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The influence of nonparabolicity on the subband structure in a quantum well is analyzed. Start-
ing from an accurate expression for the bulk conduction-band structure expanded up to fourth or-
der in k, we determine both the shift of the confinement energies and the energy dispersion parallel
to the layers E(k;). The resulting eigenvalue equations are of the same form as in the parabolic
case, but somewhat more complicated. The anisotropy of the bulk conduction band is included, and
it is found to have a larger effect in quantum wells than in the bulk. The results can be expressed in
terms of the perpendicular mass, which is relevant for the determination of confinement energies,
and the parallel mass, which gives the curvature of E (k) at the bottom of a subband. We derive ap-
proximate expressions for these masses in the form of explicit functions of the confinement energy,
which is experimentally accessible. The enhancement of the parallel mass relative to the bulk mass
is found to be 2-3 times stronger than that of the perpendicular mass. It is shown that the bound-
ary conditions need to be modified in the nonparabolic case. The nonintuitive result is that the
confinement energy for the ground state usually is increased relative to a similar calculation in the
parabolic approximation. We include the effect of a perpendicular magnetic field and derive an ana-
lytic expression for the Landau levels. The cyclotron mass is found to increase with magnetic field
and approach the parallel mass in the limit of small magnetic fields. The parallel mass is also
relevant for transport parallel to the layers, density of states, and exciton properties. The agreement
with experiment is encouraging. Previous theoretical approaches are critically reviewed and the
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differences and similarities with this work are pointed out.

1. INTRODUCTION

The energy levels in narrow semiconductor quantum
wells are of considerable interest both experimentally and
theoretically. In this case the electron levels are of the
order 100 meV above the bulk conduction-band edge, and
it is expected that corrections due to conduction-band
nonparabolicity can be important. Most of the work so
far has been related to the shift of the confinement ener-
gy. Many theoretical approaches have been presented
and have given partly conflicting results. The relations
between these approaches and the reasons for the
discrepancies have not been analyzed in detail previously.
Another interesting problem which has received less at-
tention is the modification of the energy dispersion paral-
lel to the layers. The curvature at the bottom of a sub-
band does not necessarily correspond to the same
effective mass as in the bulk. Furthermore one can ex-
pect the subband dispersion to deviate from parabolicity.
The three effects of nonparabolicity on the subband struc-
ture of a quantum well are shown schematically in Fig. 1.

Most calculations of semiconductor heterostructures
have applied the envelope-function method. A common
way to include nonparabolicity effects in this scheme is to
include a small number of bands in a matrix equation and
preferably treat the other bands in perturbation theory.
The latter has the effect of modifying the effective masses.
Such matrices were derived by Kane' for the bulk case
and adapted to the superlattice case by Bastard whose
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original model? included the (lowest) conduction band,
the light-hole band, and the heavy-hole band, which is
decoupled from the other bands when k|, the wave vector
parallel to the interfaces, is zero. This model has later
been extended to include the split-off band.® Similar
equations have been presented by Yamada et al.* Impli-
cit equations for the energy are given which are easy to
solve numerically. Rossler® has, however, pointed out
that one also needs to include higher conduction bands
(of symmetry I'y+I'4) for an accurate description of the

GaAs

Al,Ga_,As Al,Ga,_, As

FIG. 1. Schematic picture of the effects of nonparabolicity in
a quantum well. (A4) The confinement energies are shifted. (B)
The curvature at the bottom of a subband corresponds to a
parallel mass, which is different from the bulk mass. (C) The
subband dispersion (dashed line) deviates from parabolicity
(dotted line).
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conduction band more than 50 meV above the band edge.
Much of the anisotropy of the lowest conduction band
comes from the interaction with these bands. In this way
one ends up with a 14X 14 matrix, whose eigenvalues
give the energy dispersions in the bulk. The use of such a
matrix together with proper boundary conditions for a
quantum well or the roughly triangular potential at a

modulation-doped semiconductor interface would be very |

cumbersome. A more convenient method is to obtain the
bulk dispersion from this matrix once and for all and
from this determine the coefficients in an expansion of the
energy dispersion up to fourth order in k. Such a method
has been used for the two-dimensional electron gas at the
GaAs/Al,Ga,_,As interface by Malcher et al.® The
problem was first solved self-consistently in the parabolic
approximation, and then the higher-order terms were in-
cluded in perturbation theory. A similar approach with a
position-dependent effective mass was proposed by
Lassnig.” This position dependence arises because the
conduction-band edge is at a different energy separation
from a sublevel at different distances from the interface.
In the approaches of Refs. 6 and 7 it is also straightfor-
ward to include the spin splitting and the effect of a mag-
netic field perpendicular to the interfaces.

In this paper we point out that for a square well the
nonparabolic subband structure can be determined essen-
tially analytically. A short version of this work was
presented recently.® The energies are obtained from im-
plicit equations of the same form as in the parabolic case.
This approach also gives particular insight into the rela-
tion between the suitably defined perpendicular mass,
which determines the shift of the confinement energies,
and the parallel mass, which gives the curvature at the
bottom of a subband. Recently’ we pointed out the im-
portant difference between these two masses using
simplified boundary conditions. In this article we make a
more thorough analysis and demonstrate that the con-
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clusions in Ref. 9 remain qualitatively correct but change
slightly quantitatively. We start from an accurate expres-
sion for the bulk conduction-band dispersion expanded
up to fourth order in k. The anisotropy of the bulk con-
duction band is included. The method can in principle be
applied to any pair of direct-band-gap semiconductors
but is here applied to GaAs quantum wells surrounded by
Aly ;Gag,As. The results are particularly clearly
brought out in the case of infinite barriers, as shown in
Sec. II. The more realistic case with finite barriers is
treated in Sec. III. In this case a more careful analysis of
the boundary condition is required. The details are found
in the Appendix. In Sec. IV we derive an expression for
the Landau levels in a perpendicular magnetic field and
calculate the cyclotron mass, which can be measured ex-
perimentally. We compare our results with some recent
experiments and other theories in Sec. V and the con-
clusions follow in Sec. VI.

II. INFINITE QUANTUM WELL

The conduction-band dispersion in the bulk of a
direct-band-gap III-V compound semiconductor expand-
ed up to fourth order in k is of the form

#2k?

