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Dynamics of electromagnetic Selds in nonlinear Klein-Gordon systems
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Localized electromagnetic fields in (1+1) dimensional nonlinear Klein-Gordon systems, i.e.,
solitons, are treated by transforming Maxwell equations into the equations of motion. It is shown

that the force between them is produced by the distortion of space-time coordinates caused by

equivalent gravitational fields. The details of local electromagnetic field interactions as extended

particles are described for a soliton-antisoliton interaction and a soliton-soliton interaction by the

equations of motion. Finally, it is shown that the fields without real charges radiated from a cer-
tain system are associated with photons.

The nonlinear Klein-Gordon systems not only play a
crucial role for many phenomena appearing in condensed
matter physics, ' but also attract our attention in the area
of elementary particles, since the solutions are regarded as
extended particles. 2

In the model field theory on nonlinear Klein-Gordon
systems, fields are treated in association with extended
particles with distinct masses. So the equations need to be
quantized to grasp the real feature as extended particles.
However, in this paper, we do not originally treat the sys-
tems by regarding them as such extended particles, but
rather treat them as localized electromagnetic fields. To
do so, we first start with an electromagnetic field equation
in a nonlinear medium, and then we derive the fields as ex-
tended particles having distributed masses, which are
identical to the electromagnetic fields, investigating their
dynamic properties.

It was shown by Tateno3 that the exact dynamic be-
havior of soliton solutions of such nonlinear Klein-Gordon
systems can be treated geometrically by a state plane
technique using the relation between the field p and its
derivative, with respect to either x or t. With the tech-
nique, the original equation is transformed into an
effective ordinary differential equation. So we can easily
investigate the necessary solutions using techniques on or-
dinary deferential equations.

In the local Riemannian space, the line element ds is
represented by

ds gg;, dx'dx',

However, we can also recognize that the field constructs
extended particles if we observe them in the vacuum out-
side the system, since they move with the velocity u less
than unity. Then, the above expression is rewritten as

ds 2 dt 2+dx2 (2)

where ds —dr —(1 —u )dt, and r is the proper
time in the moving reference. In this case, the field is
Lorentz invariant. Moreover, the existence of ds sug-
gests that the field should have a certain mass.

In the Maxwell equations, we set the field U(x,y, z, t)
-8&I8t, where U(x,y, z, t ) is the potential. Then,
p(x,y,z, t ) corresponds to the magnetic fiux, and satisfies

&&+ q (x,y, z, t )dt +divA+

where

=0
t2 (3)

8x 8y 8z 8t

A is the vector potential, and q(x,y, z, t) is the charge,
consisting of the real and polarized charges. Then every
quantity in Eq. (3) is normalized so that both the permit-
tivity and the permeability, i.e., the light velocity in the
vacuum, is equal to unity in the rationalized meter-
kilogram-second-ampere system of units. We postulate
the following condition in Eq. (3):

WI 8
q(x,y, z, t)dt+divA+

2
—F(p),

where g;~ is the Riemannian metric and the sums are car-
ried out in such a way that i and j each independently
take the values 0-3. For convenience, consider a localized
electromagnetic field in a stationary state in a (1+1)di-
mensional nonlinear Klein-Gordon system. Then, Eq. (1)
is expressed by (xo,x') ( —ut, x), where u is the phase
velocity (kink velocity) of the field in the stationary state
measured by the unit in which the light velocity in vacuum
is unity, and g;1 0, if i~j Since we ar.e treating an elec-
tromagnetic 6eld here, it is reasonable to set ds equal to
zero, if we observe the 6eld at the inside of the system.
Then, we treat the equation as

0 —u dt +dx

oy-F(y) . (5)

For convenience, we limit Eq. (5) to the (1+1) dimen-
sional problems. Then, we treat the following expression:

