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Nonlinear high-frequency conductivity in semiconductors
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We study the nonlinear effects of the electron conductivity in semiconductors when a strong
high-frequency (HF) electric field is applied together with a direct-current (dc) electric field. The
dynamic equation that we used is different from the Boltzmann equation by considering the memory
effect for drift oscillating motion of electrons. Using the drifted temperature model, we derive a set
of equations from which the amplitude and phase of each harmonic component of the electron drift
velocity and the electron temperature can be obtained. In the weak-HF-field limit our approach
reduces to the well-known memory-function method. %e have calculated the conductivity of elec-
trons in a bulk n-type GaAs sample. The nonlinear effects are shown. In particular, the dc conduc-
tivity decreases and definitely becomes negative with increase of the first- and second-harmonic
components of the applied HF field. Comparison is made with experiments.

I. INTRODUCTION

Study of the nonlinear behavior of the carrier conduc-
tivity in a strong high-frequency (HF) electric field is im-
portant, because microwave devices often operate in a
region under a strong HF field. The free-carrier absorp-
tion of laser light is also related to the transport of elec-
trons in a strong HF (possibly optical) field. This subject
is also interesting in its own right as a fundamental
problem. Experiments have shown some interesting
nonlinear effects, for example, that the direct current
(dc) conductivity decreases with increase of the strength
of HF field. ' However, there is a qualitative difference
between the results of different experimental groups. The
authors of Ref. 1 reported that dc current in an n-type
GaAs sample placed in a strong microwave field de-
creases dramatically with an increase of HF field, and dc
conductivity definitely becomes negative when the HF
field exceeds I kV/cm. The results in Ref. 2 show a
much slower decrease of dc conductivity with increasing
HF field, declining only 40% from its static value even
when HF electric field increases up to 3 kV/cm.

In theoretical study of HF conductivity, a good under-
standing has been achieved when only a weak HF elec-
tric field is applied. There are several studies for the
case of a strong dc field (hot electrons) together with a
weak HF field. The case of a strong HF electric field
is a more difFicult problem. Only a few papers deal with
this subject using a dynamic theory, ' and these calcula-
tions rely on Monte Carlo simulation to solve the time-
dependent Boltzmann equation. While the Monte Carlo
method is powerful in the treatment of dc transport,
there are some difficulties in the management of HF
transport. One of these is the difficulty in distinguishing
the "steady state" from the initial transient. When the
period of the applied field is comparable to the scattering

relaxation time, the applicability of the Boltzm ann
theory becomes questionable. A tractable and reliable
approach is therefore still lacking.

In this paper we propose an analytical approach to
study the nonlinear effects of electron transport when a
strong HF electric field is applied (may together with a
dc electric field). When a HF field is applied, the trajec-
tory of an electron between scat terers is no longer
straight. An oscillating drift motion of electrons is super-
posed upon the random motion of electron caused by the
scattering processes. For determining the motion of elec-
trons after time t, not only the condition at time t should
be known, but information of the drift motion of elec-
trons during a period before t is also needed. This
memory effect is included in our approach. The dynam-
ic equation that we used, therefore, is different from the
Boltzmann equation. (If the memory effect for the drift
motion is neglected, our formulas reduce to those ob-
tained in the Boltzmann approach. ) Using the above ap-
proach, we study the "steady-state" HF transport. We
derive a set of evolution equations for the drift velocity
of electrons. Assuming that the distribution function of
electrons in relative coordinates is a Maxwellian, we also
obtain a set of evolution equations for the energy of elec-
trons, which is related to the electron temperature.
Solving the group of equations, we can obtain dc com-
ponent and each harmonic component of electron drift
velocity and the electron temperature.

We have used this approach to calculate electron
transport in an n-type GaAs sample. A microwave fre-
quency v = 35 GHz is chosen as the base frequency in
the present calculation. The strength of the HF electric
field is up to about 1 kV/cm. A weak dc electric field
60 = 10 V/cm is also applied. We find that when only
the electric field with base frequency 6

&
is applied, the

induced second harmonic of drift velocity is rather
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small, while a large second harmonic of the electron
temperature can be produced; the dc conductivity only
reduces about 5% from its static value (without HF
field), when the applied HF field is up to 6, = 1 kV/cm.
This result is in agreement with that of Ref. 2. Surpris-
ingly, if a second harmonic electric field is applied to-
gether with the first harmonic (with the same phase), the
dc conductivity decreases dramatically with increase of
the HF field, and definitely becomes negative when A',

and 82 are near 1 kV/cm, namely, a weak positive dc
potential drop can produce a negative dc current. This
phenomenon was shown experimentally in Ref. 1.

The paper is organized as follows. In Sec. II we sketch
the derivation of the kinetic equations for the harmonic
components of electron drift velocity and the electron
temperature. In Sec. III we briefly discuss the formulas
and results for the case of a weak HF electric field. In
Sec. IV we present the results of the numerical solution
for nonlinear HF conductivity in an n-type GaAs bulk
sample. Section V is devoted to discussion. Finally, in
the Appendix we use a functional-integral approach to
derive the formulas, proving an important statement in
the text [Eq. (2.12)].

center-of-mass momentum and coordinate operators, re-
spectively, N the total number of electrons, and
M = Nm, with m the electron effective mass. The
free-electron Hamiltonian in relative coordinates is given
by

H,
' = QEqcgcg

k
(2.4)

where b & and bq& are phonon creation and annihilation
operators in static coordinates, with wave vector q and
in branch 3,. The electron-impurity interaction is de-
scribed by

where Ek = A k /2m with Ak the crystal momentum of
electron in state k. (We use parabolic-band approxima-
tion. ) c k and c& are electron creation and annihilation
operators in relative coordinates; spin indices have been
omitted (but not ignored). P',', is the Coulomb interac-
tion in relative coordinates. The latter has the standard
form found in the literature. "The Hamiltonian for free
phonons is given by

(2.&)

II. FORMULATION „=g'u(q)e '
p

q, a
(2.6)

A. Hamiltonian

For convenience in the theoretical description, we re-
strict our present study to a three-dimensional electron
system. It is straightforward to generalize our approach
to a quasi-two-dimensional electron system, such as elec-
trons in a semiconductor quantum well. We consider N
electrons, scattered by n; randomly distributed impuri-
ties and phonons, applied by an spatially uniform elec-
tric field A(t). The following form of the applied electric
field C(t) is assumed:

V~ = g M(q, A )(b i + b t z)e'~'~p
q, k

with M(q, k, ) the electron-phonon matrix element.