2m
tyolkHk2k]+kIk2+k2KkE)

—9k2k k12 . (1)

Here m is the effective mass in the relevant material. The

parameters g, By, and ¥, are all negative and have been

determined from a 14-band k-p calculation, which has

been described in detail by Braun and Rdssler.!® The

values of GaAs and Al,;Gay;As were given in Ref. 6

and are reproduced in Table I. For other materials the
values can be determined from explicit expressions given

E (k)=

+agk*+ Byl k 2k 2+ k k2 +k2k?E)

TABLE 1. Parameters used in this calculation (including the models in Refs. 3 and 12).

GaAs Aly ;Gag 5As

Electron mass 0.0665 0.095
Nonparabq}li“city parameters

a, VA —2107 —1164

a (V') 0.642 0.724

Bo (eVA") —2288 —1585

B (erj)3 0.697 0.985

Yo (eVA") —27.57 —22.74
Valence-band parameters

yi 6.85 5.83

¥ 2.1 1.674
Kane matrix element P (a.u.) 0.6778 0.6778
Energy gap (meV) 1519 1921
Spin-orbit splitting (meV) 341 321
Conduction-band discontinuity (meV) 261
Valence-band discontinuity (meV) 141
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in Ref. 10. The last term describes the spin splitting
which is due to the lack of inversion symmetry in GaAs.
In the present article we have not included the spin split-
ting exactly but it can be included as a perturbation, as
discussed in Sec. III. We keep the anisotropic fourth-
order term (proportional to ;) which often has been
neglected by previous authors. The layered structure is
assumed to be grown along the [001] direction. If we col-
lect the k, terms separately we can rewrite the first three
terms

hZ
E(k)=apk}+ ?’7—1—+(2a0+30)(k3+ky2) k2

ﬁl
+E(kf+ky2)+(2a0+ﬁo)kfkf

+ag ki +k?) . 2)

We follow the prescription of effective-mass theory'!
and use this expression for the kinetic energy with the re-
placement k,— —id/dz. The potential V(z) of the
quantum well, which extends from z=—b>b to z=b, is
then added. We still have translational invariance paral-
lel to the layers of the quantum well, and therefore k,
and k, remain good quantum numbers.

We first consider the confinement energies in a quan-
tum well with infinite barriers and put k, and k, equal to
zero. It is immediately verified that the solutions of the
Schrodinger equation are of the form cosKz and sinKz for
states with even and odd parity, respectively, just like in
the parabolic case. The boundary conditions (vanishing
wave function at the interfaces) are still fulfilled if

nir
K=—,
2b
Odd n applies to even parity solutions and vice versa.
The only difference compared to the parabolic case is that
the relation between the energy and the parameter X is
altered. We have

n=12,.... (3)

#2K?
2m

e=aK*+ (4)

We have here introduced ¢ for the confinement energy:
e=E (k,=0), where k,=(k2+k})'?. If we invert ex-
pression (4) we obtain

1/2
— m (1 A2
K= a’ﬁz[l (1—4a’e) ]] , (5)
where
) 2
a':—(—;i'zl a, - (6)

For GaAs a’'=0.64 eV~ !. We are usually interested in
energies for which a’e <<1 and after expanding the inner
square root we obtain

’ 172
Kz[Zme(l-;a £)] '

(7

U. EKENBERG 40

In the parabolic case we would just have
K =(2me)'/?/#i. The term (1+a'e) thus represents the
nonparabolicity correction to the lowest order. It is often
convenient to express nonparabolicity effects in terms of
an energy-dependent effective mass and the natural
choice in the present case is

m(e)=m(l+a's) . (8)

We call this the perpendicular mass. A more accurate
definition follows from Eq. (5):

ml(a)=—2§8—[l—(l—4a'e)l/2] . ©)

It should be noted that m | is only intended for the calcu-
lations of confinement energies. For example, it is not re-
lated to transport properties or energy dispersion along
the z direction in a superlattice.

We next consider the parallel dispersion and let k£, and
k, be different from zero. It is clear that the energy
dispersion for the quantum well is given by Eq. (2) with
k, replaced by K =nm/2b. The coefficient of the k| term
becomes

ﬁ—2+(2 +By)K? (10)
2m %o Po )

It is appropriate to define the energy-dependent paral-
lel mass m(e) by equating this coefficient to
#/[2m (e)]. In similarity to Eq. (6) we define the con-
stant

2
B=- Bo > (11)

2m
ﬁZ

where 8'=0.70 eV ! for GaAs. To lowest order in € we
then find

m(e)=m[1+(2a'+B')e] . (12)

Comparison with m (g), Eq. (8), shows that the paral-
lel mass is enhanced over the bulk mass about three times
more than the perpendicular mass. We will find that this
remains approximately true for finite wells, which are not
too narrow. The expressions (8), (9), and (12) also hold
for excited states, and in the present approximation the
effective masses are only functions of the confinement en-
ergy.

It is worth noting that the anisotropy term has a larger
influence in a quantum well than in the bulk. It is found
from Eq. (1) that the k* term is proportional to a, in the
[100] direction and ay+B,/3 in the [111] direction in the
bulk (the spin-splitting vanishes in these directions). In
the quantum-well case the coefficient of 3, is half of that
of a, in the expression for m .

III. FINITE QUANTUM WELL

The simple decoupling between the motion perpendicu-
lar and parallel to the layers is not possible anymore in
the more realistic case with finite barriers, but it is possi-
ble to derive eigenvalue equations for the subband struc-
ture, which are not much more complicated in the non-
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parabolic case than in the parabolic case. We consider a
quantum well of GaAs of width 2b surrounded by
Aly 3Gag ;As barriers of height V. The effective mass and
nonparabolicity parameters in the well are denoted by
my, &gy, and By, respectively, and the corresponding pa-
rameters in Al Ga,_,As are m,, ag,, and By,. They are
taken from Ref. 6 and given in Table 1.

