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Theory of contacts in a two-dimensional electron gas at high magnetic fields
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General properties of a contact in a two-dimensional electron gas (2D EG), where more than one
Landau level is occupied at high magnetic fields, and is quantitatively analyzed on the basis of a
Landauer-Buttiker formalism. When acting as a current source (drain), a contact generally popu-
lates different Landau levels to different degrees. When acting as a voltage probe, a contact does not
generally indicate a mean value of the chemical potentials of different Landau levels. A voltage-
probe contact works also to partially equalize populations of different Landau levels. These proper-
ties, first pointed out qualitatively by Buttiker, are quantitatively analyzed in terms of n parameters
when n Landau levels are occupied in the 2D EG. The analysis is applied to the n =2 case to calcu-
late characteristic resistances of multiprobe samples. Results of recent experiments are explained
on the basis of the analysis. The properties of electrical transport as we11 as the properties of energy
transmission and dissipation in multiprobe samples are quantitatively discussed.

I. INTRODUCTION

Recently approaches to the integral quantum Hall
effect' (IQHE) based on a Landauer-type formalism for
electron transport have been presented by several au-
thors. The descriptions rest on the fact that the
current 6J carried by each Landau level is determined by
the difFerence p' —p of the chemical potentials of the
Landau level on opposite sides of the channel of a
two-dimensional electron gas (2D EG); namely,
b J=(e/h )(p' —p). The total current J carried by n Lan-
dau levels is given by the sum of the contribution of each
Landau level, J=(e/h )g, (p'; —p;), where the ith Lan-
dau level has respective chemical potentials p,

' and p; on
the opposite sides of the channel. In the case when n
Landau levels are equally occupied on respective sides of
the 2D EG channel (p,'=p' and p;=p), the Hall resis-
tance RH=(p' —p)/eJ is quantized to h /(ne ) as usual.
A Landau state at which the energy equals its chemical
potential on one boundary of the 2D EG forms a one-
dimensional (lD) channel located near the boundary of
the 2D EG. This 1D channel is called an edge channel of
the Landau level. A number of transport properties of
the 2E EG system can thus be discussed only by specify-
ing the energy of each edge channel.

Based on a Landauer-type treatment, Buttiker has pro-
vided a general and extremely instructive formalism of
electrical contacts in 2D EG systems at high magnetic
fields. He argued that electrical contacts play crucial
roles in a 2D EG: If a contact is "not ideal, " it populates
difFerent Landau levels to different degrees when acting
as a current source', a nonideal contact does not indicate
a mean energy value of edge channels when it acts as a
voltage probe. A contact is termed "not ideal" or "disor-
dered" if an electron incident on the contact from edge
channels is reAected back into the 2D EG with a finite
probability. Hence, in the absence of an adequate equali-
zation of the populations among difFerent edge channels
on sample boundaries, a deviation of the Hall resistance
R~ from an exact quantization and an anomalous longi-

tudinal resistance R can be expected to appear if the
contacts are disordered. On the other hand, a number of
theoretical treatments except those of Refs. 6—8 have not
addressed possible roles of contacts. Contacts would
not inhuence the observations if interchannel scattering
of electrons is significant enough to rapidly equalize the
occupations of different Landau levels. Hence the prob-
lem of unequal occupation of edge channels as well as the
inAuence of contacts have been assumed to be a specific
issue to be discussed in small devices.

Experimentally, however, the present authors have ob-
served in samples with an interprobe distance of 100 pm
that four-terminal measurements with disordered
voltage-probe contacts exhibit a significant deviation of
R~ and an occurrence of anomalous R„when unequal
occupations of different edge channels are introduced by
a gate-induced backscattering of edge currents. ' Selec-
tive injection of electrons into different edge channels by
disordered current contacts have also been observed sub-
sequently. " These experiments have definitely indicated
that an edge current comprising unequally occupied edge
channels travels a distance in excess of 100 pm without
exhibiting significant equilibration. van Wees et al. have
also reported anomalous integer quantizations of two-
and three-terminal resistances of 2D EG in a small device
having quantum point contacts located at a distance of
1.5 pm from each other and whose property is controlled
by split gates. ' More recently, they have also pointed
out that interchannel scattering of electrons is extremely
weak, ' similarly to our experiments. Hence the effect of
a contact is not an issue to be argued only in small sam-
ples but is a more general problem to be considered in
samples with ordinary sizes. In view of the fact that any
real contacts may be disordered in a strict sense, however
nearly they are ideal, it may also be of definite impor-
tance to figure out a possible deviation of R~ due to the
inhuence of contacts.

This work is an extension of the pioneering work of
Biittiker. ' The aim is to bring the original discussion
into quantitative arguments. For satisfactory treatments

7767 1989 The American Physical Society



7768 S. KOMIYAMA AND H. HIRAI

of a multichannel situation, one needs to explicitly deal
with transmission and reAection probabilities of electrons
among different edge channels and between a contact and
the different edge channels separately, but this has not
been worked out by Buttiker. Here, we apply Biittiker's
formalism of a contact and derive explicit equations
satisfied by disordered contacts. It should be noted that
"disordered contacts" studied here are not particular
contacts with specific properties but can be any kind of
contacts encountered in experiments. An ideal contact
will be understood as a specific limiting example in the
general family of disordered contacts. We will show that,
whatever complexities disordered contacts may have in
actual constructions and to whatever extent they are
different from ideal contacts, they cannot exhibit arbi-
trary properties but obey quite systematic regulations in-
cluding rigorous symmetry relations. Further, it would
be worth mentioning that "disordered contacts" are use-
ful contacts in the sense that they provide information
about the occupations of different Landau levels in the
2D EG but "ideal contacts" are useless in this respect be-
cause they always completely mix up all the Landau lev-
els.