(2.7)

B. Equations for the drift velocity of electrons

with R, the coordinates of impurity, u (q) the impurity
potential, and pz

= gj, c z+zc& the electron density
operator. The electron-phonon interaction is described
by

C(t) = 8, + gC„e'""', n = +1,+2, . . . , (2.1)

where we have 6" „=4„', with 8" the complex conju-
gate of 8, because C(t) is a real quantity. In order to de-
scribe the dynamical properties in the presence of a spa-
tially uniform electric field, it is convenient to separate
the center-of-mass motion from the relative motion of
the electrons. ' The Hamiltonian of the free-electron sys-
tem can then be written as

y, (t) = Tr[y;p(t)], (2.8)

Starting from the quantum-mechanical Liouville equa-
tion, one can derive the kinetic equations for a set of
macroscopic observables, [y;(t)]. Here we choose
[y;(t) J

= [v(t),f i(t), n i(t)]. The corresponding opera-

tors are [ y; [ = [0/M, c hack, b „ib&i ] connected with ob-
servables by

H, = H, + H,
' + V,', , (2.2)

where

H, = 0 /2M —Ne@(t) k (2.3)

is the center-of-mass Hamiltonian, with 0 and k the

with pit) the statistical density matrix. The physical
meaning of above observables is obvious: v(t) is the drift
velocity of the electron system, fk is the electron distri-
bution function in the relative coordinate, and nq& is the
phonon occupation number. If we solve the Liouville
equation to the lowest order, the rate of change of any
function of y(t), denoted by F(y(t) ), is given by

—([Ho(t), F(y(t))]) + —([V(t),F(y(t))]) — — lim f dt' e" " ([F(y(t)), V(t')]),
a~ .-o+

(2.9)
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where F(y(t)) = —(i/A)[+(y(t)), 0'(t)], with [A,B]
the commutator of operators A and B. For example,
we define the frictional force operator, 8', as

„' [&,v]
iq (k —R )i—g qu(q)e '

p
q, a

trajectory of an electron between scatterers, the memory
effect due to this drift motion should be taken into ac-
count. On the other hand, this motion could be con-
sidered as a classical motion due to the large mass, M.
The factor related to the center-of-mass motion in Eq.
(2.9) is then abstracted as

(exp[iq. k(t)]exp[ —iq k(t')] & =exp iq f 'v(s)ds
t'

—ig qM(q, iL)e'~ (bz]„+ b ~&)p
q, k

In Eq. (2.9), V = V'„+ P, '+ P'„+ P'~, and
I

0'(t') = exp (i/fi) f 8o(s)ds V(t)

(2.10)

(2.11)
I

X exp ( —i /fi) f '
H, ( s) ds

with 80 = 8, + 8'', + II . ( ) = Tr[pz( ~ ~ )]
with po the unperturbated density matrix. The operators
in Eq. (2.9) are in the interaction representation. In the
interaction representation k changes with time as a
"free" particle. Neglecting intracollision effects, ' one
should obtain

(2.12)

with v(s) = P(s)/M, the drift velocity of the electron
system. We emphasis here that this treatment implies a
change of operator k from the interaction representation
to the Heisenberg representation and, hence, the ap-
proach is to some extent correct beyond the lowest per-
turbative theory. If we assume that v(s) in Eq. (2.12) is
a variable weakly dependent on time and instead replace
it by v(t), the approach presented here reduces to the
usual Boltzmann transport theory. The parameters
which describe the distribution of electrons in relative
coordinates are still treated in the lowest perturbative
theory. These parameters are obtained by using the fol-
lowing assumption for p~

( exp[iq. k(t)]exp[ —iq.k(t')]) p~(t) = —exp —g B([y(t)]y;
1

(2.13)

= exp[iq. v(t)(t —t')],
which leads to the usual Boltzmann transport theory.

However, in the following we use the idea proposed by
Ting and Nee. ' Since the drift motion of an electron,
which is described by the center-of-mass motion of elec-
trons, R(t), is superposed upon the random motion of
electron in the scattering processes which changes the

I

y;(t) = Tr[y,A(»] . (2.14)

By substituting Eqs. (2.11)—(2.14) into Eq. (2.9), the fol-
lowing evolution equation for drift velocity of electrons,
v(t), is obtained:

where " is a normalization constant and the functions
8; are determined by the requirement

av(t)
Nm = Ne@(t) ——

iraq lim f dt'e" "exp iq v(s)dsat

X n;
~
u(q)

~
II(q, t —t') + g ~

M(q, A, )
~

A'+'(q, l, , t —t')
(2.15)

where

[((q) ( )—:
( ,

'
[p, (()—p'(( )]))= x[,f„+,(')) —f„(()]exp (F.„+ E„)( ( )(—'—

k

A' —'(q, ) ( )=((
' [f+—b,~(()+ b,~(())pq(()[b,,(( )+ b,~( , ())P,( ()]'l

(2.16)

