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Intrasubband and intersubband plasmons in a semi-infinite Fibonacci HgTe/CdTe superlattice
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An equivalent —transfer-matrix theory is proposed by introducing the formal structure factors to
study the intrasubband and intersubband plasmons in a semi-infinite Fibonacci HgTe/CdTe super-
lattice. Taking into account the hybridization between the interface states and the heavy-hole-like
states, we find several new surface-plasmon branches. In such a system, the bulk- and the surface-
plasmon spectra will exhibit many different features when the surface layer of the superlattice is
selected at different positions. It may provide us with useful information about the selection of the
surface-plasmon branch that we need for surface-wave device application.

I. INTRODUCTION

There has been a great deal of recent theoretical in-
terest in the properties of layered electron gas' (LEG) and
one-dimensional ' ( 1D) quasiperiodic systems. These
systems show critical states in a way similar to electrons.
Critical states exist precisely at the mobility edge. A
more significant development for Fibonacci systems is the
recent fabrication by Merlin et al. of semiconductor Fi-
bonacci superlattices. On the other hand, Huang and
Zhou ' have proposed the theory of collective excitations
in Hg Te/CdTe superlattices.

A HgTe/CdTe superlattice is an attractive material to
work with, consisting of both a semimetal and a wide-
band-gap semiconductor. The I 6-I 8 energy bands in
HgTe layers are inverted relative to those in CdTe layers
to give the zero band gap. The computations of the band
structure of the HgTe/CdTe superlattice given by plane-
wave method (PWM), linear combination of atomic or-
bitals (LCAO), ' and envelope-function approxima-
tion' '" (EFA) methods agree well and show that the
electronlike, heavy-hole-like, and light-hole-like states
are, as expected, confined very well in HgTe and CdTe
layers. ' ' On the other hand, I 8 energy bands in both
HgTe and CdTe layers possess the effective masses with
opposite signs on each side of the interface, respectively,
which directly leads to the formation of a quasi-interface
state with its energy lying in the range 0 & E; & A, where
A= V~ is the separation of I 8 energy bands in both Hg Te
and CdTe layers. Clearly, the electrons in HgTe layers
will be in the quasi-interface states localized near the in-
terface with the energy E; &A. Moreover, light holes in
CdTe layers will also be in the anomalous quasi-interface
states localized near the interface, owing to the negative
effective mass of the light hole. All of these results are as
a consequence of matching the bulk states belonging to
the conduction band in Hg Te with those belonging to the

light-hole valence band in CdTe. This match is only
favorable when the bulk states to be connected are made
of atomic orbitals of the same symmetry type and the
effective masses on either side of the interface have oppo-
site signs. As a collective excitation model, we can treat
the interface states in HgTe and CdTe layers separately,
as two different kinds of quasiparticles with the effective
masses ME and Mi H, just as the model given by Lin-Liu
and Sham

It is proved that the thickness of materials Hg Te and
CdTe will mainly determine the width of the band gap
and subbands, respectively. We assume that the layers of
Hg Te and CdTe have the same thickness d /2 and that d
is smaller than the critical thickness so that the superlat-
tice will behave like a semiconductor. Besides, we con-
sider the motion of quasiparticles in the layers to be corn-
pletely free. If d is not too small, we can neglect the tun-
neling effects coming from the overlap of interface states
localized at adjacent interfacts in the quantum well.
Indeed, when the magnitude of the planar wave vector k~~

is not very small, the hybridization between the interface
states and the heavy-hole-like states will affect the funda-
mental gap of the material, which contributes a great deal
to the transport and the optical absorption. ' ' The
band nonparabolicity shows a small effect on the lower
subband excitations within a quantum well. '" We have
partly taken this effect into consideration by using wave
functions with a Gnite width of localization at interfaces,
and including the coupling between the interface states
and heavy-hole-like states. If we confine the study of col-
lective excitation to the case in which the transitions of
single particle are limited to the neighborhood of the I
point of energy bands in the k space, we can neglect the
hybridization in the band structure. ' However, this hy-
bridization can be taken into account by using a two-
band tight-binding model.