Recently, Woltjer et al. discussed geometry effects on
the magnetotransport of a 2D EG in which finite size of
contacts is important. ' The discussion is classical and
based on the assumption that the current distribution
within a 2D EG is determined by local resistivity tensors.
The problem discussed there may be important in mag-
netic field ranges where the diagonal resistivity p„ in the
2D EG cannot be neglected and the potential distribution
within the 2D EG does inAuence the observation. In this
paper we discuss more general and essential effects of
contacts.

Section II starts from describing a Landauer-Buttiker
formalism of contacts in an n-channel case and derives
basic relations satisfied by contacts. In Sec. III several
characteristic resistances of a multiprobe sample in the
two-channel (n =2) case are calculated as a function of
the parameters of disordered contacts. The magnetic-
field —reverse reciprocity symmetry of the Hall resistance
is derived to show that it is the manifestation of the sym-
metry properties of contacts in the case where the 2D EG
are completely quantized while the contacts are disor-
dered. A contact with a cross gate structure is shown to
be a specific example of disordered contacts, and recent
experimental results are explained. Section IV discusses
quantitatively the origin of finite resistances in the regime
of IQHE. In Sec. V incompatibility between the current
conservation and the charge-density conservation in the
presence of scattering is pointed out. The generality of
the formalism of a contact given in this work is also dis-
cussed.

II. FORMALISM AND ANALYSIS
OF A CONTACT IN n-CHANNEL CASK

When the dispersion of a Landau level E(k) is given in
terms of the wave number k along the direction of a 2D
EG channel, the density of states is given by
p(k) =(1/vr) ~BE/Bk

~

' including spin degeneracy.

The extreme simplicity of the Landauer-type formalism
results from the fact that the density of states given above
is inversely proportional to the group velocity
u(k)=(BE/8k)/fi of electrons. The current bJ carried
by the electrons occupying a Landau level with the k vec-
tors in the range k, & k & k2, where s(k, ) =s& and

k2E(kz)=s2, is b J=e Jk'up(BE/Bk)dk. Here up is either
1

2/h or —2/h depending on the sign of BE/8k. Hence,
AJ=(2e/h)(sz —E, ). When p and p' are the chemical
potentials of the Landau level on opposite boundaries of a
2D EG channel, we carry out the integration over all the
occupied states across the channel and obtain
J =(2e/h )(p' —p) for the current carried by all the elec-
trons in the Landau level. Note that this result is in-
dependent of the detailed profile E(k ) of the Landau level.
In the presence of a random potential both along and
across the 2D EG channel, the bulk Landau states are lo-
calized except at the band center. In this case also, the
conclusion given above is unaltered so long as the bulk
states at the Fermi level are localized.

In the following, we will deal with a general case in
which the distribution of electrons in a Landau level at a
boundary of the 2D EG is not in thermal equilibrium.
The distribution function f(e) generally depends on Lan-
dau levels (edge channels). In such a case, the "chemical
potential" p of a given edge channel has to be determined
from the equation (2e /h )f f d E = (2e /h )(p —c,„).

X

Here, E =c,(k ) is a reference energy well below p such
that the state k„ is occupied with probability 1

[f(ck ) = 1], and the sign of i3E/Bk is the same over the k
range from k„ to k„, where e(k )=p. From the above
equation, we have 1,"fde= f ds or f "fds

(1 f )dE—Since. s can be replaced by —oo, we
E,

define p by

f f(E)dE= f [1—f(e)]dc,

where we limit the integration to one side of a 2D EG
channel. The energy p determined as above is reduced to
the true chemical potential when electrons are in a
thermal equilibrium state described by a Fermi distribu-
tion function. Note that our p given above is generally
different from the energy p at which the number of elec-
trons (occupied states) with E &p* equals the number of
holes (unoccupied states) with E &p*. The latter energy
p*, instead of our p, has been suggested in earlier
work. ' It follows from our definition of p that the
charge density of an edge channel cannot be conserved
when intrachannel inelastic scattering and/or interchan-
nel scattering take place, as will be discussed in Sec. V.

When an electrical contact is attached to a boundary of
a 2D EG, two sets of edge channels are distinguished at
the contact, along one of which electrons are incident on
the contact and along the other of which electrons leave
the contact as shown in Fig. 1(a) for the n =2 case in a
magnetic field pointing out of the page. We will call
brieAy the former set of edge channels "incident chan-
nels" and the latter "outgoing channels. " Following
Biittiker, we regard a contact as consisting of an electron
reservoir and a disordered region. The electron reservoir
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has to be satisfied for each channel i. Here the sum is
made for all the Landau levels (j=0, 1, . . . , n —1). Since
the same must hold in the reversed magnetic field, we
have T;( —8)+QJ. RJ;( —B)=1, which is translated
through the relations in (1) into

T, , T, and R;. Each of these parameters takes a value
from zero to one. They may depend on magnetic field,
but the symmetry relations, T;( B) =T,'( —. B ) and

Ri, (B)=R,&(
—B), have to be satisfied because of mi-

croreversibility; hence, '
T;(B)=T ( —B) and R;(B)=R; (

—8) .

