only half the values of ours.
He reported furthermore values of e =e&& of almost 2
orders of magnitude smaller than ours. However, part of
the discrepancy can be explained as due to his inclusion
of next-nearest-neighbor interactions. Moreover, the
lacking interchain interactions in the present approach

will inhuence the results. These interactions might weak-
en the intrachain bonds and thus soften the intrachain
phonons.

It turned out that in order to avoid over-completeness
the best strategy in fitting our first-principles total ener-
gies was to restrict the fit (6) to

eh~=eo+ehi, (bh) +e„„(brN) +e„„(mrs)

+e, , (bzs) +e„„(hrN)(mrs),

where all lengths are relative to the values of the optimal
geometry. Here, ehh is related to the compressibility of
the material along the chains.

When the parameters had been obtained we replaced
hzs with Azs —EZN and the phonon frequencies could be
calculated as the eigenvalues of
(8 Eh /Bx;Bx )/(M;MJ)', with x; = br&, bzz, b, rs,
and hzz for i =- 1, 2, 3, and 4, respectively, and M; =
M&, MN, Ms, and Ms for i = 1, 2, 3, and 4, respectively.
Here, MN (Ms) is the atomic mass of nitrogen (sulfur).

Except for the trivial zero-frequency mode we found
three modes at roughly 500, 900, and 1200—1500 cm
where the variations in the last frequency were related to
different fitting strategies. Unfortunately, we are not able
to choose a single set of frequencies as the optimal one.

The modes of the lowest and highest frequency corre-
spond to antisymmetric and symmetric oscillations in
ArN and Ars, respectively, with the amplitude on the ni-
trogen atoms being largest for the highest-frequency
mode, and smallest for the low-frequency mode.

There exist some reported experimental phonon fre-
quencies for (SN)„. Temkin and Fitchen have reported
Raman spectra on the compound. They observed
features at 454, 621, 658, and 782 cm '. The force model
by Wende1 gave —using a translational symmetry—
zone-center high-frequency modes at 660, 775, 895, and
985 em '. Raman scattering experiments on pure and
brominated (SN) by Temkin and Street gave high-
frequency modes at 456, 658, and 786 cm ' in excellent
agreement with those of Temkin and Fitchen. One of the
most detailed investigations of the phonon spectrum of
poly(sulfur nitride) was undertaken by Macklin et al.
using infrared spectroscopy. Of relevance to the present
work are their modes at 1001 and 500 cm ', which they
ascribe displacement patterns analogous to those we find
for the highest and next-highest frequencies. A mode at
629 cm ' might be similar to that of our lowest frequen-
cy.

In total we notice significant differences between our
phonon frequencies and the experimentally determined
ones. The largest difference seems to be a general shift to-
wards higher frequencies. This is consistent with our
finding of larger spring constants compared with those of
Wendel. ' Since interchain couplings have some impor-
tance these will of course lead to different results when
considering a three-dimensional structure instead of the
quasi-one-dimensional structure considered here. Also
our finding of an optimized structure with somewhat
different bond lengths than the experimental stru. cture
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(again partly due to the lack of interchain couplings)
modifies the results.

Despite the discrepancies between the calculated and
measured frequencies we believe the general trends in the
frequencies and displacement patterns of these modes are
obtained. We will therefore use these in the next section
in a semiquantitative discussion of some electron-phonon
couplings. Due to the very limited number of phonons
considered here we cannot estimate the electron-phonon
coupling constants.

that this result agrees qualitatively with our preliminary
result reported earlier. ' In that report we considered the
changes in the total energy and in the Fermi energy when
starting from the experimental geometry of Boudelle
moving either all sulfur atoms or all nitrogen atoms in
unison either perpendicular or parallel to the polymer
axis. Also there we found the smallest changes in the to-
tal energy and the largest changes in the Fermi energy
when moving the sulfur atoms perpendicular to the poly-
mer axis.

VI. ELECTRON-PHONON COUPLINGS

The essential part of the electron-phonon couplings im-
portant for the superconductivity is a description of how
the orbitals at the Fermi level vary under the inhuence of
a phonon (see, e.g. , Refs. 75—77).