+ —g[[1+n~],(t)]fk+ (t)[1—fk(t)] —n &(t)f],(t)[1—fk+ (t)]I

X exp (Ek+„—E],—]]10&—&)(t t')—
+ —QI [1+n zz(t)]fk(t)[1 —fk+z(t)] —n zz(t)f],+~(t)[1—fk(t)]I

k

X exp (E],+ E],+%Aqua—)( t t ')— — (2.17)



7674 W. CAI, P. HU, T. F. ZHENG, B. YUDANIN, AND M. LAX

v(t) = v0 + gv„e'" ', n = +1,+2, . . . , (2.18a)

Although the statement in Eq. (2.12) appears reason-
able and natural, it is, however, nontrivial, as has been
previously pointed out. A possible derivation of this
form is obtained by the path-integral approach (see Ap-
pendix). In this approach we keep only the classical
path for center-of-mass variables of electrons, but make
a perturbative expansion only for the relative variables
of electrons, so we can treat these two kinds of.variables
in different ways, which induce the present formulas.

We will study the high frequency "steady state" con-
ductivity. What the "steady state" means is that the
drift velocity of electrons can be described as

with v „=v„*, and the amplitudes v„are time in-
dependent; also, we assume that the distribution function
of electrons in relative coordinates oscillates with the
time-independent amplitudes:

f (t) —f (0) + y f (j) ijrut

J

(2.18b)

with f), j' = fkj'*. Letting r = t' —t, we make a
power expansion for following expression in Eq. (2.15):

t qvn
exp l q' v(s)ds = exp i q—v0r + g- e '" '( 1 —e'""')

neo

—e '
1 + e«~'(1 —e«~~) +l q'V 'T q'vn

neo

1+
mt

Pl
1

n in
nl ' ' 'nmco

(q v„ ) (q v„ ) ~ P7

+(1 —e ' )exp itot g ni,
k=1 k=1

+ ~ ~ ~

(2.19)

Here F„ is the nth component of frictional force:

F(t) = F() + g F„e'" ', (2.21)

with F „=F„'. In the case in which only a few low-

harmonic components of electric field are applied we as-

I

Since the exponential function is analytic in the whole
complex plane of the variable, the above series expansion
always converges. By substituting Eqs. (2.18) and (2.19)
into Eq. (2.15), we can separate the evolution equation
(15) for the drift velocity of electrons to a series of equa-
tions for harmonic components of drift velocity. We
have

0 = —Re@0 + F(),
i n toXm v„=—Xe 8„+F„. (2.20)

F, = F( ) + 2R.F(,
— ) + 2ReF(,

—),

p —p(0) + p(1) + p( —)) + (p( —2))s

F —F(o) + F(l) + F(2)
2 1 0

(2.22)

In F(„~', the lower index n is related to the harmonic
component of v(t), obtained by expansion of Eq. (2.19),
and the upper index j is related to the harmonic com-
ponent of fk(t) in Eq. (2.18b). We have

sume the high-harmonic-current components are small
enough and can be cut off to some order. By expanding
Eq. (2.19) up to third order and keeping

~

n
~

and
~ j ~

up to 2, we obtain that

p( j) —y r( j)(0)
q

(q v))(q v) ) [2r'j'(0) —r'j'(co) —r' j'( —co) ]

(q v2)(q. v2 ) [2r(j)(0) —r'j)(2') —I j (
—2')](')

2 q

+ [2r(j)((0) —2r(j)( —~) —r(j)(2') + r(j)( —2')](q v2)(q. v) )'
3 q q q

(q v2 )(q v) )' . .
) ( ') (')

3
[2r(j)( —l0) —2r(j (0) ) + r j (2l0) —r j ( —2')]

q q q q
(2.23)
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r

F'j' = y [r'~'(0) —r'1'(~}]— [riz'(0) + r'~'(co) —r'1'(2co) —I ij'( —co)]
q vi (q.vz)(q. vi )

2' q q q q
q

(q'vi) (q'vi )

2' [3r'Ji(0) —3I iji(co) + I ij'(2') —I ~ji( —co)]q q q q

(q v, )(q vz)(q vz )
[2I ' '(0) —I "'(2')—I' '( —Zco) —2I' '(co} + I 'J'(3') + r'i'( —co)]

4 3 q q

(2.24)

F'J' = g [r'~'(0) —I 'i'(2co)] + [I'i'(0} —2I'~'(co) + I'j'(2')]q v2 (q v, )

2 2 q
q

(q vz) (q vz )
[3I'J'(0) —3r'J'(2')) + I i'(4') —I'J ( —2')]

1 6' q q

(q vz)(q. v, )(q vi )
[2I'J'(0) —2I'J'(2') + I 'J'(3') —I'1'( —co)]2' q q

I'J'(neo) in Eqs. (2.23)—(2.25) is given by

I'~'(neo) = q n;
~
u(q)

~
g(fikj+'q —f ij)g(k, q, neo —q.vo)
k

(2.25)

g[(l + &qz. )fij+ (1 fk ) & zfk' (1 fk+q)]g(k q»&z. + n~ q'vo)

g[(1 + n —qz )fi,' (1 fk+q) n —qz fi,+q(1 fk )]g(k q &qz + neo q'vo)

(2.26)

where g(k, q, x), which is obtained by integrating over
dt' (or dr) in Eq. (2.15), has the following form:

g(k, q, x) =
(Ei,+q

—Ek —fix) + ie (2.27)

where the factor of 2 comes from spin degeneracy. In
order to obtain Eq. (2.26) we have neglected the oscillat-
ing terms in the factor [1 —fk(t)], since we will use the
nondegeneracy assumption later. I'~'(nco) has the fol-
lowing symmetry:

(2.28)

One can see from Eqs. (2.26) and (2.27) that the frequen-
cy of electric field enters into the expression of energy
conservation, Eq. (2.27), in a form of a multiphoton
emission or absorption. This quantum effect originates
from Eq. (2.12), which includes the memory effect in the
theory. Comparing Eq. (2.12) with the assumption,
which reduces to the usual Boltzmann equation,
R(t) —R(t') = v(t)(t —t'), we can see that the latter is
only approximately valid when t —t' is less than —,

' of

the period of the applied HF field. This greatly limits the
frequency region in which the Boltzmann equation is
valid. It indicates the significance of introducing Eq.
(2.12), especially in the study of the HF conductivity.
Moreover, even in the region of low frequency, use of
Eq. (2.12) still benefits us by automatically separating
each harmonic component, as shown before.