Since an electron incident from the ith edge channel on
the contact is either transmitted to the reservoir to leave
the 2D EG or reappear in the 2D EG being refIected to
one of the outgoing channels,

T,"+gR, =1 .
J

(3)

FIG. 1. A schematic representation of a disordered contact,
consisting of an electron reservoir and a disordered region. (a)
Transmission and reflection probabilities. (b) Characteristic
currents relating to the ith Landau level.

is characterized by a large number of states at the Fermi
energy and by frequent enough inelastic scattering to es-
tablish a chemical potential p, . Connected to the reser-
voir is the disordered region, in which elastic scattering
of electrons takes place and through which electrons are
exchanged between the reservoir and the 2D EG. As ar-
gued by Buttiker, the property of the contact is deter-
mined by the scattering matrix of the disordered region,
which is characterized by the quantities T;, T,.', and
R;, where & or j refers to the ith or jth edge channel and
m refers to a state in the reservoir. Here, T; is the prob-
ability of an electron in the ith incident channel to be
transmitted to a state m in the reservoir and leave the
sample, T is the transmission probability of an electron
in the state m of the reservoir to the ith outgoing chan-
nel, and R; is the reAection probability of an electron in
the ith incident channel into the jth outgoing channel.
Here we assume that the sample is large enough that the
contact does not interact with the edge channels located
on the opposite side of the sample. The problem of a
contact interacting with the edge channels on the oppo-
site side of a sample has been addressed by the work of
Peeters and Akera and Ando. What influences the
property of a contact is not the individual quantities T;
or T but the sums of these quantities over all states in
the reservoir, T,:—g T; and T:gT, as schem—at-
ically shown in Fig. 1(a). We assume that energy depen-
dence of T;, T, and R;. is negligible in a small energy in-
terval near the Fermi energy. The property of a contact
is then characterized by 2n +n parameters consisting of

By adding the difference of Eqs. (2) and (3) over all i, we
have

T= T' (4)

where T=g; T; and T—'=g, T,
' are the total transmis-

sion probabilities. Out of the former 2n +n parameters,
n variables suffice to fully characterize a contact because
of Eqs. (2) and (3). A contact is called ideal if T=n
( T; = T = 1 and R; =0), and is called disordered if T (n.

Let us consider a situation where the ith incident chan-
nel is occupied up to an energy p, , where p, is defined by
the relation given at the beginning of this section. Figure
1(b) may be useful for the argument given below. The
current carried by the ith incident channel is given by
J; "=(2e/h )(p; —p ) considering spin degeneracy. '
Here p is an arbitrary energy assumed to be smaller or
equal to the lowest of all the chemical potentials in any
electron reservoirs attached to the 2D EG. The fraction
of this current which is transmitted to the reservoir and
leaves the sample is J '=(2e/h)T;(p; —p„). On the
other hand, when the chemical potential of the reservoir
is p„ the current injected from the reservoir into the ith
outgoing channel is J,.' ~=(2e/h )T (p, —p„). If the total
net current fed from the reservoir to the 2D EG is J, the
chemical potential p, of the reservoir adjusts itself so that
J=g,. (J ' —J,' '). Solving this equation by use of Eq.
(4), we have

p, =g (T; /T)p;+(h /2Te )J .

The current emitted from the contact into the ith outgo-
ing channel corriprises J,' ' given above and the current
J '=(2e/h )gj R,&(pj. —p ) refiected from incident
channels. On the other hand, if the ith outgoing channel
is occupied up to energy p,', the current carried by this
channel must equal J '=(2e/h)(p'; —p ). Here, the en-
ergy p,

' is defined in the same way as p;. The relation
J(3)+J(4) J(& ) yields



S. KOMIYAMA AND H. HIRAI

is written as

with the help of Eqs. (3)—(5). Equations (5) and (6) are
the central results of this work, from which complete
properties of a contact can be derived.

As shown in Fig. 1(b), there is yet another current J' '.
This current enters the disordered region from the out-
side of the contact passing through the reservoir and is
rejected back to the reservoir to leave the contact again.
The presence of such current due to "external reAection"
is necessary to assure the self-consistency of the present
formalism of a contact. However, we have not men-
tioned this current in the above because it does not affect
net current J and does not inAuence our discussion given
above.