We first consider the case k, =k, =0. As an 4nsatz we
write down solutions of the same form as in the parabolic
case:

_ |Bcos(Kz), |z[<b (13a)

F@)=1Cexp(—nlzl), lzl>b (13b)
for even parity and

[B sin(Kz), |z|<b (14a)

F(z)= Cexp(—Az), z>b (14b)

—Cexp(Az), z<—b (14¢)

for odd parity. Here B and C are normalization con-
stants. It is readily verified that the solutions in the non-
parabolic case are still of the same form. One difference
compared to the parabolic case is that the relation be-
tween the parameters K and A and the energy is more
complicated. X is still given by Eq. (5) (with m and o' re-
placed by m, and «}) and
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D2t dayv—e)] =1} | . (15)

122
oy

r=

This relation can be used to define a perpendicular
mass in the barrier. This is actually derived from the en-
ergy dispersion above the conduction-band edge in the
barrier material, and it is uncertain how far into the band
gap one can extrapolate that expression. It would be ap-
propriate to take the decay constant in the energy gap
from a calculation of the complex band structure,!*!’ in
which the wave vector is imaginary in the band gap.
However, since the subband structure is fairly insensitive
to the effective mass in the barrier for the well widths
considered here,!? we prefer to use the analytical expres-
sion (15). It is not difficult to insert the expressions for K
and A in the eigenvalue equation to be derived below and
search for the energies satisfying this equation.

In the nonparabolic case we must also pay some atten-
tion to the boundary conditions. In a previous paper’ we
simply used the common boundary conditions®!* with
continuity of the envelope function F and its derivative
divided by the bulk mass. A proper determination of the
boundary conditions should actually impose continuity of
the total wave function and its derivative and one should
calculate both the envelope functions and the Bloch func-
tions u (z) which have the periodicity of the lattice. Such
boundary conditions have been derived by Burt.!> Calcu-
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lations explicitly including u (z) have been performed by
Smith and Mailhiot.”> They are rather laborious and
beyond the scope of this article. We instead consider
reasonable boundary conditions for the envelope function
and analyze how consistent results they give. A common
way of deriving boundary conditions is to integrate the
Schrédinger equation from — 8 to & (if the boundary is at
z=0) and let 5—0. Since the effective masses and the
nonparabolicity parameters are position dependent the
Hamiltonian should first be written in Hermitian form.
This can be done in the following way:

d #* d d? d?

4z 2m da + P a, P +Viz). (16)

Integration from —& to & then gives continuity of

# dF _ dF_ 4% d’F 17
2m dz %43 dz di?

If we ignore the difference between a in the well and in
the barriers we obtain the results derived by de Dios Ley-
va et al.'® These boundary conditions are very con-
venient because it turns out that they give exactly the
same result as if one imposes continuity of the envelope
function and its derivative divided by the energy-
dependent perpendicular mass given by Eq. (9).

However, the derivation of these boundary conditions
is not quite indisputable. One has to let & go to zero to
make the potential-energy terms vanish. But the deriva-
tive of the envelope function is discontinuous at the inter-
face, if we take it to be a step function, and then the third
derivative is singular at the interface. Furthermore we
should take into account that a is different in the two
materials. In the Appendix we derive the current density
for a potential step in the nonparabolic case. It is found
that the current density is conserved if the boundary con-
ditions described above are modified to include a factor 2
in the third-order term of (17). Consideration of the
current density has the advantage that it should be the
same for all values of z including those some distance
from the interface. In practice the potential at the inter-
face drops rapidly but continuously over a few atomic
layers. This makes the expression for the current density
mathematically well-behaved but complicated in the in-
terface region. However, away from this region we can
easily evaluate the current density in the bulk regions.

After applying the three considered boundary condi-
tions the eigenvalue equations can be summarized in the
equation

#A
2m2 _Naozls
tan(Kb)=————— (18)
7K ,
+Nay K
2m ‘

for even-parity states with tanKb replaced by —cotKb for
odd-parity states. Here N is an integer which depends on
the boundary conditions chosen. N=0 corresponds to
the same boundary conditions as in the parabolic case.
Integration of the Schrodinger equation from —& to &



7718

and neglecting the discontinuity of a, and dF /dz corre-
sponds to N=1. This boundary condition is equivalent
to continuity of F and m (e)”'dF/dz. Finally N=2
represents the modification necessary to make the bound-
ary conditions compatible with current conservation.
The analysis in the Appendix does not imply that the
boundary conditions given by N=2 are the correct ones,
which should involve the cell-periodic functions u(z).
The mathematical difficulties described above occur both
for N=1 and N=2. What we want to point out is that
for N=2 (but not for N=1) we obtain relations between
the amplitudes of the incoming, reflected, and transmit-
ted waves at a potential step which are consistent with
current density conservation. We have verified that for
very high barriers all three boundary conditions lead to a
decrease of the confinement energy in the nonparabolic
case relative to the parabolic case in agreement with Eq.
(4). (Note that « is negative.)

In Fig. 2 we show the confinement energy for the
ground state as a function of well width in different ap-
proximations. The simplest boundary conditions, N=0,
always imply a reduction of the confinement energy rela-
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FIG. 2. Well-width dependence of the confinement energy
for the ground state in a GaAs quantum well surrounded by
Al 3Gag ;As in different approximations. The solid line shows
the parabolic approximation and the other lines the nonparabol-
ic case with different boundary conditions characterized by the
integer N in Eq. (18). The dotted line (N=0) corresponds to the
same boundary conditions as in the parabolic case. The dashed
line (N=1) corresponds to continuity of the envelope function
and its derivative divided by the perpendicular mass (9). The
dashed-dotted line (N=2) represents the modification necessary
for conservation of the current density.
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tive to the parabolic case. This is also what one might ex-
pect intuitively: The effective mass increases as we go
higher up in the conduction band and a higher mass leads
to a lowering of the energy levels. But since the bound-
ary conditions also depend on the effective masses it turns
out that a more careful consideration of them can lead to
an increase of the confinement energy. For N=1 this in-
crease is rather small but for N=2 it can be substantial.
It would be interesting if one could compare the results of
these fairly simple boundary conditions to the exact ex-
pressions derived by Burt!® together with an explicit cal-
culation of the cell-periodic part of the total wave func-
tion. It should be noted that for excited states the energy
is usually lowered by the nonparabolicity effects for all
boundary conditions and when this lowering is substan-
tial, the difference between the boundary conditions has a
rather small effect. In Table II we give the confinement
energies for the lowest state in a 50- and a 100-A quan-
tum well for different boundary conditions together with
the results of some other models described below.