In the limit of low frequency, ~ —+ 0, expressions in
Eqs. (2.23)—(2.25) are not divergent, since the terms with
co

" (n ) 0) in the Taylor expansion of co (divided by
the denominator) completely cancel.

C. Equation for distribution of hot electrons

In order to obtain a closed set of equations, we need
equations for the electron distribution function in the
relative coordinates, fkj'. We assume that due to the
frequent electron-electron collisions the distribution
function of electrons in the relative coordinates fi, (t) is
a Maxwellian distribution at the temperature T, (t) (a
typical relaxation time for electron-electron scattering is
about 30—40 fsec):
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3/2

fk(t) = — exp[ —Egp(t)], (2 29)
2wh' P(t)

with p(t) = 1/k&T, (t) W. e assume the electron temper-
ature T, (t), or p(t), oscillates in the following way:

T, (t) = To + gT e'" ',
J

fk" = ~ k [1 + C~(21 pi I

' + 21 p2 I

')

+Dk(3pg", + 3p2pi)] +

= ~k[&~pi + C~(2p2pi )

+D.(3
I pi I

'
pi + 6

I p2
' pi)] +

p(t) = po + g p e'" ' .
J

(2.30) (2.32)

By expanding to third order and keeping
I

n
I

up to 2 in
Eq. (2.30), the relation between amplitudes T„and p„
can be obtained:

4 To = + , (2
I pi I

' + 2
I p2 I

')1 1

o po

k[&kp2 + Cu(pf)

+Dk(3 p2 I
' » + 6» pi I ')l +

(3p2p) + 3p2p, ) + . 3/2
2~A Po

2 vg
p( —Ekpo»

p2 p3

(3IP, I'P, + 6IP, I'P, ) +

po po

3
Bk

2Po

3

gpo'

1

16Po

3E„E„'
2Po 2

3E„3E„'
2

+
8po2 4po 6

(2.33)

(3
I P, I

' P, + 6
I P, I

' P, ) +

(2.31)

A similar expansion is made for fk(t) in Eq. (2.29), and
we obtain expressions of amplitudes fkj' in terms of p„'s:

The electron temperature T, (t) is related to the energy
of electrons in relative coordinates by E,'—:( H,

'
)

= C„T„with C, = 3&k&/2 the specific heat of the
electrons. The evolution equation for energy of elec-
trons, BE,'(t)/Bt, can be derived in a similar way as that
for the drift velocity of electrons. We have

BE,'(t) dv(t)
e

—:(H' ) = Ne@'(t) v(t) ——Nmv(t) —(H (t))
dt ~P

F(t) v(t) ——(H (t)), (2.34)

The operator of change of energy of phonons due to electron-phonon interaction is given by

[H~, V, ] = i+M(q, A, )flqq—e'q'
(
—

bq3 + b qq)pq .
q, k

(2.35)

The average energy change due to electron-phonon interaction can then be written as

(2.36)(H (t)), = —i+A & lim J dt'e" "exp iq Jv(s)ds
I

M. (q, A, )
I

A' '(q, k, , t t'), —
q g @~0

with A (q, X, t —t ) is defined in Eq. (2.17). By use of the expansion in Eq. (2.19), and substituting Eq. (2.36) into
Eq. (2.34), similar to Eq. (2.20), we obtain a set of equations of harmonic components for the energy of electrons E,'(t)
or the corresponding components for the electron temperature T, (t):
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—( Fo vo + F, v& + F& v, + Fz vz + Fz vz )
—(H~ )0 = 0,

—( Fz v, + F, vo + Fo v, + F, vz) —(H ), = iso k~T,jfc 32V

2
(2.37)

~ . 3E—( Fz.vo + F, .v, + Fo.vz) —(H )z = i2co k~Tz
2

Here Fo, F„and Fz are given by Eqs. (2.22) —(2.26), and (H )„ is obtained from corresponding F„by changing
I'~'(neo) in Eqs. (2.23)—(2.25) to &0'~'(neo), with

@q'~'(neo) = g Qqz ~
M(q, A, )

~

X —g [(1 + n, z )f~J+q(1 —f„"') —n, z fI~'(1 —fI,+„)]g(k,q, Q z + n~o —q v, )

k

—P [(1 + n q&)fI,"(1 —f&+q) —n q&f&'+ (1 —fI, ')]P(k, q, —&,& + n~o —q vo)
k

(2.38)@'~'(neo�)

also has the following symmetry.

N: '( neo) —= [N' '(neo)]* .—q q
(2.39)

1

exp(RQ z/k~TI )
—1

(2.40)

with TL the temperature of the heat bath.
The dynamical screening effect can be included by re-

placing the I z~'(nm) in Eq. (2.25) and @'~'(neo) in Eq.
(2.38) by the screened quantities I qj'(neo) and@&'~'(neo).