From Eq. (6) we have p' —p=(h/2ne)J by using Eqs.
(2) and (4), where

p—:g p, /n and p'= g p,'/n
i=0 i =0

are the mean values of p; and p,', respectively. Thus the
difference of the mean energies of the edge channels on
both sides of a contact is exactly quantized irrespectively
of a fashion in which the incident and outgoing channels
are occupied. Particularly, the difference is zero when a
contact acts as a voltage probe (J=0). Equation (5) indi-
cates that when a contact acts as a voltage probe (J =0)
the contact senses the ith incident channel selectively
with the weight T; /T. If incident channels are unequally
occupied, it is only when T,. is the same for all i that the
voltage-probe contact indicates a potential (e V, =p, )

equal to p. On the other hand, voltage-probe contacts by
no means have p, outside the energy range of the in-
cident edge channels; namely, minIp;I &p, &maxIp;I.
It follows that, if all incident channels are equally occu-
pied with p; =p, any voltage-probe contact indicates
correctly the energy p of incident channels. Generally, a
voltage-probe contact works to partially equalize the
populations of electrons among different edge channels as
qualitatively pointed out by Buttiker. This is explicitly
described by Eq. (6) with J=0. When a contact serves as
a current source (drain) under the condition of an equal
occupation of incident channels (p; =p), we have, from
Eqs. (6) and (3),

p,'=@+(T,'/T)(h /2e)J .
3 3

o

5—:R, (h/2ne )=(n/T) 1—.
We note that R, (B)=R, ( —8) from Eqs. (1) and (4). The
resistance R, is finite unless the contact is ideal. Let us
denote a four-terminal resistance in a multiprobe sample
by R;J k&

=( V; —VJ )/Jki, where V~
—

V~ represents a volt-
age difference between contacts i and j and current JkI is
transmitted from contact k to contact l. Let contacts 2
and 3 be ideal in Fig. 2(a). The resistance R, of a contact
1 is given by the three-terminal resistance R,2» in Fig.
2(a), where the magnetic field points out of the plane of
the figure. %'e can easily show that the two-terminal
resistance R &2 &z or R &3» deviates from the quantized
value h /(2ne ) by the factor 5; namely,
R,~,q =R,3 i3 =( I+5)(h /2ne ).

Equation (6) does not imply that the distribution func-
tion of the ith outgoing channel, f,'(e), is one for e &p,'.

and zero for s) p,'. Generally, f (E) is finite at least in
the energy range between the highest and lowest energies
of incident channels, minIp;I &s&maxIp; I. This is be-
cause there are finite probabilities, R; and R,-, , in which
electrons are elastically scattered from incident channels
to the outgoing channels. Further, f (s) is finite in the
energy range up to the chemical potential p, of the elec-
tron reservoir. For example, f (s) is T,

' in the range

p ~ c ~ p„ if the distribution function of each incident
edge channel f;(E) is one in the range s &p, =p.

As mentioned above, the distribution function f,'(E) of

This equation indicates that a current-source contact
populates the ith outgoing channel selectively to the de-
gree T,'/T. The equal population of outgoing channels is
achieved only when T,

' is the same for all i. Especially,
Eq. (6) shows that an ideal contact populates outgoing
channels equally up to the energy p+(h /2ne)J, which is
equal to p„ irrespectively of the fashion in which the in-
cident channels are occupied.

When incident channels are equally occupied (p, =p),
it is convenient to define a characteristic resistance of a
contact by R, =(p, —p')/eJ and to represent R, by the
dimensionless quantity 5=R, /(h/2ne ). Using Eq. (7)
and noting that p, =@+(h /2Te)J from Eq. (5), R, or 5

2 DEG

(b)
I ~

Gate

FICx. 2. (a) A sample with Hall bar geometry. (b) A specific
example of a disordered contact, in which a gate produces a
controllable reAection of di6'erent Landau levels.
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III. TWQ-CHANNEL CASK

Let us consider a few important examples in some de-
tail under the two-channel condition (n =2). The two-
channel case is simplest to treat theoretically and has so
far been the situation most extensively studied experimen-
tally. ' Equations (5) and (6) are rewritten into con-
venient forms as

p, =p+(a/2)(po —p&)+(I+5)(h /4e)J (9)

each edge channel is not an equilibrium Fermi distribu-
tion function. The intrachannel nonequilibrium distribu-
tion will be relaxed through intrachannel inelastic
scattering. Secondly, f (c, ) can differ for different chan-
nels. This interchannel nonequilibrium distribution will
be relaxed through interchannel elastic and/or inelastic
scatterings. Experiments on GaAs-Al„Gai As hetero-
structure devices show that the interchannel relaxation is
unexpectedly weak, such that nonequilibrium populations
of different edge channels do not equilibrate over a dis-
tance of order 100 pm. ' "" However, these experi-
ments do not provide evidence that the phase-coherence
length is of comparable size. Intrachannel inelastic pro-
cesses, probably due to electron-electron interaction, may
be efficient to randomize the phase of electrons. The in-
trachannel scattering, however, does not cause observable
effects in the experiments so long as the scattering ma-
trices describing the contacts are independent of energy.

and

5(B)=5( —B)

are derived from Eqs. (1) and (4). These parameters are
not completely independent of each other. For instance,
we can easily show that the amplitudes of a and y are
limited to 5. When a and 6 are given, the maximum
value of P is limited to (5+a )/(5+1) corresponding to
the case when Ro, =R,O=O. On the other hand, I3=0
(perfect equalization) is always possible even when the
rest parameters o., y, and 6 are finite, if R,o=ROO and
Roi =R Ii.