We next consider the modifications that need to be
made when the wave vector parallel to the layers k| is
different from zero. In the Appendix the constant A4 is
defined as the coefficient of the k2 term. This term is now
given by

_
—?r;l—+(2a0+ﬂo)kﬁ . (19)

The boundary conditions thus explicitly depend on the
parallel wave vector. Another modification is that the
energy E now depends on the parameter K and the quan-
tum numbers k, and k,. This relation is found by letting
the Hamiltonian (2) operate on the envelope functions
(13) and (14). We next have to invert this expression and
express K in terms of E, k,, and k,,. The result is

17271 71/72
k=16, |1- [1-— , (20)
Gy
where
m 2a+ B
G = ,12—17,[31kﬁ (21a)
afi 2a;
and
4miE 2m, B
- _ 2 44 P1yo,0
= P a’lﬁ2k"+k“+ o kik, . (21b)
For A we similarly obtain
' G, |72 1/2
A= ’G3H1+G—‘;] —1” ) (22)
3
where
m 2a,+ 3
Gy = ,22—-72,—2kﬁ (23a)
ay o)
and
4m3(V—E) 2my, , . By ,
G4= a’ﬁ4 a’ﬁz k “ k” - ‘a’l—kxky (23b)
2 2 2
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For different values of k, and k, one can find the
values of E satisfying the eigenvalue equation (18). In
this way one can determine the parallel dispersion of the
subbands. This will be referred to as the “exact” solu-
tion. It is not much more difficult to write a short com-
puter program for this case than for the parabolic case.
However, it does not give much physical insight into the
relation between the perpendicular and the parallel mass.

We have, therefore, derived simple approximations
which give the parallel mass as an explicit function of the
confinement energy. First the eigenvalue problem for
k,=0 is solved as described above. Then the terms in-
cluding k| are treated in first-order perturbation theory.
This procedure should be appropriate for the small k,
values considered here. We are particularly interested in
the coefficient of the kﬁ term, and we thus want to calcu-
late the expectation value of

#” _d d
——— (205 +By) - .
2m dz (2a0+Bo) dz 24
For the first term the result is simply
# #
—P, 2
2m, Y 2m, °’ v 25)

where P, (P, ) is the probability that the electron is in the
well (barrier) given by

P,=B> biﬂ(z—zk’g—’—) (26a)
and
P,=B2 1+cos(2Kb) . (26b)

2A

Here the upper (lower) sign applies to states with even
(odd) parity. B is the normalization constant in Egs. (13)
and (14) given by

) —12
is1n(2Kb) " 1+cos(2Kb) ) 27)

2K 2A

B=|b

Equation (25) describes the enhancement of the
effective mass which occurs even in the absence of non-
parabolicity terms and which is due to the penetration of
the wave function into the barriers, where the effective
mass is larger. It is clear that in the limit of zero well
width the parallel mass should be that of the barrier ma-
terial. This effective mass has been calculated exactly by
Priester et al.!” and a comparison with their expression
shows that Eq. (25), which is derived with the use of per-
turbation theory, is in fact an exact result. It is interest-
ing that the same expression recently has been obtained
in a different context: Johnson and MacKinnon'® have
shown that in the parabolic approximation the effective
electron mass for motion along the magnetic field parallel
to a heterojunction is also given by Eq. (25).

Caution is necessary to evaluate the second term in Eq.
(24). The discontinuities of the parameters a, and 3, and
the derivative of the envelope function at the interfaces
must be taken into account. The matrix element turns
out to be

7719 .
B2 |(2a+By )K |bK T i‘ﬁ(i—kl’—)
+
F (20gy+ Bog AL 2SO 2KD) —°°Sz( 2Kb) | (28

for even (odd) parity as before. Adding this to expression
(25) we obtain an explicit expression of the parallel mass
as a function of ¢,

#K?
2m,

b
m,

#K?
2m,
#A?

2m, l

sin(2Kb)
2m K

+ |14+ 2a}+B8))

+ [1—(2a'2+B'2)

—1
1tcos(2Kb)
—_— . 29

Applying some approximations we can simplify it fur-
ther. If the penetration of the wave function into the bar-
riers is small the term proportional to b dominates the ex-
pressions (27) and (28). We can then also neglect the
mass enhancement described in (25). If we further ex-
pand K to lowest order in € we recover (12), which was
derived under the assumption of infinite barriers. Taking
the barriers to be finite decreases both the perpendicular
and parallel mass since € decreases, but the expressions
(8) and (12) remain approximately true. In Fig. 3 we give
the parallel dispersion for the ground state in a 50-A
GaAs quantum well between Al 3;Gag,As barriers for
different cases: the exact solution of Egs. (18)-(23) for
N=0, 1, and 2, using the simple approximation (12) for
the parallel mass for N=2 and ignoring nonparabolicity

Energy (meV)

n

2 3 4 5
K2 (107*A %)

FIG. 3. Energy vs the square of k, for the ground subband in
a 50-A GaAs quantum well. The dotted line shows the parabol-
ic approximation and the solid lines the exact solution of Eq.
(18) modified by Eq. (19) for N=0, 1, and 2. For N=2 the
dispersion with the simple approximation (12) for the parallel
mass is also shown (dashed line). The slope is inversely propor-
tional to the parallel mass. The solid lines deviate from straight
lines slightly.
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effects. It is seen that the parallel dispersion in the non-
parabolic case is not much influenced by the boundary
conditions and that the parallel mass is clearly lower in
the parabolic case. (The slope is steeper.) It is also found
that the simple approximation (12) is qulte good even for
such a narrow well as 50 A. In Fig. 4 we give the perpen-
dicular and the parallel masses defined by Eqgs. (9) and
(29), respectively, as a function of well width. As the well
width decreases the confinement energy and thereby both
the masses increase. It is seen that the parallel mass is
clearly higher than the perpendicular mass for all well
widths. For a 100-A well the enhancement of the parallel
mass is about three times stronger, in agreement with the
simple expressions (8) and (12). For narrower wells this
factor decrgases, but even for the thinnest well con-
sidered, 30 A, the enhancement of m I is twice that of m .

One can estimate the spin-splitting following Malcher
et al.® The kinetic energy can be described by a 2X2
matrix whose eigenvalues are given by (1). In principle
there can be a contribution to the spin-splitting from the
inversion asymmetry in bulk GaAs and from a built-in
electric field. The latter gives a contribution for the sin-
gle interface case considered in Ref. 6 but it vanishes for
a symmetric quantum well. Using the parabolic case as
the zeroth-order Hamiltonian, Malcher et al. derive an
expression for the spin splitting, whose dominating term
for small k is

d d
—vo—— )k 30
<dz Yo dz> I (30)
in the present notation. The explicit expression in the

quantum-well case for this matrix element is given by Eq.
(28) with 2ay+B,) replaced by y.