In this paper we neglect hot-phonon effects and assume
the phonons are in equilibrium with a heat bath; the oc-
cupation numbers of phonons are then determined by

The latter are obtained by dividing each term in Eqs.
(2.25) and (2.38) by the corresponding dielectric function
e(q, co), where co is the frequency argument of the g func-
tion in each term. The dielectric function, e(q, co), can
be calculated, for example, in the random-phase approxi-
mation.

Equations (2.20) and (2.37), together with Eqs. (2.31)
and (2.32), consist of a set of equations for determining
the magnitudes and phases of the harmonic components
of the drift velocity, v„, and the electron temperature T
(or p ).

If degeneracy is neglected, namely, (1 —fz ') is re-
placed by 1, the summation over k in Eqs. (2.26) and
(2.38), then, can be worked out. Typical terms in

gj,fIj'g(k, q, x) in Eq. (2.26) are obtained as follows:

R.e QE"„exp( POF&)g(k, q, x—)
—m „8" 1

( —1)" exp( —q )
2m.fi q BPO Po

(2.41)

with

po

2fll

1/'2

q
2

(2.42)

III. LINEAR HIGH-FRKQUKNCY CONDUCTIVITY

We first brieAy discuss the case in which a weak HF
electric field is applied, without or with a strong dc elec-
tric field.

Im QEf, exp( —p()Eg)g(k, q, ~) A. Cooling-electron case

k

1/2 2 n—4' I
( 1)" ~ 1 " r~zx d

(2~) A q dpo po @(r) —@ (elGJt + e Ice )t (3-1)

If we apply only a weak HF field (along the x direc-
tion) on the sample,

(2.43)

The integral in above equation is related to Dawson s in-
tegral. '

the electron distribution in the relative coordinates is as-
sumed to be in equilibrium with the heat bath, and
has only the component fz ' = Az in Eq. (2.33), with

po = I/k~TL. By taking only the linear term in Eq.
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(2.24), our formulas reduce to a simple equation given by
Lei, Horing, and Zhang,

&'~Nmv( = —Ne@, + y [r'0'(O) —r'0)(~)] .
q

F( ) = yr"'(0)
q

q

(3.8)

(3.2)

From Eq. (3.2) it leads directly to the well-known ex-
pression of linear conductivity, (7(co), in terms of the
memory function (see, for example, Gotze and Wofie"):

. &e2
cr(co) = i

m co + M(co)

with the memory function M(co) given by

M(~) = y " [r'"(o) —r")(~)] .
—iq„
Xm

q

(3.3)

(3.4)

The calculations of HF conductivity based on the
memory-function method or Kubo's formula have been
worked out.

B.Hot-electron case

—Ne@, + F,'" = O,

—F,'" v, —(H, ),"' = O, (3.5)

If a weak ac field is applied together with a strong dc
field (both are along the x direction), the electrons are
heated by the dc field. The hot-electron effect on the
high-frequency conductivity has previously been studied
based on the Boltzmann transport equation. We keep
only the zero- and first-harmonic components and cut off
the expansion up to linear order in the case of weak HF
field. Two sets of equations then are obtained. One set
of equations for the zero-harmonic components is given
by

The superscript (1) in Eq. (3.8) is related to the first-
harmonic component of the distribution function, fk"

A), BkP( in Eq. (2.32), with Ai, and Bk given by Eq.
(2.33). Equation (3.6), therefore, is a set of linear equa-
tions for v, and P( provided by the bias parameters vo
and Po. The structure of these sets of equations is simi-
lar to that, obtained by Das and Ferry. Since they de-
rived their formulas from the Boltzmann transport equa-
tion, the coefficients in Eq. (3.6) of the present paper
have an expression different from that of Das and Ferry.
In Ref. 7, the coefficients in the linear equations corre-
sponding to our Eq. (3.6) are obtained based on the
analytical expressions of the derivative of the relaxation
times. Our formulas do not require a special analytical
expression, and, therefore, it is easy to generalize them
to more complicated cases, such as two-dimensional
electrons in a quantum well.

We have calculated the linear HF conductivity
of hot electrons in bulk n-type GaAs and in a
GaAs-Ga& „Al As quantum we11. Detailed numerical
results are planned to be published elsewhere. ' The total
trend of HF mobility of electrons as a function of m is in
agreement with that of Ref. 7. We found, however, that
resonance picks appear in the curves of the real part of
HF mobility and the amplitude of oscillating electron
temperature, T&, near m = BL0, with ALo the frequency
of the longitudinal-optical phonon. This effect originates
from the appearance of the frequency co of the electric
field in the energy-conservation 6 function, and this reso-
nance could not be obtained from the Boltzmann theory.

IV. NONLINEAR HF CONDUCTIVITY

incoNmv, = —Ne@, + FI ' + Fo",
3P,N

iso =——[(Fi ' + Fo ') vo + Fo 'v, ]
(3.6)

—(H, &',
" —(H, ),"',

with

F(o) .yq[r(0)(0) r(o)(~)]
CO

(H)(0)gq[@(0)(0)@(o)(~)]
CO

(3.7)

with Fo ' = g r '(0) and (H )0 ' = g„@q '(0). This
q q

set of equations is independent of the first-harmonic
components, and can be solved as in the case in which
only a static field exists. The solutions of vo and Po pro-
vide a bias for calculation of the linear differential con-
ductivity for a weak HF field. Another set of equations

for v, and T, ( or 13,) is given by

We have used the approach shown in Sec. II to calcu-
late the nonlinear conductivity in an n-type GaAs bulk
sample when a strong HF electric field is applied. The
HF field is applied up to 1 kV/cm, and the effect of
higher valleys, which is important when the strength of
the field reaches 3 —4 kV/cm, is neglected in the present
calculation. A weak dc electric field ( 0