Let us consider a sample shown in Fig. 2(a), for which
we assume only contact 2 to be ideal. We specify the en-
ergy of the ith channel incident on contact k by p;k, the
energy of the ith channel leaving contact k by p,'.k, and
the chemical potential of the reservoir of contact k by
p,k. Let us denote the parameters a, /3, y, and 5 for con-
tact k by ak, Pk, yk, and 5k, respectively. The energies
of edge channels will partially equalize during the travel
of an edge current from one contact to another contact
due to interchannel mixing processes caused by elastic
and/or inelastic scattering. The effect is equivalent to the
case in which an imaginary voltage-probe contact is at-
tached to the sample boundary. ' Let us denote the pa-
rameter I3 of such virtual contact on the sample boundary
between contacts k and l by I3I,&

or I3Ik. We transmit
current Jz4 from contact 4 to contact 2. Since contact 2
is ideal (p,2=@,3=po4=p, 4), we have

p', =P +(P/2)(po —IJ, )+( I+y)(h /4e )J, (10)
R34 24 R24 24

where the plus and minus signs in Eq. (10) are for i =0
and i =1, respectively. Here,

a —= ( To —TI )/T, y =(To —TI )/T,
p—= 1 2( TOT] +R Io TI +ROI TO )/T

and

5—:(2/T) —1 .

The property of any contacts in the two-channel condi-
tion can be conveniently characterized by parameters a,
P, y, and 5. Parameters a and P vary in the ranges—1 & a & 1 and 0 & P & 1 and describe properties when
the contact serves as a voltage probe (J =0); a indicates
the extent to which a contact selectively probes the ener-
gies of the two edge channels and it is the extent of devia-
tion of p, from p; p represents the degree of the contact
equalizing the populations of edge channels. Parameters
y and 5 vary in the ranges —1 ~ y ~ 1 and 0 ~ 5 and de-
scribe the properties when a contact acts as a current
source (drain); 5:—R, /(h /4e ) is the excess contact resis-
tance; y represents the degree to which the contact selec-
tively populates the two edge channels. Note that an
ideal contact is characterized by a=g=y=5=0. The
symmetry relations

a(B)=y( —B),
P(B)=P( —B),

R 3I 24 ( 1 +a,I3,41 4)(h /4e ) (12)

from Eq. (9). There is a deviation from the quantization
by a factor a,P,4y4. A consideration similar to the above
for opposite magnetic field leads to the resistance

R» z4(
—8)= —(1+a3P34/4)(h /4e ),

which demonstrates that the Hall resistance is not sym-
metric about B. ' Equation (12) shows that the exact
quantization can be obtained irrespectively of the con-
tacts if the interchannel scattering is strong enough to es-
tablish P,4=0. Similarly, it is trivial that a more accurate
quantization is generally obtained if one or more contacts
are indeed attached to the sample edge between contacts
1 and 4. This has been confirmed experimentally in Ref.
11. Equation (12) indicates that the maximum amplitude
of possible deviation is limited to 5&54(h/4e ), since
~a, y4~ is smaller than 5,54 as mentioned earlier. It fol-
lows from Eqs. (11) and (12) that

=(p, 3
—p,4)/eJ24=(1+54)(h /4e )

using p,4=p, 3
—(1+54)(h/4e)Jz4 from Eq. (9). Equa-

tion (10) says that p';4=@,3
—(I+y4)(h/4e)J24 for i =0

and 1 edge channels leaving contact 4. Equation (10) in-
dicates that these energies change to p, , =p, 3—( I+P,4y4)(h /4e) J24 when the electrons reach contact
1. Hence, the Hall resistance R3$ 24 (p 3 p I)/eJ24 is
given by
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R14,24=(4 aÃ14)'4)(h/4e ) . (13)

When the current contacts and the voltage-probe con-
tacts are interchanged at the same time of the field rever-
sal, the following relations are derived:

( +»)("/4 )»
0

from Eq. (10) and

/4 4= (/401+P11)/2+ (a4/314/2)(POI P1 I )

from Eq. (9). Hence we have the resistance

R24 31(
—8)= ( 1 +a41tl, 4y, )(h /4e ) (14)

=8= K

which shows that R3, 34(8) =RQ4 31( —8) since a(B)
=y( —8) and /3(B)=18( —8) in any contact. The field-
reverse reciprocity symmetry of a four-terminal resis-
tance, Rk& „(8)=R „k&(

—8), has been derived from
general arguments without assuming particular proper-
ties of conductors or contacts. ' ' ' The symmetry has
been experimentally observed in different systems. '

We have shown in the above that the reciprocity symme-
try R» 24(8)=R243, (

—8) in the present example is
guaranteed by the symmetry in the properties of contacts.
This symmetry of contacts has recently been observed ex-
perimentally.

Figure 2(b) shows a system comprising an ideal contact
and a cross gate spanning the 2D EG channel connected
to the contact. A gate electrode is insulated from the 2D
EG and produces a potential barrier for electrons when it
is negatively biased with respect to the 2D EG. Samples
with a cross gate have been studied experimentally in
several groups. " Contacts equivalent to the
structure shown in Fig. 2(b) have been used by van Wees
et a/. ' ' In order to demonstrate the usefulness of the
analysis presented in this work, we will show that the
variety of experimental results ' ' can be under-
stood on a common basis. Since the potential barrier un-
derneath the gate causes a reAection of edge currents, the
system as a whole can be regarded as a specific example
of disordered contacts. If the potential induced by the
gate slowly varies everywhere in the 2D EG in such a
way that the potential difference 6 U at a distance of mag-
netic length l=(A/eB)'~ is much smaller than the ener-

