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Construction of the crystal potential from the quasi-ion approach
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A method for the construction of the crystal potential within the quasi-ion approach is presented
and its relation to the Kohn-Sham effective potential is shown. It is demonstrated for Si how this
procedure can be used to calculate both the electronic band structure and the phonon dispersion
within a simple model for the quasi-ion. Further, the representation of the exchange-correlation-
potential and the band-structure potential is discussed, with nonlocality effects taken into account.

I. INTRODUCTION

Calculations of the electronic band structure of semi-
conductors have had a long history. In earlier work the
(local) empirical pseudopotential method' as well as its
nonlocal extension have. been used to calculate success-
fully the band structures and pseudocharge densities of
diamond- and zinc-blende-structure semiconductors. In
these calculations a few Fourier components (form fac-
tors) of the empirical pseudopotential are used and re-
garded as adjustable parameters. In more recent work,
model potentials for the bare ions, rather than the
screened pseudopotential (or form factors), have been in-
troduced, which were self-consistently screened with the
valence charge. " In the case of Si it was found that
"soft-core" as well as "hard-core" pseudopotentials lead
to energy bands which agree in general with each other.
The soft-core charge density gives a slightly more distort-
ed bond-charge shape. The minimal band gap in Si, how-
ever, is 50% that of germanium, even 100% too small.
One of the major problems in these calculations of band
structures in solids is the treatment of the electron-
electron interaction. The approach to the exchange-
correlation part of the potential is provided by
Hohenberg-Kohn density-functional theory ' (DFT) and
in particular by the Kohn-Sham local-density approxima-
tion (LDA). The single-particle eigenvalues of the
effective one-electron Schrodinger equation as derived by
Kohn and Sham are used to construct the band struc-
tures and there is often a fairly good agreement. Howev-
er, it has been shown that even the exact DFT band
structure suffers from the low —band-gap problem (see,
e.g. , Refs. 10 and 11). In a strict many-body theory the
band-structure energies are the energies of the quasiparti-
cles which have to be calculated from a Schrodinger-type
equation where the exchange-correlation potential of the
Kohn-Sham equation has to be replaced by the self-
energy which is a nonlocal energy-dependent operator.
Calculations within this formalism are very complex. Us-
ing certain approximations for the self-energy (Hedin GW
approximation' ) such calculations have recently been
performed in semiconductors' ' ' ' and corrections to
the DFT band structures have been found.

In the present paper we discuss a method which allows
for both the calculation of the electronic band structure
and the phonon dispersion by a definite model within the
quasi-ion approach recently proposed. ' ' In Sec. II the
quasi-ion method is briefly reviewed and the construction
of the crystal potential is described. The resulting expres-
sion is related to the effective potential of the Kohn-Sham
equation. The subject of Sec. III is the development of a
pragmatic model to approximate the exchange-
correlation contribution to the band-structure potential
established in Sec. II. Finally Sec. IV gives the results for
the electronic band structure and the phonon dispersion
of Si using a simple model for the quasi-ions. The corre-
sponding charge density, crystal potential, and the
exchange-correlation contribution are explicitly displayed
and discussed in real space.

II. CONSTRUCTION OF THE
CRYSTAL POTENTIAL

In the quasi-ion method, ' ' it is assumed that the
electrons follow the motion of the ions adiabatically
(Born-Oppenheimer approximation). This means that
the electrons realize that the nuclei are at rest in their in-
stantaneaus positions and the ions feel the electrons as
charge clouds without internal dynamics. Such a picture
had led in the past to some attempts to describe the elec-
tronic subsystem in a base for the wave functions which
follows the motion of the ions instantaneously.
Mathematically this is achieved by unitary-
transformation techniques which preserve orthonormali-
ty. However, there is no unique prescription how to con-
struct the moving base.

Within the quasi-ion approach the electronic density
p(r) instead of the wave functions is taken as the basic
variable of the system and it is shown that the latter can
be decomposed uniquely into partial densities p (r) or
p (r) which are assigned to the single ions A or ion types
(sublattices) n, respectively. p (r) together with the cor-
responding ion core located at R =R'+R (a, a cell,
and nonprimitive basis index of the crystal) define the
quasi-ion. These objects can be interpreted as the new
composite building blocks ("dressed ions") of the struc-
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ture. They describe that part of the displacement-
induced charge-density variation that rigidly follows the
motion of the ions. The remaining part is due to distor-
tions during that motion. ' ' The partial densities are
defined by investigating the response of the system when
the ions are displaced. Formally this is done by calculat-
ing the changes in the density induced by moving the ions
in a long-wavelength acoustic-phonon mode. As de-
scribed in Ref. 19 this means to use the acoustic sum rule
for determining the charge density. This leads to the re-
sult represented in Fourier space;

p(q+G)= gp (q+G)~p(G)= gp (G) as q~O,

The partial densities are strongly localized objects in
direct space. This has been shown in Refs. 18, 20, and 27
and can also be 'understood on physical grounds. If the
crystal is perturbed by a displacement of the ionic poten-
tial the change in energy is minimized by a rearrange-
ment of the electronic charge. This results in a screening
of the change in the ionic potential and thus to a tenden-
cy to maintain local charge neutrality. In direct space
this mechanism leads to localized objects which consist of
the bare ion plus a fairly well localized distribution of
electronic charge which is constrained by the local
geometry of the surrounding structure.