For a single (SN)„chain we notice three important
features. First of all, the Fermi surface reduces to two
single points (@=+0.5 in the units of Fig. 3), secondly,
only one band crosses the Fermi level, and, thirdly, since
the chain is finite in two dimensions the absolute value of
the Fermi energy has a meaning. Thus, a simple measure
of the electron-phonon couplings for this system is the
shift of the Fermi energy when a phonon is excited in a
single chain. This is the approach we will use for the
three frozen, zone-center, intrachain, in-plane phonons
calculated in the preceding section.

Assuming the phonons to have an amplitude of 0.05
a.u. we estimate the Fermi energy to vary roughly 0.06,
0.04, and 0.03 eV for the phonon with the lowest, middle,
and highest frequency, respectively. These numbers are
small and should be taken with much caution, although
we believe them to reproduce the general physics, as we
shall argue below.

From Fig. 4 we notice that there are important elec-
tronic interactions between those next-nearest sulfur-
nitrogen pairs, which in the S2Nz compound are connect-
ed with bonds [see Figs. 1(b) and 1(c)]. Therefore, pho-
nons involving displacements of the atoms perpendicular
to the chains will mainly only affect one type of bond;
namely those with the lengths d, (see Fig. 2), and will ac-
cordingly be the softest phonons. The phonons with dis-
placements parallel with the polymer axis change both
the bond lengths d 2 and the weaker next-nearest-
neighbor bonds and will therefore have higher frequen-
cies.

On the other hand, Fig. 4(j) clearly demonstrates that
the orbital at the Fermi level has the largest components
on the sulfur atoms. Therefore, the phonons displacing
the sulfur atoms most will lead to the largest changes in
the Fermi energy.

Finally, in an improved more realistic approach the
phonons would have amplitudes that are smallest (larg-
est) for those with the largest (smallest) frequencies. To
lowest order in the amplitude this would not change the
trend but result in even larger differences in the Fermi-
level shifts.

In total we therefore believe that the softest of the
frozen, zone-center, in-plane, intrachain phonons is the
important one for superconductivity. It should be added

VII. CONCLUSIONS

We have applied the self-consistent, first-principles,
density-functional, full-potential, LMTO method for
helical polymers on a large number of geometries of a sin-
gle planar poly(sulfur nitride) chain. To our knowledge
this is the only detailed investigation of the structural
properties of (SN)„using a parameter-free method. The
main results are as follows.

From the calculations we determined the structure
with the lowest total energy, when restricting ourselves to
structures with the geometry of Fig. 2. The bond angles
were found in good agreement with the experimental
data, but the bond lengths were somewhat overestimated,
and, moreover, the relative order of the lengths of the
bonds almost parallel to the polymer axis and of those in-
tersecting this axis was reversed. We argued the latter to
be largely due to the single-chain approximation used
here.

The single-particle energy bands were found to be very
similar for the experimental and the optimized geometry
except for a general narrowing of those of the latter. As
compared with results of Hartree-Fock calculations, our
results as well as most other density-functional results are
in significantly better agreement with the experimental
results.

In particular for the half-filled ~2 band we found sulfur
d functions to be important. These functions led to a
larger width of this band compared with results of many
other calculations on (SN)„.

The comparison of experimental XPS and UPS data
with our valence bands for the experimental geometry
gave good agreement, and band-to-band transitions as
measured by synchrotron radiation experiments and by
EELS experiments could also be interpreted in good
agreement with the present results.

The density of states at the Fermi level and the
effective mass at the Fermi level were found in reasonable
agreement with the experimental values, although these
quantities are sensitive to interchain interactions.

We found, in general, the frequencies of frozen zone-
center phonons to be larger than the experimentally de-
rived ones. We believe the general explanation for this to
be the lack of interchain couplings in our calculations—
these also leading to a different optimized structure.

Finally, we examined the way the Fermi energy
changed when the various frozen, zone-center, in-plane,
intrachain phonons were excited, thereby obtaining an es-
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timate of the electron-phonon couplings, which are im-
portant for superconductivity. It turned out that the
softest of these phonons —involving the largest displace-
ments of the sulfur atoms perpendicular to the polymer
axis —coupled strongest to the electronic orbitals at the
Fermi level.
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