gy separation between Landau levels Ace„mixing of
difFerent Landau levels due to scattering at the barrier
may be ignored. This may be probable in the experimen-
tal situation, where a gate electrode is placed at a dis-
tance much larger than the magnetic length l from a 2D
EG. This makes it reasonable to assume the parameters
Ro& and R &o of the complex contact to be zero and hence
T; =T: The property of the contact can be completely
determined merely by To and T&, which are identical to
the transmission probabilities of an electron across the
barrier underneath the gate. As shown in the top of Fig.
3, the parameters To and T& are both unity when the po-
tential barrier height 8 is zero. When the gate is nega-
tively biased, the barrier causes a reAection first in the
first Landau level to reduce T„and the perfect reAection
of the first Landau level ( T, =0) is achieved when
8'=A~, is approached. The barrier does not cause a

l

y (~begat 1 V~)
1

wi~~,
FIG. 3. Characteristics of the disordered contact shown in

Fig. 2(b) in the two-channel case. Transmission probabilities To
and T, , and the parameters a, P, y, and 5 are schematically
shown as a function of negative gate-bias voltage, Vz, with
respect to the 20 EG.

refIection in the zeroth Landau level until the gate is
more strongly biased such that 8'exceeds A'co, to a cer-
tain extent. It follows that To= 1 and T, =0 in a finite
range of Vz. The zeroth Landau level causes perfect
refiection (To=0) when JY=2fico, is approached. It fol-
lows that the parameters, a=y=(TO T, )/(To+T, ),—
/3= 1 —2T0 T, /( To+ T, ), and 5=2/( TO+ T 1 )—1, vary
with VG as shown in the lower half of Fig. 3: a, P, and y
are equal to each other in the entire range of VG,

' they
change their values from zero to one as VG decreases in a
vicinity of O'=%co, /2 and remain one with further de-
creasing VG', 5 is equal to a, P, and y until it departs
from one to increase indefinitely as VG decreases in the
vicinity of 8'=3Aco, &2. The essential features of the con-
tact described above are unafFected by the detailed con-
struction of the contact. The size and the geometrical
shape of the gate, the mobility of the 2D EG, and the
temperature at which the contact is operated, do not
inAuence the essential features: They will affect only de-
tailed features such as the plateau width of 5 in the vicini-
ty of W=Ani, and the detailed line shape of a =p= y =5
versus VG in the vicinity of 8'=%co, /2.

Suppose that contact 4 of the sample shown in Fig. 2(a)
is replaced by the gated contact discussed above. Equa-
tions (11)—(13) indicate that, when R» z4, R34 24 R24 34,
and R,4 24 are measured as a function of VG, they start
from the quantized values R 3] 24 R 34 24 R 24 24
=h /4e, and R &4 24=0, and show plateaus at the values

R3124 (1 +pa, 4)(h/4e ), R34$4 R2424 h/2e, and
R,4&4=(1—a,P,4)(h/4e ), respectively, in the vicinity
of VG giving 8'-A'co, . The resistance R3424 OI R2424 in
the plateau range of V is quantized to h/2e irrespec-
tively of the property of contact 1 but the other resis-
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tances deviate from h/4e by a factor a,p,~. It is also
predicted that R3& 24 shows an anomalously wide plateau
developing over the entire range of VG corresponding to
1 ( W/(A'co, ) (2 while the plateaus of R 32 z4

=R z4 2~ and
R &4 24 are narrower. These features have been clearly ob-
served in experiments. ' ' ' Results reported in Refs.
21 and 22 correspond to the specific case where either e

&

or p&4 is nearly zero. When contacts 1 and 4 are both
replaced by the gated contacts, and if p,4=1, the resis-
tances R3$ 24 R3424 R2424 and R,424 are quantized to
h /2e, h /2e, and 0 for the gate voltages of the contacts
both corresponding to 8'-Ace, . This configuration has
been studied in Ref. 12.

IV. TRANSMISSION AND DISSIPATION OF ENERGY

When current J is passed through a conductor from a
reservoir of chemical potential p, to another reservoir of
chemical potential p,', energy has to be fed into the sys-
tem with the rate P=(p, —p, ~)J/e. In our situation
where the 2D EG is in a dissipationless state, it is in-
teresting to ask where and how the energy can be dissi-
pated. Buttiker has argued that the quantized Hall resis-
tance R~=h/(2ne ) is a "contact resistance" in the
sense that the energy dissipation occurs totally in the con-
tacts. He further argued that the dissipation totally
occurs in the current sink but does not occur at all in the
current source if the contacts are ideal. When there are
unequal occupations in edge channels, energy dissipation
occurs also in voltage-probe contacts. These problems
need a quantitative examination. Let us take the sample
shown in Fig. 2(a), where we assume n Landau levels are
occupied. Let contacts 4 and 2 be a current source and a
current sink, respectively (p,4)p, z). Suppose contact 4
is disordered and the other contacts are ideal. Let con-
tact 4 be characterized by 5 (R, ), T,', and T=g, T,', etc. — .