Thus an expansion of p (r) into a small set of localized
ansatz functions, e.g. , spherical Gaussians, is appropriate,

with the partial density

p (q+G)= g [U~, (q+G)]*J'~,(q+G),= 1

4a

Pi, (q+G) = g D(q+G, q+G') Vi, (q+G'),

Vi(q+G) = —'(q+G) V-(q+G)
4~

U~, (q)= —iq

(4)

p(r)= gp (r)= gp (r —A),
A A

with

1
p (r)= JdV' fdV" QU~ (r —r')D(r', r")

J

X V (r"—A),

q is a vector from the first Brillouin zone and Cx is a
reciprocal-lattice vector. D means the static density-
response function (matrix) and V is the ionic
(pseudo)potential corresponding to an ion of sublattice a.
The quasi-ions can also be represented in direct space:

3/2
Tp

p (r)= g
LM

C„exp[ —y„(r—R„) ] .

V,s(r) = g V(G)e'
Cx

C„, y„, and R„denote the amplitude, decay constant,
and localization center of the pth ansatz Gaussian of ion
type a, respectively.

In Fig. 1 we have reproduced the contour plot of p (r)
in Si as obtained within the simple model discussed in
Ref. 18. A set of three Gaussians centered at an ion and
another three Gaussians centered at each of the four
bonds has been used only. We shall take this model for
p in Sec. IV without any changes for an approximate
description of the crystal potential and the band struc-
ture.

The construction of the crystal potential V,s(r) in
terms of the partial densities follows in an analogous way
as the charge density from its variation when a long-
wavelength acoustic phonon is impressed on the crystal.
The results are similar to those for the density if the
density-response function is replaced by the inverse of the
dielectric function. Thus we obtain

U(, (r —r') = /r —r'/
J

or

p (r)= f dV' VU(r —r').P (r') .
4a

Here the vector field P (r) with components

P~ (r) = Id V' D(r, r') V (r' —A)8

J

has been introduced. This field describes the charge-
density variation at the space point r in response to a unit
displacement of ion A in direction j. It can be decom-
posed into a gradient and a rotational part

P (r)= —Vp (r)+VXW (r) . (1O)

The quasi-ion contribution represents the rigid part of
the density variation while the distortions are given by
the curl of the field W (r).

FIG. 1. Contour plot of the partial density p (r) of Si in the
(0, —1, 1) plane as calculated from Eq. (11). Units in electrons
per cell. The bonds in the plane are indicated by dashed lines
and the ions are indicated by dots.
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with e '=1+vD, D =~@ '=~(1 —u~) (14)

V(G) = lim g g [uI, (q+G)]*1 . 1

V q 0 4'
X g e '(q+G, q+G')

x VI, (q+G')

(with V, the volume of an elementary cell).
Using the relation between the inverse dielectric func-

tion (matrix) e and the density-response function (ma-
trix) '

where

5 E„,[p]
5p(r) 5p(r')

(16)

(E„,[p] exchange-correlation functional of density-
functional theory), we can express Eq. (13) in the follow-
ing form:

v —v vxc

denotes the effective electron-electron interaction which
consists of the Coulomb interaction v and the exchange-
correlation contribution

V(G)= lim, g g [vI (q+G)]* VI (q+G)+u(q+G)P~ (q+G) —g u„,(q+G, q+G")P~ (q+G")1 . 1

Vq 0 4m
A J Qt I

(17)

(q+G)= XD(q+G, q+G ) VI (q+G ) (18)

Equation (17) relates the crystal potential (band-structure
potential) to the vector field P (r) and thus to the density
response of the system. Thus it becomes possible to in-
vestigate the electronic band structure, lattice dynamics,
and the electron-phonon interaction within a certain
model for the quasi-ion. Concerning the exchange-
correlation contribution the same expression v„appears
in the calculation for both the crystal potential and the
density-response function. Physically v „, means an
exchange-correlation interaction that describes the
change of the exchange-correlation potential V„„

5E„,I p]
Vxc(r }

Here the Fourier transform of the vector field P from
Eq. (9) has been introduced, i.e.,

I

which is induced by the variation of the external poten-
tial. In the simple model of Sec. III, v„, will be approxi-
mated in form of a static local-field factor which is used
in the theory of the dielectric function to simulate
exchange-correlation effects in homogeneous systems.
Thus we have found an alternative way to express the
Kohn-Sham equation by coupling the induced change of
the exchange-correlation (XC) potential to the induced
charge-density variation. Furthermore it becomes obvi-
ous how nonlocality effects explicitly enter via v„ the cal-
culation of the band structure; see in addition Eqs. (24)
and (28). The interrelation with the usual version of the
Kohn-Sham equation is discussed below.