Conspicuous by its absence in the literature, however,
is a calculation of the intrasubband and intersubband
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plasmons associated with the interface states in Fibonacci
HgTe/CdTe superlattice and intersubband plasmons in
general type-I and type-II Fibonacci superlattices. The
goal of this paper is to give the calculation of plasmon ex-
citations in the semi-infinite Fibonacci HgTe/CdTe su-
perlattice, where a rich spectrum is expected. The paper
is organized as follows. In Sec. II, the equivalent-
transfer-matrix theory is presented, which can also be
used to study the intersubband plasmons in general type-I
and type-II Fibonacci superlattices. In Sec. III, the nu-
merical calculations of bulk and surface intrasubband
plasmons, as two examples for comparison, have been
given in the periodic and quasiperiodic HgTe/CdTe su-
perlattices, respectively. Concluding remarks and a dis-
cussion are contained in Sec. IV.

II. THE EQUIVALENT —TRANSFER-MATRIX
THEGRY

Let us consider F minicells, shown in Fig. 1(a), where
F is a Fibonacci number, i.e., F satis6es the recursion
relation F + &

=F +F &, for m ~ 1, with Fo = 1, and
FI=1. The widths of minicell A and minicell B are
chosen as d„and d~, respectively. In the mth generation
there are F elements of the quasi-one-dimensional
"string". ' This includes F

&
minicells A and F

minicells B, e.g., the second generation corresponds to

T ~ = T LH(d~ l4) T HH(db /4) T ~(d~/2),

with T E, T LH, and T HH, in turn, given by

(2)

the string AB, and the third generation corresponds to
the string AB A. The ratio of the number of minicells A
to the number of minicells B approaches the golden mean
r=(1+v 5)/2. The unit cell of the superlattice is then
composed of F elements of the string. In contrast with
the general Fibonacci model' in which the bulk-plasmon
spectrum remains unchanged, although the surface-
plasmon spectrum may exhibit many different features,
the minicell introduced here will produce three different
features of the bulk-plgsmon spectra.

Considering the existence of the distribution of wave
functions associated with interface states and bound
heavy-hole-like states within a quantum well, we general-
ize the simpler transfer matrix given by Hawrylak et al. '

referred to the ideal charged layer by introducing the for-
mal structure factors SE, SzH, and SHH for electronlike,
light-hole-like, and heavy-hole-like states, respectively.
Thus the charged interface and slab within the quantum
well can be equivalently regarded as an "ideal" charged
layer again. %ithout repeating a lengthy derivation simi-
lar to that of Ref. 1, we directly write down the
equivalent transfer matrices for minicell A and minicell

8, respectively:

T ~ = T LH(d„/4)T HH(d„ l4)T E(d~ l2), (1)

[1+SE '(d)]exp( qd/2)—
—Sz '(d )exp( —qd /2)

SE '(d )exp(qd l2)

[1—SE '(d )]exp(qd /2)

T LH(d/4) = [1+StH(d)]exp( —qd/4) SLH(d)exp(qd/4)

SLH~(d)exp( qd/4) [1 SLH(d)]exp(qd/4) (4)

[1+SHH (d ) ]exp( —qd /4)
—

SHH (d)exp( —qd /4)

SHH(d)exp(qd /4)

[1—SHH (d) ]exp(qd /4)

where the formal structure factors SE, SLH, and SHH are
the relevant variables. The matrices TE, TLH, THH,
T z, and T ~ are 2X2 matrices with unit determinant.
Note that the string of matrices IT „(T~)I is a Fi-
bonacci sequence of matrices of T z and T z

T „T~T „TzT „Tz T zT „I. Equations (1) and
(2) are conveniently studied by the rational approxima-
tion method. A rational approximation m to a Fibonacci
sequence consists of a periodic sequence of unitcells con-
taining F matrices T„and Tz corresponding to the
different minicells A and 8 in the mth generation of the
Fibonacci sequence. The bands consist of those values of
the formal structure factors SE, SIH, and SHH for which
the trace of the equivalent transfer matrix across the unit
cell is between —2 and +2. For the sake of comparison
with the results given by the self-consistent-field (SCF)

theory, ' we let m=1, corresponding to the periodic
Hg Te/CdTe superlattice, and neglect the contribution of
the heavy-hole-like states for the time being, then we get

T d
= T tH(d /2)T x(d /2) .