= 10 V/cm is
also applied. The base frequency of the HF electric field
is chosen in the microwave region, v = 35 GHz. The lat-
tice temperature TL = 300 K. The electron—
longitudinal-optical (LO) -phonon scattering through po-
lar interaction is the dominant scattering mechanism at
this temperature, and we neglect electron scatterings
with impurities and other kinds of phonons. The
electron —LO-phonon interaction is described by the
Frohlich model: M(q) = a/q, with the Frohlich cou-
pling constant, a = [2me )riQLo(1/e —1/eo)]'; here
the energy of the LO phonon AQLo = 36.2meV, the
static dielectric constant eo = 12.91, and the high-
frequency dielectric constant e = 10.91. The effective
mass of the electron m = 0.067mo, with mo the free-
electron mass. The density of electrons is chosen as
X = 10' /cm, which, in fact, is irrelevant in the calcu-
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lation as long as a Maxwell distribution is assumed. The
screening effect is neglected in present calculation, since
the dynamic screening is weak for electron —LO-phonon
scattering.

We have calculated the dc velocity vo and the har-
monic components of velocity v„(t) =

~
u„~ cos(neo

+ P„) (n = 1,2), and corresponding components of the
n

electron temperature T(t), as functions of the strength of
the applied HF electric field, @icos(cot) and Buncos(2cot).
This calculation requires us to solve a set of 10 coupled
nonlinear equations. We use an optimization program of
the AT8cT Bell laboratories Mathematical Subroutine
Library Port' based on the algorithm of an improved
Newton method. The accuracy generally is 10 —10
The results are shown in Figs. 1 —6. Three cases are con-
sidered (1) 6' 8 = 0 1 (dotted curves), (2)
8z. 6& = 0.4: 1 (cross curves), and (3) A'2: 6, = 1:1

(solid curve). Figure 1 shows that the dc conductivity is
only reduced by about 5% from its static value, up to
6, = 1 kV/cm if only 8, is applied. Surprisingly, if a
second-harmonic electric field is applied together with
the first-harmonic one (with the same phase), the dc con-
ductivity decreases dramatically with increasing the HF
field. As shown by the solid curve in Fig. 1, if
A2. 6'& = 1:1, the dc drift velocity definitely becomes
negative when 6, and 82 are near 1 kV/cm, namely, a
weak positive dc potential drop can produce a negative
dc current. Figures 2 and 3 show that the HF com-
ponents of the electron drift velocity increase approxi-
mately linearly with an increase of the HF electric field
in the region of HF field 6", ( 1 kV/cm. The second-
harmonic components

~
v2

~

induced by the pure 6
&

field
are less than 10 of value of

~
U, ~, as shown in Fig. 3

10 z/2

6
O

CO

0-
0.2 0.4 0.6 0.8 1.2

(dotted curve). The retarded phases, respectively,
= —3.7' and P, = —7.3', remain constant with in-

creasing HF field. Figure 4 shows the heating effect of
the HF electric field. The average temperature To in-
creases with increasing HF field, roughly proportional to

as anticipated. Figures 5 and 6 show the HF com-
ponents of the electron temperature as functions of 8,
and 62. We see that the second-harmonic component T2
induced by 6', is large, but the first-harmonic component
T, is small (see dotted curves). A large T2 appears be-

( kV/cm )

FIG. 2. The first-harmonic component of the electron drift
velocity,

~
v~

~

cosicot + P, ), as a function of A', . The 1ines la-
1

beled by (P) are those for phase P„.
1

10

10 3— 8'o ——10V /cm

0.04—

—0.04—

—0.08
0.2 0.4 0.6 0.8 1.2 0--

0.2 0.4 0.6 0.8 2
—z,/2

( kV / clTI )

FIG. 1. The direct current component of the electron drift
velocity, vo, as a function of the strength of high-frequency
electric field, 8, . @&cos(cot) and @2cos(2cot) are applied togeth-
er with (1) N2: @& = 0 (dotted curve), (2) 62: @& = 0.4: 1 (cross
curve), and (3) @z . 8

&

= 1:1 (solid curve). The frequency
v = e)/2m = 35 GHz.

( kV/cm )

FIG. 3. The second-harmonic component of the electron
drift velocity,

~
U2

~

cos(2cot + P„ i, as a function of 6', . The2'
lines labeled by iP) are those for phase P, . Inset:

~
v2

~
as a

2

function of 6
&

for the case that 82. 8& = 0: 1.
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300-
0.2 0.4 0.6 0.8 1.2 0.2 0.4 0.6 0.8 1.2

-z/2

g1 ( kV/cm )

FIG. 4. The average electron temperature To as a function
of 8, .

20 vt/2

cause the input power to the electron system in relative
coordinates is Ne@(t) v(t—) —Mv(t) dv(t)/dt, and a
large 6', and v& should produce a large second-harmonic
component in the power input to the energy of electrons
in the relative coordinates. On the other hand, terms
such as B,uo, b&vz, . . . , which contribute to the first-
harmonic component T1, are relatively small. Figures 5
and 6 also show that the amplitudes of oscillating com-
ponents,

~
T,

~

and
~

T2 ~, usually have the same order
of magnitude as that of the average increase of electron
temperature T0 —TL in the microwave region, and

(kV/cm )

FIG. 6. The second-harmonic component of the electron
temperature,

~
T2

~

cos(2cot + Pr ), as a function of 8&. The

lines labeled by (P) are those for phase Pr .

should not be neglected. The retarded phases are
(tT = —7.8 and pT = —17.