Next we introduce a diagonal approximation for v„, in
Eq. (17),

u„,(q+G, q+G')=u„, (q+G)5GG, .

5 E„,[p]
5 V„,(r ) =fdV', 5p(r'),

(19)

The resulting crystal potential then reads as

V(G)= lim g g [uI (q+'G}] V '(q+G)+u(q+G) g [u (q+G)] Pi (q+G)1

V q 0 4m' 4~,

Following the discussion in Refs. 19 and 21, the nonana-
lytic terms in P ~~(q+ G) for GWO vanish (ASR); we ob-
tain

lim g P (q+G) = g P (G), GWO (22)
q 0

where P (G) is the analytic part of the vector field. Thus
the crystal potential can be written as a superposition of
quasi-ion potentials '

with

V (G)=— g [vI, (G)]*VI,(G)+u(G)p (G)
1 1

p (G}= g [uI)(G)]*PI,.(G), G&0
4m

(24)

(25}

V(Cx}= g V (G),
a

(23)
and
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V(0) = lim g g [u~ (q)]*V~~(q)
=1 '1

V, q-0 4ma j

+u(q)p (q) (26)

p (q)= g [u~, (q)]*P~,(q) .
1

(27)

fdV'fdV" g i

(
—') '( ', ")1

A
4m.

J

X V(r"—A).

It is important to realize that the XC potential occurs in
this formulation in the product form, U„,p with the densi-
ty appearing directly as a factor. Thus it seems appealing
to approximate U„by a suitable homogeneous electron-
gas expression based on the average density of the corre-
sponding semiconductor. Furthermore, testing of local
as well as nonlocal models for v„, becomes possible, see
Sec. IV.

In order to compare the above approach to the crystal
potential with the Kohn-Sham potential we represent
V,s(r) in direct space,

V,s(r) = g V (r)

VV„,(r) = —f dV' u„,(r, r')V'p(r') . (36)

The latter relation is obtained because E„,[p] is transla-
tionally invariant, resulting in

5E„, pfdV', V'p(r') =0 .
5p(r')

(37)

VV(r)+ fdV" u(r, r")fdV'D(r", r')V'V(r') . (39)

However, this equation is identical to Eq. (38) if the in-
variance of the system under rigid translations of the
external potential V(r) is used, ' which leads to

Vp(r)= fdV'D(r, r')V'V(r') (40)

and completes the proof.

III. A SIMPLE MODEL
FOR EXCHANGE CORRELATION

Functional difFerentiation with respect to p(r) then yields
Eq. (36), and thus we have

VV (r)=VV(r)+ f dV'u(r, r')V'p(r') . (38)

On the other hand, the left-hand side of Eq. (34) can be
written as

X V"V(r" ),
where the external potential

V(r)= g V (r —A)
A

has been used. Using the representation

P(r) = f d V' V'u(r —r').V'P(r')1

4m.

(29)

(30)

(31)

one can deduce from (29) that V,s(r) is just the Kohn-
Sham potential (up to a constant)

V (r)= V(r)+ VH(r)+ V„,(r),
VH(r) = fd V' u(r —r')p(r')

if the relation

f dV" e '(r', r")V"V(r")=V'V (r')

(32)

(33)

(34)

(28)

See also Ref. 29 for a decomposition of the total potential
into rigid quasi-ion potentials V . Equation (28) can also
be expressed as

V,~(r)= — f dV' fdV" Vu(r —r')e '(r', r")1

In this section we develop a simple model to approxi-
mate the exchange-correlation interaction. The resulting
expression for u„, will then be used in Eqs. (23)—(26) for
the calculation of the band structure in Si. Starting with
the rigorous expression of U„several approximations will
be performed which ultimately can be justified only by
applying the model to a realistic problem like the calcula-
tion of the electronic properties of an inhornogeneous sys-
tem like Si. It is our intention to extract from the exact
u„,(r, r') a corresponding homogeneous-limit expression
where the dependence on r and r' is reduced to the
dependence on ~r —r'~ and the dependence on p(r) is re-
placed by that on the average density p. Using such a
model for U„ in the formulation of the band-structure po-
tential from Eqs. (23)—(27), the dependence of the
exchange-correlation potential V„on the real density of
the system is still taken into account by the partial densi-
ties p (G).