The rational approximation will give

1 —(S~ '+SLH)S+S~ 'S„'[S —(S') ]=0
where S and S' are the screening functions given by

S =sinh(qd)/[cosh(qd ) cos(q, d )]-,
S'=2 sinh(qd /2)cos(q, d /2)/[cosh(qd )—cos(q, d )] .

On the other hand, the SCF theory ' gives
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1 (Xz+XLH)[8 —2XzXt HB( A —8 )/(Xz+XLH)]S

+XzXLH[S —(S') 18 —( & —8 )[(Xz+XLH)—XzX„H( & —8 )]=0, (10)

where yE and yLH stand for the susceptibilities of electron and light hole, respectively, and the symbols A, B are defined
as the screened Coulomb interaction, ' which will be explicitly written out below. Comparing Eq. (7) with Eq. (10), we
can easily get

Sz ' =Xz8 /[1 —Xz( A —8 )],
SLH =XLHB/[1 —

XLH( A 8 )] .

From Eqs. (11) and (12) we easily know that

SHH =XHH6/[1 —
XHH( V—6)],

(12)

(13)

where the symbols V and G are similar to A and 8, and will be also explicitly written out below. It is really a quite in-
tuitive result, i.e., if we replace SHH in Eq. (13) by S in Eq. (8), then we can obtain the collective excitation spectrum in
a general type-I superlat tice.

For the intrasubband mode, we have '

and

Xz(q, co)=nzq /mzco (2me Ie,q),
XLH(q co) nLHq ImLHct7 (2rre le, q )

XHH(q ~)=nHHq ImHH~ (2~

2 =
I 4[2+exp( 131/2)]l—[d+2 sinh(Pd /2)IP] I

X (2q/(q —4P )[sinh(Pd /2) IP+ sinh(Pd )/4P+d /4]+ [4+2 sinh(Pd/2)/P]/q

—
I exp[ —(2P+ q )d l4] I(2P+ q ) —exp[(2P —

q )d l4] I(213 q)—
+2 exp( —qd /4) /qj I sinh[(2P+q )d /4]/(2P+q )+sinh[(2P —

q )d /4]/(2P —
q )

+2sinh(qd /4)/q I ),

(14a)

(14b)

(14c)

(15a)

8 =
I 4[2+exp( —Pd /2) ]I[d +2 sinh(Pd /2 )IP] J

X I sinh[(2P+q )d /4]/(2P+q )+sinh[(2P —
q )d /4]/(2P —

q )+2 sinh(qd /4)/q I (15b)

(15c)

Here we have introduced the 5-function approximation in Eq. (15c).
For the intersubband mode, on the other hand, we have '

and

XE(q ~) zQ10 @/co Ql0)(27M /E

XtH(q, co)=[2nLHQ, O/A'(co —Q, o)](2me /e, q),
XHH(q, co)=I2nHHQf~/Pi[co —(Qfz) ]I(2ne /e, q),

(16a)

(16b)

(16c)

3 =
t 8/[4sinh (Pd/2)/P —d ]I(q[sinh(Pd ) Pd]I[2P(q 413—))—

+ I exp[ (2P+ q )d /4]/(2P—+q )+exp[(2P —
q )d l4] I(2P q)I—

X [sinh[(2P+q )d l4]I(2P+q )—sinh[(2P —
q )d l4]I(2P q)) ), —

8 =
t
—8/[4 sinh (Pd /2) IP —d ] I f sinh[(2P —

q )1/4]I(2P q) —sinh[(2P+ q )d—/4]/(2P+q ) I

V=(qd/2)I 1/[(qd/2) +m ]+1/[(qd/2) +9m ]]
(qd) cosh(qd /4)ex—p( qd/4) [1/[(qd/2) —+m. ] 1/[(qd/2) +9m ]I-

6= —(qd ) cosh (qd /4)I 1/[(qd /2) +~ ]—1 l[(qd/2) +9' ]I

(17a)

(17b)

(17c)

(17d)
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where we have assumed LHH =d /2 in Eq. (17d) for con-
venience.