1 2

The appearance of the negative dc conductivity was
explained by Pozhela' as due to formation of the high-
field domain in the sample. This induced electric field
exceeds the threshold of the negative differential mobili-
ty, which is about 3 —4 kV/cm for GaAs. They also
showed, in a qualitative argument, that the HF
rectification effect in this region of negative differential
mobility may induce a negative dc conductivity. Our
calculation indicates another possible origin of the nega-
tive dc conductivity; that is, production and amplifi-
cation of higher-harmonic components of the field and
current (may be applied or induced). Since this possibili-
ty does not require formation of a high-field domain, it
may be easier to develop. For understanding the origin
of this negative dc conductivity induced by a HF field,
further experiments and theoretical study are needed.
Our calculation also warns that, in the measurement of
the drift velocity of electrons by use of the integral mi-
crowave technique, it is important to avoid the appear-
ance of the high-harmonic components.

V. DISCUSSIQN

0.2 0.4 0.6 0.8 1.2
-z/2

g1 (kV/cm )

FIG. 5. The first-harmonic component of the electron tem-
perature,

~
T,

~

cos(cot + Pr ), as a function of 8, . The lines la-
I

beled by (P) are those for phase Pr .
1

In summary, we have developed a new analytical
method, which is tractable, though not easy, to study the
carrier transport in a strong HF electric field. In view of
the derivation of our formulas, our theory may be
also valid in the higher-frequency region where the
Boltzmann theory is not available. We have calculated
the electron transport in an n-type GaAs sample in a mi-
crowave field. Our results show an important mixing fre-
quency effect which produces a negative dc conductivity.
Finally, we conclude this paper with a few remarks.

(1) It is obvious that our approach is a balance-
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equation (BE) method. Recently, there have been some
arguments about the validity of the balance-equation
method. ' ' It has been shown that in the weak-field
limit the conductivity based on the balance-equation
method disagrees with that obtained from the
Boltzmann equation or the Kubo formula, when the lat-
tice temperature is nonzero. This is a so-called
"(I/r) + I/(r)" paradox. ' We notice that this
paradox appears because both the BE method and the
8oltzmann theory are compared in the realm of a
noninteracting-electron theory. In order to simplify the
infinite-degrees-of-freedom problem of the dynamics of
carriers, people often introduce a finite number of pa-
rameters to describe the carrier system, and use a finite
number of balance equations to evaluate these parame-
ters. One of the BE methods is based on the assumption
that the strong electron-electron interaction equilibrates
electrons, so that the term (Bfk/Bt)„ in the dynamical
equation becomes zero. This BE method, from our un-
derstanding, is an approximate approach for treating in-
teracting electrons. In fact, we have indicated ' that the
BE approach can be equivalent to the Boltzmann-
equation method provided the distribution function of
electrons is assumed to be a drifted Fermi-Dirac distri-
bution. In the weak-field limit, if only electron-impurity
scattering is considered, we know that from the
Boltzmann equation for noninteracting electrons the dis-
tribution function of electrons can be obtained as
fz = fk + fk, with f i, the equilibrium distribution of
electrons without an electric field and

k @&k. (5 1)

In Eq. (5.1) rk is the well known energy dependent
scattering time, the expression of which is given, for ex-
ample, in Eq. (5) of Ref. 20; P = I/(k~TL ). On the
other hand, if we assume the distribution function of
electrons is a drift Maxwellian distribution due to strong
electron-electron interaction (the change of electron tem-
perature is proportional to 8, and is zero in the weak-
field limit), by expanding the distribution function to
linear term of velocity we have

fk = fk~ (5.2)
m

with F = ( I /rk ) '. We see that due to electron-
electron interaction the distribution function of electrons
changes by taking a constant 7 instead of ~k and is more
isotropic. This difFerence between Eqs. (5.1) and (5.2)
immediately shows that the conductivity of electrons ob-
tained by this BE method is different from that deduced
by the Boltzmann equation and the Kubo formula for
noninteracting electrons, as shown in Refs. 18—20. This
is reasonable and acceptable. In fact, comparing
theories which derive this kind of balance equation, we
find that there are some assumptions. For example, the
distribution of electrons in the relative coordinates at
t = —~ is assumed to be of Fermi-Dirac type at a
temperature T„also the Welton-Callen-Kubo thermal
Auctuation-dissipation theorem with temperature T, is
used. These assumptions reduce the complexity of solv-

ing a problem for the whole distribution function by
solving two (momentum and energy) balance equations,
and, according to our opinion, also leads to the con-
clusion that this BE approach . is equivalent to the
drifted-temperature model. It is interesting that the tem-
perature model used in the realm of the Boltzmann
theory ' can also be inserted into a non-Boltzmann ap-
proach, so as to include the memory effect for drift
motion' or high orders of electron-impurity and
electron-phonon interaction. There are other BE
methods, such as the classical moment-expansion
method of Chapman and Cowling, to solve the
Boltzmann equation, or recent work by Su et a/. , in
which a Gaussian approximation is used. This type of
BE method, of course, is for noninteracting carriers, and
should obtain the same result as that from the Kubo for-
mula in the weak-Geld limit.

(2) In our calculation, we keep terms up to second-
harmonic components for drift velocity and electron
temperature. We also make the expansion up to third
order. Although the series expansions in Eqs. (2.19),
(2.31), and (2.32) are convergent, the higher-harmonic
components and the higher terms of expansions may be
important with increasing applied electric field. There is
no difficulty, in principle, to include higher-order terms;
however, it will require more computing time. It is also
important to include the intervalley scattering in the
high-field region, since it induces the Gunn effect. A
multicarrier model of the BE method is available; how-
ever, this will double the number of equations. Our
theory could be easily extended to the quasi-two-
dimensional electron system, as in a heterostructure. It
is also interesting to study the nonlinear transport of
carriers in a higher-frequency field. These sha11 consti-
tute a future subject for study.
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APPENDIX

As we pointed before, the formulas in the text, espe-
cially Eq. (2.12), imply a generalization beyond the
lowest perturbation theory. This generalization has not
been proven. In this Appendix we use the path-integral
formulation for the closed-time-path Green's func-
tion (CTPGF) to derive the formulas in the text.
The clue to our derivation is similar to that presented by
Su et al. , but the system we deal with is a system of
many electrons rather than the single electron system in
Ref. 25.