The exchange-correlation energy can be represented in
terms of the exchange-correlation hole as

E„,[p]= ,' f dV f d—V'p(r)u(r—r')p„,(r, r'), (41)

where p„, corresponds to the removal of one electron
which is expressed by the XC sum rule

f d V' p„,(r, r') = —1 . (42)

holds.
We have

V VH(r) = f d V' u(r —r')V'p(r') (35)

Equations (41) and (42) allow for an interpretation of E„,
as the electrostatic interaction energy between the elec-
tron density p(r) and the hole. The latter describes the
probability that an electron at r' is pushed away if an
electron is present at r, due to exchange and correlation.

The XC hole can further be related to the pair corre)a-
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1

p„,(r, r')=p(r') da[g( l(r, r', a) —1]
—=p(r')G(p)(r, r') . (43)

Because of the long-range nature of the Coulomb interac-
tion the detailed shape of p„, in Eq. (41) is not as impor-
tant as its charge. Thus it is essential to satisfy the XC
sum rule (42), i.e., charge conservation.

For our purpose it is useful to rewrite Eq. (41),

tion function g( l(r, r';a) for a given coupling constant
30

E„,[p]= ~ f dV fdV'p(r) f„,(r, r')p(r') .

f„,(r, r') is equivalent to u(r —r')G( l(r, r') and this func-
tion seems to be well described by an approximation of
the homogeneous electron gas, as proposed in Eq. (53).
The reason is that the most important range for
G(~)(r, r') corresponds to the situation when r and r' are
close to each other. In this case the weighting factor, i.e.,
the Coulomb interaction, dominates the (r, r') depen-
dence of the product.

Functional differentiation of E„ leads to the expres-
sion for u„,(r, r') from Eq. (16),

5 E„,[p] 5f„,(r2, r') 5f„,(r„r')=
—,'[f„,(r„r2}+f„,(rz, r, )]+—,

' f dV' "' '
p(r') ,' f—dV'

"' ' p(r')

5f„,(r, r2) 5f„,(r, ri) 5'f„,(r, r')
+ —,

' f dV
"' '

p(r)+ —,
' f dV

"' ' ' p(r)+ ,' f d—VfdV'p(r) "' '
p(r') .

5p(r, ) 5p r~ 5pr, 5pr~
(45)

We replace Eq. (45) by taking a local approximation of f„, on p in the integrals and perform the homogeneous limit
after all integrations have been carried out. This procedure is applied to the single terms in Eq. (45) in such a way that
the dependence on ~r, —rz~ of u„, is preserved. We write, for example,

5f„,(r2, r') 5f„,((r2 —r'), p(r')) 5f„,()r2 —r, ),p) af„,((r2 —r, [,p)
d V' p(r') —+ d V' p(r') = p(r, )~p

5p(r, ) 5p(r, ) Bp Bp
(46)

a'f „,(q, p)

Op

Finally, the local-field factor G(q, p) is defined by

(47)

etc. After Fourier transformation we obtain the follow-
ing result:

af„,(q, p)
u„,(q,p) = —f„,(q,p)+2p

Bp

might be expected when looking to the discussions of V„
in the literature. ' ' The shape of this function looks like
the density when scaled in an appropriate way.

In order to obtain an e%cient computational scheme,
we introduce a parametrization of U„with two parame-
ters only. The latter are fixed by fulfilling the homogene-
ous limit of the XC sum rule and by using the short-
wavelength limit for G(q, p) which is related to the radial
distribution function g(r, p),

u„,(q,p)—=u(q)G(q, p) . lim G(q, p)=1 —g(O, p) .
q —+ oo

(49)

It should be noted that in our formulation of the
exchange-correlation potential V„according to Eqs.
(23)—(27) or (61), one is not forced to use the expression
of the definite model from Eq. (47) as an approximation
for u„, or the local-field factor G(q), respectively. One
could also try other forms for G(q) known from the
literature. ' ' On the other hand, Eq. (47) leads to very
good results for the band structure. The essential point is
that we are able to express V„approximately in a form
where nonlocality effects are represented by the homo-
geneous limit of U„, and the real density enters as a direct
factor. This is similar to the results given in Ref. 17,
where it is shown that the nonlocality of the self-energy is
well reproduced by that of the self-energy operator in jel-
lium of the average density of the semiconductor. Our
calculations in Sec. IV will demonstrate that when using
V„, in the product form emerging from the quasi-ion ap-
proach even a local approximation for v„ in the homo-
geneous limit leads to a very good band structure. This f„,(q ~0, p) = —I /p, (50)

For high electronic densities (small Coulomb coupling
parameter r, -p '

) the Bohm-Pines random-phase ap-
proximation [RPA, u„, =O in Eq. (14)] is known to give
reasonable results because the kinetic energy is dominant,
while for real electronic densities in metals or semicon-
ductors exchange-correlation corrections become impor-
tant. The behavior of interacting electrons with parallel
spin at small interparticle separation is determined by the
exclusion principle. On the other hand, Coulomb repul-
sion dominates the short-range correlations between elec-
trons of antiparallel spin. The latter effect leads to a de-
crease of the Hartree-Fock value gH„(0)= —,

' to lower
values. In our model calculation we use the variational
results for g(O, p) as given in Ref. 35, which are in good
agreement with Monte Carlo —type calculations.