Following Ref. 1, we define the 2 X 2 matrix M as
FM =g, =,T;, where T, is a matrix T „or Ts in the

Fibonacci sequence, and X =Tr(M )/2; then the
bulk-plasmon mode in the Fibonacci HgTe/CdTe super-
lattice can be written as'

X =Tr(M ) /2=cos(q, D ),

LR

Ninjce))
+

:
HgTe

d/2

where D is the length, of the unit cell composed of I'
elements of the string. Furthermore, if we use the bound-
ary condition for the electric potential at the surface lay-
er, then the surface plasmon mode is given by

Unit ce)l
F =5

S,

Ninice)1 A Ninicel) Q t1inicell A

S„
I

(e, +En 2e, S—„')/{e,—e 0+2@,S„')

+ [(M }»+exp( ~D —}]/(M ),2=0, (19)

where

kD =ln[~X ~+( ~X (
—1) ] (20)

and S„'stands for the formal structure factor referred to
the di8'erent states in the surface layer, i.e., SE ', SLH, or—1SH

FIG. 1. (a) The minicell of the HgTe/CdTe superlattice. The
symbols E, I.H, and HH stand for the electron, light-hole, and
heavy-hole layers, respectively. (b) The unit cell of the Fibonac-
ci HgTe/CdTe superlattice, in which the Fibonacci number I
is chosen as F3 =3. d„and dz are the widths of the minice11 3
and minicell 8, respectively.

III. NUMERICAL RESULTS

We now turn to the plasmon spectrum obtained using
Eqs. (18) and (19). For the sake of convenience, we only
give, as an example, the intrasubband plasmon mode in
both the periodic superlattice and the Fibonacci superlat-
tice for comparison. It is evident that the intersubband
plasrnon mode can be given in a similar way, and it will
provide no fundamental difBculty to calculate its spec-
trum. Moreover, we let m =3 here for simplifying the
calculation. The unit cell composed of three elements of
the string is shown in Fig. 1(b). Figure 2 presents the in-
trasubband plasmon spectrum in the periodic
Hg Te/CdTe superlattice. From it we find that the
optical-plasmon mode associated with the heavy-hole-like
state is suppressed, due to the Coulomb interaction be-
tween the interface states and the bound heavy-hole-like
states within the same quantum well. Besides, we also
find several attractive surface-plasmon branches which
degenerate with two difFerent bulk-plasmon bands in the
weak-screening and strong-screening regions, respective-
ly, in comparison with those in type-I and type-II super-
lattices. In Fig. 3, the intrasubband plasmon spectrum in
the Fibonacci Hg Te/CdTe superlattice is shown, in
which the golden-mean ratio d z /ds =(~5+ 1)/2 =
1.618 is chosen. From it we 6nd that each bulk-plasmon
branch is split into three (F3 =3) branches in comparison
with those in Fig. 2. Here we do not show the surface-
plasmon branches, since some of them are too close to

2.0

FIG. 2. The plasmon spectrum of the periodic HgTe/CdTe
superlattice. The parameters are chosen as (O,hh/Q~)'= —,',
(Q~l, /Q~, ) =

—,', , and Pd =7.742. The symbols Q~„Qpl„and
Qhh are three-dimensional plasma frequencies of the electron,
light hole, and heavy hole, respectively. p is the localization
length of the interface state.
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cells, corresponding to whether the first charged layer in
Fig. 1(a) is selected as an electron, light-hole, or heavy-
hole layer, respectively. It leads to the three different
features of the bulk-plasmon spectra. On the other hand,
there are F different kinds of unit cells composed of I'
elements of the string for a given minicell, corresponding
to whether the first layer is selected at
Si,S~,S3 S4, . . . ,S, respectively. This leads to the
different features of the surface-plasmon spectra, while
the bulk-plasmon spectrum remains the same.