0.080 | .
0.075 | 8
(%}
wv
(=}
£
(7]
=
-—
(&)
@ 0.070 .
e
L m_‘_
| Bulk mass e —
0.065 . : .
50 100 150 200

well width (A)

FIG. 4. Well-width dependence of the parallel mass accord-
ing to Eq. (29) and the perpendicular mass [Eq. (9)] in units of
the free-electron mass.
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IV. EFFECT OF MAGNETIC FIELD

In the present formalism it is straightforward to in-
clude the effect of a magnetic field perpendicular to the
interfaces and in this way directly compare with results
of cyclotron resonance experiments. As before we take
the solution for k=0 as the zeroth-order Hamiltonian
and include the terms involving k; in perturbation
theory. The magnetic field quantizes the motion in the
x-y plane and the continuous variables k, and k, are re-
placed by the Landau level index n. The procedure for
inclusion of a magnetic field is to replace k by k+e A /%,
where A is the vector potential. With a magnetic field in
the z direction, k, and k, do not commute:

ieB
[kx,ky]z——h— . (31)

Therefore we must replace k,k, by the anticommutator

{kx k,}. We follow the standard procedure to introduce
harmonic oscillator operators a' and a defined by
7 1/2
t_ .
a = '2:5 (kx +lky) (32a)
and
172
a= |2 | (k,—ik,) (32b)
2eB * 4
They have the well-known properties
aunz\/;unﬁl (33a)
and
atu,=vVn+1u,,, . (33b)

Here u, is a harmonic oscillator function with the Lan-
dau level index n =0,1,2,... . When the operators in
expression (2) operate on u,, they give terms proportional
to u, with the exception of (a)* and a* which give terms
proportlonal to u,,, and u,_, respectively. These
terms can be treated in second-order perturbation theory.
(The first-order correction vanishes.) If we use the para-
bolic terms as the zeroth-order Hamiltonian, we find that
this correction is

Bom e
8%°

<2n3+3n2+7n +3). (34)

Here the prefactor Bom”e3/ﬁ5 is of the order 107’
meVT 3 so we can safely neglect the terms mvolvmg
(a")* and a*. When we let the other operators in (2)
operate on u,l we find

#? d 2eB
E(B)_8+<E"d— a0+/30)—> ‘ﬁ (n+%)
+[(8n2+8n +5)(ay)
2p2
+(n2+n+1)<B0>]% . (35)

The expectation value in the second term is just
#°/(2m) according to the definition (24). If the layer
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width is not too small we can also replace the expectation
values of the nonparabolicity parameters by the values in
the well. Reintroducing a} and 3] we then obtain

#ieB

my

—1[(8n+8n +5)a}

E,(B)=¢+(n+1)

#ieB
1

2
+(n?+n+1)8] . (36)

For small magnetic fields the last term can be neglected
and we can write

E,(B)~e+(n+1) 78 37
m
The cyclotron mass is defined by the relation
__ fieB

where AE (B) is the energy difference between two Lan-
dau levels, which is what is measured in cyclotron-
resonance experiments. From (37) and (38) we can easily
verify that in the limit B— 0 the cyclotron mass is equal to
the parallel mass.

If we consider the difference AE,(B)=E, ,,(B)
—E,(B) for magnetic fields high enough that the last
term in (36) cannot be neglected, we find

— #ieB
m

#ieB 2

AE,(B) ~
1

—1(8ai+B\)n +1) (39)

Thus the cyclotron mass increases with B and the Landau
level index n. We should, however, expect further
corrections to the coefficient in front of B? due to
confinement effects. The correction to m, came from
terms proportional to kzzkﬁ in the bulk expression (2). If
it were expanded to sixth order, there would be terms
proportional to kzzkﬁ, which would give corrections to
the coefficient in front of B2 in Eq. (35). In the calcula-
tions by Malcher et al.® for a single interface these terms
have been neglected and there should also be similar
corrections to the Landau levels at finite magnetic
fields.”

V. COMPARISON WITH EXPERIMENT AND OTHER
THEORETICAL MODELS

There are many experimental results related to the
confinement energies in quantum wells. Unfortunately
there is a considerable spread?® among the results for nar-
row quantum wells, where the nonparabolicity effects are
the strongest. Possible explanations for this are uncer-
tainty in the well width, grading of the interfaces, and

influence of the minima at the X points in the Brillouin

zone. Therefore we concentrate here on experiments
which measure the parallel dispersion. Several such ex-
periments have been performed for modulation-doped
heterojunctions where the present theory is not immedi-
ately applicable, but fewer experiments have been per-
formed for undoped quantum wells. Singleton et al.?!
have performed cyclotron-resonance experiments for a
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22-A GaAs quantum well between Alj;,Gag ¢,As bar-
riers. The cyclotron mass was found to approach 0.083
in the limit of small magnetic fields. The present calcula-
tion yields a parallel mass of 0.080 in good agreement
with experiment. The cyclotron mass was found to in-
crease rapidly with magnetic field in qualitative agree-
ment with the prediction in the previous section where it
was mentioned that the present theory with the bulk
dispersion expanded up to fourth order in k is insufficient
for a quantitative comparison. The confinement energy
for this sample was found to be 198 meV from photocon-
ductivity experiments. This is clearly higher than the cal-
culated energy in the parabolic approximation, 178 meV.
Using boundary conditions with N=2 in Eq. (18) we have
obtained a confinement energy of 205 meV. This agree-
ment may be fortuitous because for such narrow wells the
confinement energy is very sensitive to input parameters
like well width and conduction-band discontinuity.

Cyclotron-resonance experiments for superlattices with
80-A GaAs quantum wells and 20-A Al,Ga,_,As bar-
riers with x between 0.1 and 0.3 have been performed by
Duffield et al.?> With the magnetic field perpendicular
to the layers they measured an effective mass slightly
larger than 0.07, slowly increasing with x. For an isolat-
ed quantum well with the same parameters we obtain a
parallel mass of 0.070 for x=0.1 and 0.072 for x=0.3.
The remarkably good agreement is somewhat surprising
because the overlap between the wave functions in adja-
cent quantum wells of the superlattice is considerable so
the quantum wells can hardly be considered isolated.
Duffield et al. also measured a much more enhanced
mass with the magnetic field parallel to the layers when
the electrons can tunnel through the thin barriers. This
mass is sensitive to the width and height of the barriers
and is not related to the perpendicular mass defined in
this article for a single quantum well.