The XC sum rule can be written in the homogeneous
limit as
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where f„is defined by

f..(lr —r'I) = lr —r'If„, (lr —r'I) .

The ansatz chosen for f„,(q ) is

f„,(q)= A(l —e ~i )v(q)

(51)

or

&
erfc(yr) 1

T
(53)

This leads, for f„,(q), to the result

f (q)=A
3 [(1+2@q )D(v'pq) —v'q)q]

with Dawson's integral

D(x)=e ' I dt e px(t ) .

(54)

(55)

2/3

w (o.
32 7rA

(56)

The dependence of y and 3 on the density p could be ob-
tained by calculating the XC energy density c„, of our
model in the homogeneous limit yielding

s„,(P ) = 2' 2 yp . (57)

For ex'ample, taking A to be independent on P leads to
s„,(p)-P' . We should like to remark that also in the
Green's-function approach, p' -dependent models for
the self-energy of insulating systems have been de-
rived. ' The final expression for v„, from Eq. (47) with

f„,according to Eq. (52) reads

Calculating the q ~0 limit of Eq. (54) and using the XC
sum rule from Eq. (50) we obtain the following relation
between g and 3:

A = —0.798 and @=0.0162a (a, lattice constant). In
Fig. 2, f„,(r) is plotted. According to its definition f„,
determines the range of the XC hole.

The size of the hole depends on the parameters y,
and p which are linked together by the XC sum rule from
Eq. (56). 3 is related to the pair correlation function via
Eq. (49). As can be seen from Fig. 2 for Si the values of

3, and p lead to a relatively tight XC hole. Figures
3(a) and 3(b) display the results for the XC hole in our
model. Two dift'erent locations r for the electron have
been tested. In Fig. 3(a) the electron is located at the
bonding site while in Fig. 3(b) it is at the antibonding site.
The results are similar to those given in Refs. 32 and 41,
where the weighted-density approximation (WDA), i.e., a
more involved procedure has been used. From its can-
struction the density prefactor p(r') has the proper argu-
ment, r . This is not the case in the local-density approxi-
mation where p(r) is used, i.e., the density prefactor is
changed to the local point r. However, physically the
suppression of the probability of finding an electron at r',
if another one is at r, should be proportional to p(r').
From Figs. 3(a) and 3(b) we extract further that the XC
hole is anisotropic according to the actual charge density.
This is in contrast to LDA where the hole is spherically
symmetric and always centered on the electron at r. Fig-
ure 3(b) explicitly demonstrates that this is not the case in
our model. In accordance with the WDA results the hole
is shifted away from the electron at r toward the bond.
As a result nonlocality seems to be quite well reproduced
by our homogeneous model for f„,. Figure 4 displays

v„,(q ) from Eq. (58) for Si together with the related func-
tions v(q ), v(q ), and f„,(q ). —The limiting values of v„,
are

limv„, (q)= — Ay, v„,(q)—Sn 4m. 1 —g(0)
q~O q

as q~ac . (59)

v„,(q)= —f„(q)— yq (7+2@q )v(q)e

(58)

Here we have taken 2 to be independent of p as a simpli-
fying assumption. If found necessary the p dependence of
3 could be introduced with the help, of Eqs. (47)—(49)
and (52). In the small-q limit the local-field factor G(q)
as derived from Eq. (58) shows the correct q behavior3'
and a p dependence could also be obtained from the
long-wavelength limit of G(q) which is related to the
compressibility of an interacting-electron gas.

0

-0.5

IV. APPLICATIONS AND DISCUSSION

In this section we shall apply the theory for the band-
structure potential developed in Sec. II and the model for
exchange correlation of Sec. III to Si as an example for a
prototype semiconductor.

In order to get an impression how the XC hole looks
like we calculate the function f„,(Ir r'I )p(r') —which cor-
responds to p„,(r, r') in our model. Following the discus-
sion in Sec. III we find for 3 and y in Si the values

—1
0

I

0.2
r/a

0.4 0.6

FICr. 2. Plot of the function f„,(r) according to Eq. (51)
which determines the extent of the XC hole in the model, a be-

ing the lattice constant. The nearest-neighbor distance is
marked by an arrow.
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(b)
FIG. 5. Contour plot of the total valence charge density p(r)

of Si in the (0, —1, 1) plane as obtained by superposition of the
partial densities (Fig. 1). Units as in Fig. 1.