For simplifying the description, we consider an
electron-LO-phonon system. The total Lagrangian is
given by
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I. (t) = ,'M—R(t)' —eNC(t). R(t)

+ +M(q)B, (t)e" '
p,(t» (Al)

+ get„(t)S '(k)ci, + —,'gB q(t)~ '(q)B,
k q

where Bq = bq + b q and p = g ci,+ ci„. S(k) and
b, (q) are, respectively, the free propagators of the elec-
tron and phonon. Their expressions can be found, for
example, in Eqs. (2.21) and (2.26) of Ref. 27. The mean-
ings of other notations are the same as that in the text.

The expectation of an arbitrary observable 0 can be
expressed as the following functional integral which is
defined on the closed time path,

((0)) = f [dR][dB ][dcit][dc„]O[R,Bq, c„,ci, ]exp(iI~[R, Bq,c„,cz]) .

The action defined on the closed time path is given by

Iz = f dt L(t) = f dt —'MR(t) —eNC(t) R(t) + QM(q)B (t)e'q' "p (t)
P q

q

+ ,' f —dt'gB (t)b, '(q;t, t')B (t') + f dt'QC~(t)S '( kt, t') C, (t')
q

(A3)

with

f dt= f dt++ f dt = f dt+ —f dt (A4)

Since the Bk dependence of I is quadratic, the functional integration over the phonon variable dB in Eq. A2
can be exactly worked out. We obtain an effective action I,ff[R, Ci„c„],which is defined by

exp(iI, ff[R, ci„ci,]) = f [dBq]exp(iI„[R, B,ci„ci,]) .

We have

Ieff[R, ci„ci,] = f dt[ —,'MR(t) —eNE(t) R(t)]+ f dt f dt'gci, (t)S '(k;t, t')ci, (t')
P

(A5)

+ —,'g
~
M(q)

~ f dt f dt'A(q;t, t') 'e q(R'" R"'lp (t)p (t') .
q

Also, the following formula is useful for eliminating the phonon variables:

((( . ) Bq(t) )) = —f ds M*(q)&(q; t —s)(( . ) e 'q "p (s) ),
where

((( ))) = f [dR][dBq][dci, ][dci, ]( ) exp(iI ),

(A6)

(A7)

(A8)
(( .

) ) = f [dR][dci, ][dci, ]( . ) exp(iI, ff) .

From the Lagrangian in Eq. (Al), the operator equation for the center-of-mass motion of electrons is obtained as

P(t) = eNC(t) + i+ M—(q)qBq(t)exp[iq R(t)]pq(t) .

eN@(t) + ig((M—(q)q exp[iq R(t)]pq(t)Bq(t) ))

Taking the expectation value of the nonequilibrium ensemble, we have

dt

eN@(t) —ig—
~
M(q)

~ qf ds(e'q 'pq(t)e ' ''p 'q(s))h(q; t s) ~

q P

Here v(t) is the drift velocity of electrons. Until now we did not make any approximation. In the following we assume
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that the center-of-mass motion of electrons is a classical motion due to its huge mass; therefore, we neglect the func-
tional integration J [dR] and take only the classical path:

expIiq [R(t) —R(s)]I = exp[iq. (R(t) —R(s))] = exp iq v(r)dr
S

Equation (A9) is now written as

M = eN—C(t) —ig
~

M(q)
i q f ds exp iq f. v(r)dr b(q;t —s)II(q;t, s),dv(t) 2

dt
q P S

(A 10)

(Al 1)

with

II(q;t, s) = (T~[pq(t)p (s)]), (A12)

where T is the time-ordering operator along the closed
time path. ( ) is defined in Eq. (A8) without integra-
tion dR . II q;t, s is related to the density-density

correlation function in relative coordinates. It is difBcult
to calculate it completely (note: c& and c& are Grassman
numbers). However, its lowest-order (free) term is easily
obtained by making a perturbative expansion of
exp(iI, s) and taking only the term of zero order of
[M(q)]. Then, following the standard closed-time-path
integral method (see Sec. V and Appendix in Ref. 23),
we directly obtain Eqs. (2.15) and (2.17) in the text.

It is easy to include the electron-impurity interaction
in our formulas. The electron-electron interaction term
can be introduced without difBculty in our derivation,
since this term is only related to the electron variable in
relative coordinates. In the limit of very strong electron-

electron scattering, electrons are in equilibrium with
each other and the term rejecting electron-electron
scattering in the dynamical equation disappears. The
procedure of derivation of the dynamical equation in the
strong electron-electron interaction limit is the same as
that without the electron-electron interaction; however,
the distribution functions for these two cases are
diferent from each other. The former in relative coordi-
nates should be Fermi-Dirac (or Maxwellian) distribu-
tion, described by temperature; the latter is non-
equilibrium and is described by infinite parameters.

The difference between this derivation and the usual
perturbative expansion is that we first take the classical
approximation for the center-of-mass motion of electrons
and make the perturbation expansion only for the elec-
tron variable in relative coordinates. The usual perturba-
tion theory, on the other hand, makes perturba-
tive expansion for both center-of-mass and relative-
variables of electrons to the lowest order; therefore,
(R(t) —R(s) ) = v(t)(t —s) in that case, which induces
to the Boltzmann theory.
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