Interband magneto-optical experiments by Ancilotto
et al.”® with an 80-A GaAs quantum well between
Al 3;Gagy ;As barriers could not be quantitatively ex-
plained by a six-band model with bulk parameters as in-
put. The slope of the transition energy as a function of
magnetic field, corresponding to the inverse parallel
mass, could, however, be reproduced if the electron mass
0.074 were taken as input. This theory yields a parallel
mass of 0.072. The comparison is not quite straightfor-
ward because the six-band model includes nonparabolici-
ty effects to some extent. In total the agreement with ex-
periment is encouraging although more experiments are
desirable for a more certain evaluation of the theory.

‘Cyclotron-resonance experiments are often influenced
by polaron effects,?* which lead to an enhancement of the
effective mass which is of the same order of magnitude as
the effect of band nonparabolicity. So far these two
effects have often been considered separately, which
makes a straightforward comparison with experiment
difficult. One of the virtues of the present approach is
that it is simple enough that it could serve as the starting
point of a calculation, which includes contributions to
the effective mass both from band nonparabolicity and
polaron effects. In the experiments mentioned above po-
laron effects were subtracted in Ref. 21 but not in Ref. 22.
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We next turn to a comparison with other theoretical
approaches. The wuse of energy-dependent effective
masses has recently been subject to some controversy.
An article by Welch, Wicks, and Eastman (WWE) (Ref.
25) was criticized by Hiroshima and Lang (HL),?® who, in
turn, were criticized by Nelson, Miller, and Kleinman
(NMK).?’ Very recently Persson and Cohen (PC) (Ref.
28) questioned the use of energy-dependent effective
masses in Ref. 27. These four articles only dealt with the
confinement energies. The question whether one should
use the concept of an energy-dependent effective mass is
largely a matter of definition. HL call their method a
solution of the Luttinger-Kohn' equation in contrast to
the energy-dependent effective-mass approach by WWE,
but their method is in fact equivalent to the approach we
used in our previous paper,” where we defined energy-
dependent masses. The essential issues are rather how
energy-dependent masses should be defined and how they
should be used. The main difference between Refs. 25
and 26 lies in the definition of the effective mass. WWE
take the effective mass to be the ratio between the
momentum and the velocity, i.e.,

—p_ _#k_
m(E) > 3E/Ok (40)

With the dispersion (1) this gives a perpendicular mass

=m(1+2a’e). As shown in the straightforward solu-
tion of the Schrodinger equation in Sec. II this is not the
appropriate definition. HL invert the E (k) expression
which gives the correct relation m, =m (1+a'e).

The main difference between the approaches by
Hiroshima and Lang?®® and by Nelson et al.?” is how the
energy-dependent effective mass is used. This is related
to the boundary conditions. HL use the same boundary
conditions as in the parabolic case, which corresponds to
N=0in Eq. (18), and also neglect the barrier nonparabol-
icity. NMK obviously use boundary conditions where
the derivative of the envelope function is divided by the
energy-dependent mass rather than the bulk mass, which
corresponds to N=1 in Eq. (18). No clear argumentation
is presented for this choice, which, however, is rather
reasonable intuitively. The difference between our ap-
proach with N=1 and that of NMK lies partly in the
choice of nonparabolicity parameters. We have taken
our parameters from the bulk band structure calculated
with a 14-band model® while NMK choose a nonparabol-
101ty parameter v =49 A72 (Ref. 29), corresponding to

=0.86 eV~!, which is considerably more than the
Va]ue derived in Ref. 6. NMK also estimate the nonpara-
bolicity parameter in the barrier by assuming that y is in-
versely proportional to the square of the band gap. This
gives a value of a’ which is much smaller than that given
by Malcher et al.® The transcendental equation

}\,ml(E)
Km,(E)

Km,(E)
Am (E)

tan(2Kb)=2 41)

from which NMK obtain their energies encompasses
both the even-parity solutions and the odd-parity solu-
tions in Eqs. (13) and (14). They find that the ground-
state energies are increased somewhat but remain practi-
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cally unchanged when nonparabolicity effects are includ-
ed. Relative to our results with N=1 the confinement en-
ergies are influenced by the different input parameters,
but the nonparabolicity shifts are similar. For the excited
states we find that the levels are lowered much more
when we use the expression (9) instead of the approxi-
mate expression (8), which is used by NMK. The
difference between these expressions becomes particularly
large for the 5-A quantum well considered by NMK. It
is seen that expression (9) is invalid when a'e>}. The
reason for this is seen if the expression (4) is examined.
The energy first increases with K but eventually it de-
creases again when the K* term starts to dominate. The
maximum energy is (4a’)”!. It is clear that higher-order
terms are essential when this limit is approached. For
GaAs the present theory becomes invalid for £>0.4 eV,
and it can be expected to be dubious when £~0.26 eV,
which is the case for a 5-A quantum well. Furthermore,
the effective-mass approximation cannot be expected to
be valid for such narrow quantum wells.

Persson and Cohen?? start from an expression includ-
ing k* terms just like we did in our previous paper.” The
boundary conditions are derived as in Ref. 16. The re-
sulting eigenvalue equation is equivalent to that in NMK,
as we have pointed out above. In contrast to the other
papers PC find rather small energy shifts even for the ex-
cited states. They consider two nonparabolicity parame-
ters which in the present notation correspond to

=0.123 eV~ and a’=0.114 eV~ (Ref. 30). These
values are thus only about one-fifth of the value calculat-
ed in Ref. 6, which is used in the present article. In simi-
larity with the discussion in the previous paragraph, PC
point out that the fourth-order expression (4) reaches a
maximum before the dispersion bends down for large k.
This expression has some similarity with the actual band
structure for GaAs where the highest point of the
conduction-band edge is about 2 eV above the I' point.
PC identify this point with the maximum of the fourth-
order expression (4) and use this to determine the nonpar-
abolicity parameter. This approach implicitly involves
the dubious assumption that the fourth-order expression
is valid up to the k value for which the conduction-band
edge has a maximum, which according to the calculation
by Chelikowsky and Cohen?! is reached roughly one-
third along the distance from the I" point to the Brillouin
zone boundary. It is found, however, that this point
occurs at another k value in the actual band structure®!
than what Eq. (4) in Ref. 28 gives.