FIG. 3. Contour plots of the XC hole in Si in the (0, —1, 1)
plane: (a) the electron is located at the bonding site, (b) the elec-
tron is located at the antibonding site. Units are electrons per
cell.

Such a behavior should be contrasted with the
homogeneous-limit form of LDA. Here U„, is indepen-
dent of q because of the local-density approximation.
In particular the diagonal part of U„, is constant and indi-
cated in Fig. 4.

We have reproduced in Fig. 5 the total valence charge
density p(r) of Si in the (0, —1, 1) plane determined as a
superposition of the model partial densities from Fig. 1.
Figure 6 shows the corresponding phonon dispersion of
Si in the b,(1,0,0) direction as obtained from the quasi-

125

0.2

0. 1

l

v(q) &
' v(q)

f (q)XC

\
~ .

T
T5

50

v (q)XC

0 2 3
q (2+&g)

0

FIG. 4. Plot of the Fourier-transformed -exchange-
correlation interaction v „„.(q ) for Si from Eq. (58). Further, the
functions u(q ), u(q ), and f„,(q ) defined in t—he text are
drawn, a being lattice constant. The Fermi wave vector kF and
the first four reciprocal-lattice vectors are marked by arrows.
The value of v„, in the homogeneous limit of LDA is indicated.

FIG. 6. Phonon dispersion curves for Si in the b(1,0,0)
direction as calculated from the model partial density and the
pseudopotential in Eq. (60). In addition to the rigid shift of p,
rotations of the first- and second-nearest-neighbor quasi-ions
have been taken into account. The dots indicate the experimen-
tal data.
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ion approach with the model density p from Fig. 1. For
the bare ions we have used an Appelbaum-Hamann —type
potential

V (q)=—4~Z
(1—Aq B—q )e2 4 —C (6O)

g

with 3 = —0.72986X10 a, 8=0.203 13X10 "a,
and C =0.389 01 X 10 a . The phonon frequencies have
been calculated by taking into account first- and second-
neighbor rotations of the quasi-ions, see Refs. 21 and 26
for details. Using these expressions for V and p togeth-
er with U„, from Eq. (58) we are able to calculate the
quasi-ion potentials V and the crystal potential V ac-
cording to Eqs. (23)—(27) or Eqs. (12) and (28), respective-
ly. The result for the quasi-ion potential V (r) and the
corresponding crystal potential V,tr(r) obtained by super-
position is presented in Figs. 7(a) and 7(b). The distribu-
tion of V (r) is spherical around the atomic sites quite in
contrast to the corresponding partial density from Fig. 1

from which the quasi-ion potential is constructed. This
behavior has its origin in the contribution of the bare
pseudopotential and the "weighting factor" U in front of
p in Eqs. (24) and (26) by which the nonspherical contri-

butions of p related mainly to the large Fourier com-
ponents are suppressed (Fig. 4). Further, we observe an
attractive ring-shaped minimum of the quasi-ion poten-
tial at about the same distance from the ion where the

(b)

(a)

FIG. 7. Contour plot of the quasi-ion potential V (r) (a) and
the total crystal potential V,~(r) of Si in the (0, —1, 1) plane (b).
Units are in 4/a.

FIG. 8. Contour plots in the (0, —I, 1 ) plane of the
exchange-correlation potential V„(r) for the calculations dis-
cussed in the text. (a) is the result of V„,. in case the full expres-
sion for v„, from Eq. (58) is used. (b) results if v„, is approxi-
mated by f„,. (c) corresponds to the —local approximation
v„(q ~0). Units for V„, are in eV.
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TABLE I. Comparison of the calculated band energies at high-symmetry points to experimental data for Si. The different theoret-
ical models for v„, are discussed in the text. The data assigned to V„(LDA) and V„,(q~0) have been obtained self-consistently
within the usual local-density-functional theory (LDF) (Ref. 15) using the ionic potential from Eq. (60). V„, (LDA) is based on the
Ceperley-Alder interpolation. V„,(q~O) is derived analogously to u„(q) applying only the first functional derivative to E„, from
Eq. (44). The result corresponds to an Xa-type approximation with o.=0.74.

I25 ~I is
I zs.

~25v ~ ~2c
I ~s.

I 25.
~25u ~+lc

I zs.
L l u ~~25u

I zs.

L3,~Ll
L3, ~L3,

U„(LDA)

0.91
3.23

12.52
4.21
0.98
3.01
1.05

10.13
7.28
1.26
2.03
4.00
3.29
5.26

U„,(q ~0)
1.19
3.44

12.40
4.35
0.91
2.91
1.33

10.05
7.14
1.22
2.22
4.24
3.44
5.46

Uxc

1.12
3.21

12.57
3.77
0.56
2.99
1.28

10.24
7.26
1.28
1.97
4.08
3.25
5.36

2.37
3.97

12.27
3.57

—0.40
2.61
2.57

10.13
6.82
1.14
2.56
5.06
3.70
6.20

U„, =O

—1.37
1.47

13.54
3.08
1.61
3.94

—1.35
10.79
8.62
1.64
0.62
1.88
2.26
3 ~ 52

Expt.