We need a total power

P, =(p, 4 p,2)J/e =(h—/2Te )J

to transmit current J from contact 4 to contact 2 since
p,4=p, 2+(h/2Te)J from Eq. (5). We will consider the
problem at absolute zero temperature. The results are
the same also when considered at finite temperatures.
The Landau states with energies c. ~p, z are completely
occupied, and the energy Auxes carried by those electrons
with c. ~p, 2 on the lower and the upper boundaries of the
sample cancel each other. The net energy Aux emitted
from contact 4 into the ith edge channel is given by

P, =f (8 p, 2)Up. f; dE . —
c2

Here, U;(s), p;(s), and f; (E) are, respectively, the velocity
of electrons, the density of states, and the distribution
function of the ith edge channel on the upper boundary
of the sample. Using the relation u, p; =2/h, we have

P; =(2/h ) J (E—p,2)f; dE .
c2

Here, f;(s)=T for the energy interval of p,z(s(p, 4
and f;(E)=0 for p,4(s. Hence,

P; =T (p, 4 p—,2) /h =(T,.'/T )(h/4e )J

The total net Aux emitted from contact 4 is
P' '=g; P; =(h /4Te )J . This (lux is exactly half of the
total power necessary to drive the system,
P, =(h/2Te )J . The other half of the total power,
P, —P' '=(h/4Te )J, has been dissipated in the elec-
tron reservoir of current-source contact 4. This is be-
cause electrons with energies c. &p,4 are extracted from
the reservoir of contact 4, where the chemical potential is

p, 4. The holes so created in the reservoir have to be
refilled with electrons through inelastic scattering to
maintain equilibrium. When the energy Aux emitted
from contact 4 reaches voltage-probe contact 1, complete
equilibration of electrons takes place so that the distribu-
tion function changes to f;(E)= 1 for E (p, &

and f;(E)=0
for E)p, &, where p„=p,~+(h/2ne)J. Thus, from Eq.
(15), contact 1 remits energy flux P'"=(h /4ne2)J Th.is
amount of energy Aux P'" is fed to the electron reservoir
of contact 2 and dissipated there through inelastic
scattering. The difterence between P' ' and P"', which is
equal to

bP=(T ' n'—)(h/4e )J =5(h/4ne )J =R,J /2,
is dissipated partially in the electron reservoir of voltage-
probe contact l and partially on the sample boundary be-
tween contacts 4 and 1, depending on the extent of the
sample edge equilibrating the energies of edge channels.
Thus, when there is nonequilibrium distribution of elec-
trons in edge channels, a net energy flux Aows into the
voltage-probe contact to be dissipated there. This is be-
cause, whereas net current Aow into the contact is zero,
electrons with energies c)p, &

are fed into the reservoir
and electrons with c. (p, &

are extracted from the reser-
voir. It is only when incident edge channels are com-
pletely occupied up to p„ that the net energy Aow into
the voltage-probe contact is absent.

We have needed additional power

P, —(h/2ne )J =5(h/2ne )J =R,J
to drive the disordered contact. Half of it, 5(h /4ne )J,
has been dissipated within the reservoir of contact 4 to
create partial distributions in edge channels, and the oth-
er half has been transferred to the 2D EG in the form of
the partial distributions.

V. DISCUSSION

It is sometimes stated in literature based on a
Landauer-type approach that edge Landau states carry
the current but bulk Landau states in the interior region
of the 2D EG do not contribute to the current. ' '

However, as we noted at the beginning of Sec. II, the
basic equation J=(2e/h) g, (p,

' —p;) used in the ap-
proach is independent of a detailed profile of the disper-
sion s(k) of a Landau level. In other words the validity
of the treatment is independent of whether or not the
group velocity of electrons in the interior region of the
2D ECy channel is vanishing. In the regime of IQHE, the
bulk Landau states at the Fermi level are localized and
do not contribute to the net current. However, the com-
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piete bulk states below the Fermi level, as a whole, can
carry a net current. The problem of how the local
current, or the local electric field, is distributed in a 2D
EG channel under a given condition of a total current be-
ing transmitted has been studied theoretically from
several different approaches by assuming a system at ab-
solute zero temperature, and a variety of predictions have
been derived. Roughly described, the current is
strongly confined to the vicinity of the boundaries of a
2D EG in the approaches applied by Heinonen and Tay-
lor and Johnston and Schweitzer, while the current is
carried essentially by bulk Landau states in the ap-
proaches of MacDonald et al. 25 Ono and Ohtsukj, and
Gudmundsson et al. Another important aspect is that
experiments are made at low, but not absolute zero, tem-
peratures. This implies that energy loss of real 2D EG
systems can never be zero; however, it is small. A finite
loss works to uniformly distribute the current across the
sample, as pointed out by Thouless. The possibility of
an extremely small (but finite) loss of a real system being
important in the determination of a real current distribu-
tion has been completely disregarded in the existing
theoretical studies. Experimentally, an accurate quanti-
zation of the Hall resistance is established with a total
current magnitude corresponding to a chemical potential
difference between the sample boundaries much larger
than the Landau level spacing; i.e., p' —p))Acu, . ' It
appears to the present authors to be quite reasonable to
expect that a major portion of the current is being carried
by bulk Landau states, at least, in such a condition. We
emphasize again that all the discussion given in the
present work is completely independent of the unsettled
problem of how local current is distributed in the 2D EG.