A commonly used expression for an energy-dependent
electron mass was derived by Kolbas:3?

m (E)=0.0665+0.0436E +0.236E>—0.147E° . (42)

This is actually an optical bulk mass’®® evaluated at 77
K. To lowest order it corresponds to a’'=0.656 eV~ ! and
is fairly close to the perpendicular mass used in this arti-
cle.

One of the first models which included nonparabolicity
effects for quantum wells and superlattices was the Bas-
tard model,>* which is commonly used. It gives explicit
transcendental equations, which also can be generalized
to the case k”#O. It is based upon the Kane model
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where a certain number of bands are included exactly but
the other bands are ignored. In the two-band model,?
which includes the conduction band and the light-hole
band, the effective mass is proportional to the band gap.
The three-band model® also includes the split-off band.
(The heavy-hole band is decoupled from these bands for
k;=0.) One advantage with the Bastard model is that
the boundary conditions are derived from many-band
equations for the envelope functions and their first
derivatives, and one avoids the mathematical difficulties
associated with the singularities of the higher derivatives
at a sharp interface.

A consistent use of the Bastard model is complicated
by the neglect of remote bands. If we apply it with the
effective masses used in this article and take the value for
the Kane matrix element P, which describes the coupling
between the conduction band and the valence band, from
Ref. 34 (see Table I), we find that the ground-state
confinement energy is decreased in the two-band model
but increased in the three-band model relative to the par-
abolic case, as seen in Table II. However, these parame-
ters are not consistent with the model. A consistent ap-
proach is to take the GaAs mass from experiment and
determine P from this mass, the band gap, and (in the
three-band model) the spin-orbit splitting. P is taken to
be the same in Al ,Ga;_,As as in GaAs. Then the
effective mass in Al ,Ga,_, As is calculated from P and
the appropriate energy gaps. Both in the two-band mod-
el and the three-band model this mass turns out to be

TABLE II. Shift in meV of ground-state confinement energy
relative to the parabolic case in different approximations. In the
parabolic case the confinement energies are 76.7 meV for
L,=50 A and 30.8 meV for L,=100 A.

o °

L, 50 A 100 A
This work, Eq. (18)
N=0 —538 —15
N=1 +1.4 +0.6
N=2 +8.6 +2.5
Two-band Bastard model®
P=0.6778 a.u.b —9.8 —5.5
P=0.7935 a.u.° +1.1 +0.5
Three-band Bastard model®
" P=0.6778 a.u.b +5.5 +2.2
P=0.6686 a.u.c +1.1 +0.5
Schuurmans and ’t Hooft model’ +1.5 +0.7

*Reference 2.

Effective masses and P value according to Table I.

°P chosen to reproduce m, in Table I. Shift relative to calcula-
tion in the parabolic case with m,=0.0841 determined by this P
value.

dReference 3.

°P chosen to reproduce m, in Table I. Shift relative to calcula-
tion in the parabolic case with m,=0.0830 determined by this P
value.

‘Reference 12. Parameters as in Table I.
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clearly smaller than in Refs. 35 and 36. In this way we
obtain a slight increase of the confinement energies due to
nonparabolicity effects, similar to what we obtain from
Eq. (18) with N=1 (Ref. 37). For the two-band Bastard
model, equations have also been given for k70 (Ref. 38).
The enhancement of the parallel mass is found be to
about 2 of the value according to Eq. (29). The difference
is well explained by the anisotropy term proportional to
By, which is absent in the Bastard model.

The Bastard model has been further developed by
Schuurmans and ’t Hooft.!? The conduction, heavy-hole,
light-hole, and split-off bands are included in a matrix.
This model also takes into account the modification of
the effective masses due to remote bands (bands not in-
cluded in the matrix). The numerical relation between E
and k is obtained from a calculation of the band structure
in the bulk materials. This involves the diagonalization
of a 3X3 matrix (for k;=0). The secular equation can
also be seen as a third-order equation in k2 from which
the désired k(E) relation can be obtained analytically.
The eigenvalue equations for the quantum-well case can
be simplified for materials with relatively large band gaps
into scalar equations for electrons and heavy holes and
coupled equations for the light-hole and split-off bands.
Boundary conditions with division of the envelope-
function derivative by an energy-dependent mass corre-
sponding to N=1 [Eq. (18)] are used. This model in-
volves more numerical work than the previously men-
tioned approaches.

The application of this model in its original form in-
volves some problems. Schuurmans and ’t Hooft intro-
duce four adjustable parameters, which in principle can
be determined from the experimental values of m,, my,,,
my,, and m,, i.e., the effective masses for the conduction,
heavy-hole, light-hole, and split-off bands, respectively.
These four parameters include A, which describes the
coupling between the conduction band and the valence
band and is proportional to P?, and two modified Lut-
tinger parameters Y, and v,, which are different from the
“true” Luttinger parameters y¥ and y} (Ref. 39). The
four inverse masses are expressed in Eqgs. (9)—(12) in Ref.
12 in terms of these four parameters. By inverting these
expressions it is found that A becomes proportional to
mp!+my'—2m'. However, the sum of the first two
terms is close to the third term. In fact, if the conduction
band is not included in the matrix, the relations between
these masses and the true Luttinger parameters,
are  mp,=(yi—2y7)7", my=({+2y5)"', and
my,=(yT)”, and we obtain the result A=0. The last of
these relations is modified if the conduction band is in-
cluded in the matrix as in Ref. 12 and a finite value of A is
obtained. Nevertheless, if experimental values of the hole
masses are used, it is clear that A becomes very sensitive
to experimental uncertainties in the effective masses. In
particular the mass of the split-off band is not known
very accurately.

We have therefore modified the method by Schuur-
mans and 't Hooft so that we take the parameter P from
Ref. 34 (Table I) and determine the other adjustable pa-
rameters s, ¥, and ¥y, from the experimentally deter-
mined parameters m,, ¥+ and y%. It is seen in Table II
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that for the ground state this gives a very good agreement
with the present method if we use the same boundary
conditions (N=1). For excited states the results often
tend to fall in between those for N=1 and N=2. The
method by Schuurmans and ’t Hooft has recently been
extended to the case of finite k; (Ref. 40). This involves
much more numerical work and is outside the scope of
the present article.