1.17
3.4

12.5+0.6
4.2
0.8
2.9, 3.3+0.2
1.3
9.3+0.4
6.7+0.2
1.2+0.2, 1.5
2.1, 2.4+0. 15
4.1S+0.1
3.45
5.50

V„,(LDA)

0.99
3.03

12.75
3.52
0.49
3.06
1.17

10.44
7.43
1.31
1.79
3.93
3.10
5.24

V„,(q ~0)
1.05
3.07

12.73
3.55
0.48
3.05
1.23

10.43
7.40
1.29
1.83
3.98
3.12
5.27

partial density reaches its maximum. In this way the
electrons are attracted very e%ciently into that space re-
gion. The total band-structure potential V,tr(r) from Fig.
7(b) displays a spherical (repulsive) shape around the ions
and an attractive minimum region at the bond center.
Here the charge density has its maximum. This
minimum region of the potential is elongated along the
bonding chain and results from the superposition of the
ring-shaped minima of the quasi-ion potentials V (r). In
the empty-space region of the structure the potential is
repulsive. Thus the charge is strongly pushed away and
becomes condensed along the chains.

In Fig. 8(a) the exchange-correlation potential V„,(r)
for Si as obtained from Eqs. (23)—(27) and Eq. (58) is
shown as a contour plot in the (0, —1, 1) plane. It is most
attractive at the bond center, which is important for the
direct band gap because the (I z&, ) density of the wave
function at the valence-band maximum (bonding p type in
an atomic orbital picture) is mainly localized in that re-
gion. Thus the attraction of V„, at the bond center is a
measure for the decrease in energy of the I 25, state. On
the other hand, the ( I », ) density of the
lowest —conduction-band wave function at point I (anti-
bonding p type) has maxima around the antibonding sites.
In this region of space V„, is less attractive, leading final-
ly to a band gap. Qualitatively, the size of the band gap
should be determined in first order by the difference of
V„,(r) at the bonding site and the antibonding site, re-
spectively. This can be confirmed by inspection of Table
I and by examination of the corresponding values of V„,
in Figs. 8(a) —8(c), where different models have been in-
vestigated.

Figure 9 shows the calculations of the theoretical band
structure of Si (solid curves) as obtained within the
quasi-ion approach using Eq. (58) for the exchange-
correlation interaction. The results are compared with
the empirical band structure (dashed curves) along the
main symmetry directions 5, X, and A. Good agreement

of both calculations can be observed. Furthermore, the
conformity with the experimental data can be extracted
from Table I, where the calculated band energies are
compared to experiment' at high-symmetry points.

The detailed shape of V„,(r) is determined by the de-
gree of nonlocality introduced by U„,(r —r') "acting" on
the density p(r'); compare Figs. 8(a)—8(c) and Fig. 10.
This can be seen by integration of Eq. (36) taking for U„,
the approximate form U„,(r —r')

V„,(r)= —JdV'U„, (r —r')p(r') . (61)

The solid curve in Fig. 10 represents u„,(~r~) from our

0)

0

—IO

-14 '

L

FIG. 9. Comparison of the theoretical band structure of Si
(solid curves) in the main symmetry directions 5, X, and A with
the corresponding empirical results from Cohen and
Bergstresser (dashed curves). Energies are in eV. The valence-
band maximum is normalized to zero.
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model which is translationally as well as rotationally in-
variant. ' We find a relatively short-ranged behavior for
the nonlocality in v„,. It is of the order of half a bond
length in Si. Comparing u„, with the approximate ex-
pression f„,—which results from U„, if the derivatives of
f„, with respect to the density p are ignored in Eq. (47),
we find that v„, is considerably tighter. This can also be
seen qualitatively from the Fourier-transformed quanti-
ties represented in Fig. 4. From this plot it might be ex-
pected that even a local approximation for v„, could be
reasonable because U„,(q) is roughly a constant for the
most important small reciprocal-lattice vectors. This
supposition is strengthened by calculating the function
U„,(r —r')p(r') itself. The results are displayed in Figs.
11(a)—11(c) in the (0, —1, 1) plane for three different posi-
tions of r (bonding site, antibonding site, and interstitial
site). The most important feature of —v„,p is a strongly
localized 'hole" (with different amplitude) which is ap-
proximately spherical and centered at r =r'.

In order to test the inhuence of the detailed shape of
V„,(r) on the band structure we have investigated two
additional models approximating U„, by f„,Fig. 8—(b),
and by its value in the long-wavelength limit, i.e.,
U„,(q~0), Fig. 8(c). This leads to qualitatively different
results for V„,(r). We would like to mention that a local
approximation for u„, like the value of v„ for q~0 or
the LDA value in the homogeneous limit indicated in
Fig. 4 yield for V„,(r) a contour line plot [Fig. 8(c)]
which can be obtained from Fig. 5 by scaling the density
with the corresponding constant of Fig. 4 at q =0.