IV. DISCUSSION

0.5

From the studies above, we know that, in general,
there will be three different features of the bulk-plasmon
spectra, and for each given bulk-plasmon spectrum, there
still exist I' different features of the surface-plasmon
spectra; thus we will in total get 3F difFerent features of
the surface-plasmon spectra in such a Fibonacci system.

The electron-phonon coupling can be easily taken into
account by replacing the dielectric constant e, with a
frequency-dependent one e, ( co ),

=e, (co) =@~[(co —coLo)/(co —coTo)] .

0.0 2.0 4.0

the bulk-plasmon bands to be clearly shown. We should
emphasize' that as m ~~ we will see an infinite number
of very narrow bands which have a typical self-similar
Cantor-set structure. From the theoretical analysis, we
easily know that there are three different kinds of mini-

FIG. 3. The plasmon spectrum of the Fibonacci HgTe/CdTe
superlattice. The parameters are chosen as (Qz&/A~, ) =

—,',
(Q~q/Q~, ) =

&'~, dz/ds=1. 618, and Pd&=0. 7742. The sym-
bols Q~„A~I„Q&z, and P have the same meaning as in Fig. 2.

In conclusion, an equivalent —transfer-matrix theory
has taken into account the distribution of wave functions
within the quantum well, and can also be used to calcu-
late the intersubband plasmon modes in general Fibonac-
ci type-I and type-II superlattices. We expect that this
will provide us with useful information about the selec-
tion of the surface-plasmon branch in which we are in-
terested for surface-wave device application.

ACKNOWLEDGMENTS

This work was supported in part by the Chinese Na-
tional Science Foun. dation through Grants No. 1860723
and No. 8688708, and in part by the Chinese Higher
Education Foundation through Grant No. 2-1987.

'P. Hawrylak, G. Eliasson, and J. J. Quinn, Phys. Rev. B 36,
6501 (1987).

~S. Das Sarma, A. Kobayashi, and R. E. Prange, Phys. Rev.
Lett. 56, 1280 (1986);Phys. Rev. B 34, 5309 (1986).

3P. Hawrylak and J. J. Quinn, Phys. Rev. Lett. 57, 380 (1986).
4R. Merlin, K. Bajema, R. Clarke, F. Y. Juang, and P. K. Bhat-

tacharya, Phys. Rev. Lett. 55, 1768 (1985); J. Todd, R. Mer-
lin, R. Clarke, K. M. Mohanty, and J. D. Axe, ibid. 57, 1157
(1986)~

5Dan-hong Huang and Shi-xun Zhou, Phys. Rev. B 38, 13061
(1988).

Dan-hong Huang and Shi-xun Zhou, Phys. Rev. B 38, 13069
(1988).

7D. Mukherji and B.R. Nag, Phys. Rev. B 12, 4338 (1957).
~Y.-C. Chang, J. N. Schulman, G. Bastard, Y. Guldner, and M.

Voos, Phys. Rev. B 31, 2557 (1985).
9M. Jaros, A. Zoryk, and D. Ninno, Phys. Rev. B 35, 8277

(1987).
Y. R. Lin-Liu, and L. J. Sham, Phys. Rev. B 32, 5561 (1985).
G. Bastard, Phys. Rev. B 25, 7584 (1982).

'~J. M. Berrior, Y. Guldner, and M. Voos, IEEE J. Quantum
Electron. QK-22, 1793 (1986).

lean-Pierre Faurie, IEEE J. Quantum Electron. QE-22, 1656
(1986).

~4A. Persson and R. M. Cohen, Phys. Rev. B 38, 5568 (1988).