Equation (6) is also described by an equivalent transmis-

where F(p) is a function specializing the nonlinearity of
the system. If it is possible for the Lorentz condition to be
adopted, F(p) is produced by q(x,y, z, t) On the othe. r
hand, if q(x,y, z, t) =0, then F(p) is produced by the vec-
tor potential. Taking Eq. (4) into consideration, Eq. (3)
reduces to the nonlinear Klein-Gordon systems as follows:
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V(x, t) =&t&T = —
u&t&x

by introducing nonlinear coordinates A(x, t) and
T(x, t). From Eq. (9), the phase velocity in this coordi-
nate system is written as

dA'
=Q,

dT

which indicates that the field travels with a constant veloc-
ity u in the (X,T) coordinate system. Equation (10) also
indicates that there is no force acting on &t& in that coordi-
nate system. On the other hand, in the (x, t) coordinate
system, &t is expressed by

d&t =p, dx+ &t&&dt .

The phase velocity in the (x,t) coordinate system is
defined by setting dp =0 in Eq. (11) as dx/dt, and it is
written by using Eqs. (7) and (8) as

dx &t& g(t)
dt y, h(x)

(i2)

sion line. Then, —
p and p& represent the current along

the line and the voltage between the line, respectively.
We express p& and p by introducing positive quantities

g(t) and h(x) as

y, = V(x, t )g(t),

y„=—V(x, t)h(x)/u,

where V(x, t) is the traveling-wave component of &t&& and is
defined as

—tm(x, t)l =+ &(x,t) X
dt ' '

dt
(i6)

where %f(x,t) =(&t& ) is the net energy density of the
Geld consisting of the rest energy density and the kinetic
energy density, and the plus sign is used for the field trav-
eling in the plus direction, i.e., dx/dt )0, and the minus
sign in the minus direction, i.e., dx/dt (0, so that the
right-hand side in Eq. (16) is always kept positive. In-
tegrated Eq. (16), e, i.e., m', is given by

8 =P7l J —oo
/F(x, t)dx =mp/(I —u') 't',

where mo is the rest mass.
The kinetic energy density of the field, &' "~(x,t), is di-

vided into two components; the comIionent prescribing the
interaction with the other fields, P ' (x, t), and the com-
ponent prescribing the kinetic energy density of the field
itself, the R ' (x, t), i.e.,

Comparing Eqs. (14) and (1S),we obtain

X(x,t) =
I h(x')dx'+~. (t),

f

T(x, t) =„g(t')dt'+Tp(x),

where Xp(t) and Tp(x) are associated with singularities
of solutions.

Consider an extended particle having a distributed mass
m(x, t). In our units, the net energy e is equal to the net
mass m' since the light velocity in vacuum is chosen to be
unity. Then m(x, t ) satisfies the following equation:

From Eq. (12), we. obtain the Riemannian metrics as The equation on the kinetic energy density is written as

gpp(x, t) = —u'g'(t),

ds = dT +dX—
ds'= —g'(t)dt'+h'(x)dx',

where

ds ' = —(1 —u ')dT' = —(1 —u ')g'(t) dt ',

(i4)

(15)

g«(x, t) =h'(x),
and the other components are zero, where ds =0, since
we are observing an electromagnetic field in the system.

Next, regard the field as an extended particle by observ-
ing the field in vacuum outside the system. Then, Eq.
(10) is transformed into the Minkowsky world. On the
other hand, Eq. (12) is transformed into the local
Riemannian coordinates. Thus, we obtain the following
expressions:

d m(x, t) =P '"'(x, t) .
dx

dt
' dt

From Eqs. (16) and (18), P ' (x, t) is written as

XP "(x,t) =m(x, t) —,,
dt

where

m(x, t) =„P(x',t)dx',

d'x u dg u'g'(t) dh
h(x) dt hi(x) dx '

and & ' (x, t) is written as
2

P "(x,t) = R(x,t).
' dt

(20)

(2i)

and gpp(x, t) in Eq. (13) is altered to be g(t) in Eq. —
(15), on account of ds a0. It is possible to consider that
Eq. (14) represents the coordinates for the local inertia
system equivalent to Eq. (15), satisfying the demand of
the principle of equivalence on the gravitational system by
regarding Eq. (1S) as an equivalent gravitational system.