In accordance with the deeper values of V„,(r) along
the bonding chain (and in the antibonding region, see
above) we get in case of —f„,both a lower valence-band
maximum and a lower conduction-band minimum at I,
see Fig. 12(a). However, the energy of the top of the
valence band (in fact the whole valence-band complex) is

more decreased than the conduction band. This leads to
a larger direct band gap and indirect band gap as com-
pared with the model based on the complete expression
for u„; notice also the definite energy values listed in
Table I.

(a)

(b)

(c)

gl
4

0.2

XC

r/a
0.4 0.6

/
/

/
/

/
/

FIG. 10. Plot of the exchange-correlation interaction v„,{r)
and the functions f„,(r), U(r}, and 1/r. T—he nearest-neighbor
distance is marked by an arrow.

FIG. 11. Contourline plots of v „,(r —r') p( r') for three
different positions of r: (a) bonding site, (b) antibonding site,
and (c) interstitial site. Units are in 40/a, a being the lattice
constant. Compare with Fig. 3.
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FIG. 12. Comparison of different theoretical band structures of Si in the main symmetry directions. In these calculations the band
structures for the different models have been shifted by the corresponding constants V(0) in order to compare the relative values of
the energies. Several approximations for the exchange-correlation interaction are compared: (a) U„, (solid curves), f„, (dashed—
curves); (b) U„, (solid curves), U„(q ~0) (dashed curves); (c) v„(solid curves), U„=O (dashed curves).

The I », density is minimal parallel to the bonding
chains and assumes its maxima near the antibonding
sites. On the other hand, the I 2, density has its
minimum region around the bond center extending into
the space transverse to the bond and its maxima around
the atoms halfway to the antibonding sites. Thus, for the
relative ordering of I », and I z, in the energy spectrum
the detailed shape of V„,(r) around the atoms, the bond-
ing and the antibonding region is crucial. This is illus-
trated best by comparing V„, as represented in Figs. 8(b)
and 8(c). In these models the exchange-correlation po-
tentials are qualitatively different. In Fig. 8(b), V„, is
elongated parallel to the bond and displays a large in-
crease in the antibonding region. On the other hand, V„
from Fig. 8(c) is spherical to slightly elongated transverse
to the bond and nearly Aat in the antibonding region.
Such a behavior leads to an energy split between I 2, and

I », of approximately the correct size, see Table I, while
in the first case the energy levels even have changed their
positions in the spectrum. In case of V„, from Fig. 8(a)
the difference in energy is smaller than for V„ from Fig.
8(c). This is not unexpected because the shape of V„ is
intermediate between that of Figs. 8(b) and 8(c).

Figure 12(b) demonstrates good agreement of the local
approximation with the nonlocal calculation, thus a local
approximation seems to be justified within the quasi-ion
formalism. The results for the band structure in the
homogeneous limit of LDA [U„, (LDA) in Table I] are in
general comparable with those using U„(q ~0). The
direct and indirect band gaps are a bit smaller in this cal-
culation.

Finally, in order to see what happens if exchange-
correlation contributions are ignored at all in U we can
take a look in Fig. 12(c). The dominant effect is a large
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upward shift of the valence band leading to a very small
direct band gap and to a negative indirect one. Further-
more, the width of the valence band is increased (u„,=0
in Table I).

We conclude this discussion by noting that the quality
of the band structure could certainly be improved further
by using simultaneously a more extended basis set of ex-
pansion functions in Eq. (11) and by varying the parame-
ters in the ion pseudopotential without destroying the
quality of the phonon dispersion. In particular the I z,
state could be improved by changing the pseudopotential
because of its localization at the atoms.

We certainly are aware of the fact that even in the ex-
act DFT we still have to deal with the low —band-gap
problem. How 1arge the difference between the true
quasiparticle energy gap and the DFT band gap really is,
is still a matter of controversy. ' From our results we
learn that a good band structure for Si can be calculated
with use of the quasi-ion approach and the factorized
form of the exchange-correlation potential. Because the

crystal potential depends on the density itself, the calcu-
lations of the quasi-ion densities should be carried out
self-consistently. Calculations along these lines will be
performed in future work.

Note added tnp'roof. We would like to remark that the
gap will change with the value of the lattice constant
used in the calculation. It can be expected to be smaller
for a lattice constant which would result from a minimi-
zation of the total energy of Si using the Appelbaum-
Hamann potential because such a procedure leads to a
smaller lattice constant and consequently to a more me-
tallic behavior with a smaller gap, independent of the
model used for exchange-correlation eA'ects.
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