An alternative method to calculate the effective masses
for a superlattice was recently given by Johnson et al.*!
They apply a sum rule for the oscillator strengths and
determine both the parallel mass and a perpendicular
mass, which is different from the one used in this paper.
The enhancement of the parallel mass was about half of
that determined experimentally by Duffield er al.?> For
the effective mass with the magnetic field parallel to the
layers the agreement was about equally good as in the
simpler Bastard model put forward in Ref. 22. In the
latter case the dispersion along the superlattice direction
is probed. In the limit of very wide barriers (correspond-
ing to the isolated quantum wells considered in the
present article) this dispersion becomes flat, i.e., the
effective mass becomes infinite. For finite barriers the
dispersion should not be expected to be parabolic over
any substantial range of k values. It has been demon-
strated*” that this dispersion clearly deviates from a para-
bola also in the limit kK —0.

VI. CONCLUSIONS

We have presented a convenient and fairly simple but
quite accurate approach to determine the confinement en-
ergies in a quantum well and the effective masses for
motion parallel to the interfaces. The subband structure
can be obtained from transcendental equations of the
same form as in the parabolic case but somewhat more
complicated. The equations apply to excited states as
well as the ground state. The approach should work well
for semiconductors with band gaps large enough that the
nonparabolicity can be properly described by a fourth-
order expression in the relevant energy range. For
small-band-gap semiconductors its usefulness is more
limited, and it is not applicable to calculations of valence
subband structures because of the strong coupling be-
tween heavy and light holes.

One of the main results is that the parallel mass is
enhanced over the bulk mass 2—3 times more than the
perpendicular mass. The modification of the boundary
conditions due to nonparabolicity is analyzed. It is
demonstrated that the confinement energy for the ground
state can be increased when nonparabolicity effects are in-
cluded, in agreement with the conclusion in Ref. 27 but
in disagreement with most of the previous work. The
parallel mass is not very sensitive to the boundary condi-
tions. We explicitly include the effect of a magnetic field
perpendicular .to the interfaces and show that the parallel
mass is equal to the cyclotron mass in the limit B —0. It
is pointed out that sixth-order terms in k in the bulk ex-
pression are needed to calculate the increase of the cyclo-
tron mass with B quantitatively. The parallel mass is also
relevant for transport parallel to the layers (cf. the high
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electron-mobility transistor) and it has recently been
used* in the calculation of exciton binding energies. The
step in the density of states at the bottom of a subband is
given by the parallel mass. Between the sublevels the
density of states is not constant, as in the parabolic case,
but increasing because of the nonparabolicity of the sub-
band dispersion (effect C in Fig. 1). The agreement with
recent experimental results is encouraging. We have also
pointed out the differences and similarities with previous
theoretical approaches, most of which have only been
concerned with the shift of the confinement energies, and
we have shed some light on the origin of the controversy
between Refs. 25-28.
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APPENDIX

We here derive an expression for the current density in
the nonparabolic case and relate it to the boundary con-
ditions at an interface. The Hamiltonian is written

. d d d? d?
H———A—'—f‘;z“z'aoﬁ .

dz dz
Here A is the coefficient of the second-order term in k,,
which in the general case is

(A1)

2
4 =2ﬁ—m+(2ao+Bo)kﬁ . (A2)

The effective mass and the nonparabolicity parameters
a, and B, are z dependent and equal to m |, oy, and Sy, in
the quantum well and m,, ay,, and B, in the barriers.
The expression for the current density j is derived from
the continuity equation

dt  dz ’
where p=F*F is the charge density. Using the time-

dependent Schrodinger equation and its complex conju-
gate we find

(A3)

*
Q:F*ﬂ+Fﬂ.=.}_(F*HF—FHF*) ,

4
dt dt dt i# a4
and we obtain in the present case

di _ 1 d*F d*‘F

L= P42 —F* —c.c. |, (A5

i ) aodz“ c.c (AS)

where c.c. stands for the complex conjugate of the first
two terms. We want to evaluate the current density in
the bulk materials some distance away from the interface
so we do not need to include the derivatives of 4 and a,.
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It is seen that Eq. (AS) is fulfilled if

d*F
0 dz?

dF d3F | dF*
*A=——F* +
F dz %o dz? dz

—CcC.C.

1
I~

(A6)

Note that we need the third term to avoid a term pro-
portional to dF*/dzd®F/dz® in dj/dz. For the
quantum-well case the current density is zero because the
wave functions are real. However, the boundary condi-
tions at an interface should be independent of the type of
structure. We, therefore, consider a potential step at
z=0 with an incoming wave, a reflected wave, and a
transmitted wave:

I exp(ik,;z)+R exp(—ik,z), z <0

F(z)= T explik,z), z>0.

(A7a)

(A7b)

Here k, is given by (5) and k, by a similar expression
with E replaced by (E —V). The energy is taken to be
larger than the size of the potential step V. Inserting this
into (A6) we obtain

2k
j,=—%i(A,+2amk%)(|1|2—|R|2), z<0 (A8a)

j=

j2=T(A2+2a02k2)IT|2, z2>0. (A8b)

We want to see if different boundary conditions are
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consistent with current conservation, that is, the condi-
tion j, =j,. If we assume that the boundary conditions
at an interface are given by the continuity of the envelope
function F and
LdF _ dF
dz O dz3
[cf. Eq (17) and Ref. 16] we can express the amplitude of
the reflected wave and the transmitted wave in terms of
that of the incoming wave. We obtain

R A,k1+a01k?——A2k2—a02k%

(A9)

R _ ! 2, (A10)
1 A1k1+a01k1+A2k2+a02k2
I Ak +agkl+ Ak, +agks

Insertion into (A8) does not give j;, =j,. If 2a, had been
replaced by «; in (A8a) and (A8b), which corresponds to
the usual expression for j but with the mass given by the
perpendicular mass [Eq. (9)], we would have obtained
Jj1=Jj,. In the present case it is readily verified that
current conservation is fulfilled if ay is replaced by 2q, in
Eqgs. (A10) and (A11). We thus find that continuity of F
and
dF d’F

A—— =20y Al2

dz Qg dz3 ( )
is compatible with conservation of the current density.
When this is applied to the quantum-well case, we obtain
Eq. (18) with N=2.
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