We have noted the relation p=p' from Eq. (6) for a
contact acting as a voltage probe. This relation, which
was first derived by Buttiker, says that the mean energy
value p of edge channels cannot change when the edge
channels are subject to any kind of scattering (interchan-
nel or intrachannel scattering, and elastic or inelastic
scattering) except for the scattering into edge channels on
the opposite side of the sample. This is a direct conse-
quence of current conservation. On the other hand, we
should note that the velocity v; ( E ) of an electron (or the
density of states) in an edge channel i with energy c, is
generally dependent on channel i and varies with energy
c. On this basis we can consider a transient phenomenon
in the following "gedanken" experiment. Imagine
switching on a certain scattering mechanism at a certain
moment at some location of a sample boundary. Wheth-
er the scattering is interchannel or intrachannel, it fol-
lows from the dependence of v, (E) on i or on E that the
magnitude of the current leaving the scattering region is
generally altered immediately after the onset of the
scattering mechanism. The unbalance between the
currents on the opposite sides of the scattering region re-
sults in a piling up of charge (whether positive or nega-
tive) on the side leaving the scattering region. The piling
up lasts until the relation p=p' is finally recovered so as
to balance the currents on both sides of the scattering re-
gion. Thus what is conserved in a steady state is not the
charge density but the current. (Note that "charge" must

D D 2DEG

FIG. 4. An example of a generalized disordered contact con-
sisting of two sets of electron reservoirs and disordered regions.

be conserved in any occasion but "charge density" can be
altered. ) Streda et al. derived a different relation from
Buttiker's and ours by assuming that the carrier density
is unalterable despite the scattering, and their relation
has been subsequently used by Sivan et a/. That the so-
derived relation does not agree with experimental results
has been pointed out by Haug et al. '

It may be interesting to ask the question to which ex-
tent the present formalism of a contact is general.
Buttiker s original formalism, adopted in this work, as-
sumes that a contact is divided into two regions, one of
which is characterized by strong enough inelastic scatter-
ing to establish a chemical potential (electron reservoir)
and the other of which is characterized by the presence of
elastic scattering and the absence of inelastic scattering
(disordered region). This assumption appears to be a
reasonable approximation of any realistic situation, but
may not always be rigorously justified. There may be
such contacts in which the regions of inelastic and elastic
scattering cannot be clearly separated. To simplify the
problem, we can imagine a case when a contact described
by our formalism is connected to an external resistor R.
If we regard the whole thing as a new contact, it will be
most simply represented as a contact consisting of two
disordered regions D and D', and two electron reservoirs
of chemical potentials p, and p,

' as shown in Fig. 4.
Since the "external resistor" can be embedded in the con-
tact, we may not be aware of whether or not a given con-
tact is of such a complex structure. Suppose our contact
is of the type shown in Fig. 4. We measure p„analyze
the property of the contact incorrectly assuming that the
contact is of the simpler type shown in Fig. 1, and derive
parameter values, T "', T,.'"', and R "'. However, this
error is not actually harmful. A contact described by
T,'"', T "', and R "' in the present formalism and the
real complex contact are different only in that partial dis-
tributions of electrons in each of the Landau levels (intro-
duced either by unequally occupied edge channels being
incident on the contact or by a given current injection
from the contacts) are different. Since the anomalous dis-
tribution within each of the Landau levels does not make
a difference in the observations as noted earlier, the error
does not cause observable effects in the transport proper-
ties unless the scattering matrices in the disordered re-
gions depend on the energy. Hence no existing contacts
may exhibit properties different from those described in
this work, so long as the transport properties being stud-
ied are in the linear regime.

The disordered region of a contact may be character-
ized by an arbitrary combination of impurity potentials
and tunneling barriers. Theoretically, different Landau
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levels can have arbitrary values for the transmission
probabilities T; or T . In realistic contacts, however, we
suppose that T; (T ) should be larger for lower Landau
levels. This is because the impurity potentials of a long
force range tend to cause more reAection in higher Lan-
dau levels, similarly to the simplest case of the gate-bias-
induced potential barrier discussed in this work and in
Refs. 10, 12, 21, and 22. Tunneling barriers wi11 also
yield more reAection in higher Landau levels. The irn-
purity potentials of a short force range will work to cause
mixing of Landau levels, diminishing the difference of T,.
among different Landau levels. The character of the
disordered contacts observed in the experiments is con-
sistent with our conjecture here. ' '"

VI. SUMMARY

Properties of a contact in a 2D EG at high magnetic
fields have been analyzed in terms of transmission proba-
bilities between the electron reservoir in the contact and

the Landau levels in the 2D EG and reAection probabili-
ties among different Landau levels, by utilizing a
Landauer-type resistance formula originally applied by
Buttiker to the analysis of contacts. General properties
of a contact in the case when n Landau levels are occu-
pied in the 2D EG (n-channel case) have been explicitly
derived in terms of independent variables of number n

representing the transmission and reAection probabilities.
The analysis has been applied to the two-channel case to
calculate characteristic resistances of multiprobe sam-
ples. The magnetic-field —reverse reciprocity relation of
the Hall resistance, Rk& m„(B)=R~„kt( —B), has been ex
plicitly derived to show that the general validity of the re-
lation in the particular system considered is guaranteed
by the symmetry properties of contacts when they serve
as voltage-probe contacts and when they serve as
current-source contacts. Results of recent experiments
made on samples with a cross gate or split gates have
been explained on the basis of the present analysis of con-
tacts. The formalism of a contact is supposed to be gen-
eral and applicable to any existing systems.
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