It is possible for the nonlinear Klein-Gordon systems to
have two kinds of solutions referred to as soliton and an-
tisoliton solutions. Under the condition that the soliton
asymptotically approaches the stationary solitary-wave
solution as

~
x

~
and

~
t

~
approach infinity, the forms of

h(x) and g(t) are clarified. ' The soliton-soliton interac-
tion and the soliton-antisoliton interaction in two local
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field problems are included in the above condition. Thus,
the dynamics of such interactions are described by Eqs.
(19) and (20).

We assuine that F(p) repeats exactly the same shapes
having a certain period with increasing p. First, consider
the soliton-antisoliton interaction. In Eqs. (7) and (8) we
take, for t & 0, the soliton to be in the region x & 0 and
moving forward (u & 0), and the antisoliton to be in the
region x & 0 and moving backward (u & 0), and for t & 0,
we take the soliton to be in the region x & 0 and moving
forward (u & 0), and the antisoliton to be the region x (0
and moving backward (u & 0), as a result of going
through each other. h(x) and g(t) are then given by

where ap is
~ BV/8&

~
at

r

dx ~ dx d x ~ d dx (24)

The ~ signs in Eq. (22) are applied for x & 0 and x & 0,
respectively, and the + signs in Eq. (23) are applied for
t & 0 and t & 0, respectively. Moreover, in Eqs. (22) and
(23), if u is negative, then it is replaced by —u so that
both h(x) and g(t) are always kept positive. On account
of this, it then becomes convenient to replace dx/dt in Eq.
(12) by d'x/d't, where

h (x) ~ tanh(apx/u ),

g(t) -~ coth(apt),

(22)

(23)

d'x/d't is always positive, and the plus sign is for u &0
while the minus sign is for u & 0.

From Eqs. (20) and (22)-(24), we obtain the following
expression:

d d'x
dt dt

= + uap[1/tanh(apx/u)sinh (apt)+cosh(apx/u)/tanh (apt)sinh (apx/u)], (25)

where the minus sign is applied for either x & 0 and t & 0,
or x & 0 and t & 0 so that u & 0, and the plus sign for ei-
ther x & 0 and t &0, or x &0 and t & 0, so that u & 0. It
is noted that the net sign in Eq. (25) is determined only by
the sign of x.

First, consider the situation t (0 in Eq. (25). At
t —w, as

~
x

~
approaches infinity, d x/dt approaches

zero. Thus, the situation approaches the stationary state.
If t is fixed to be a negative value, d(d'x/c't)/dt is positive
for either x & 0 or x & 0 from Eq. (25). Then, dx/dt & 0
for x (0 and dx/dt &0 for x &0 from Eqs. (24) and
(19). This ineans that the force acting between the soliton
and the antisoliton is attractive. In this situation,
d(d'x/d't)/dt is increased with decreasing [x [, and ap-
proaches in6nity as x approaches 0. Thus, the attractive
force becomes infinity there. Next, x is fixed, and t is in-
creased from minus infinity. Then, d(d'x/d't)/dt is in-
creased and becomes infinity at t —0. Thus, the attrac-
tive force also becomes infinity in that instance. Consider

the situation of t & 0. If t is fixed, d(d'x/d't)/dt is nega-
tive for either x & 0 or x & 0. From Eqs. (24) and (19),
this means that the force between the soliton and the an-
tisoliton is still attractive. As ) x

~
approaches infinity,

dx /dt approaches zero, i.e., the stationary state.
If we simply set u iv in Eq. (25), where i ( —1) 't

and v is real, then we can explain the breather oscillation.
In the soliton-soliton interaction, it is realized that for

t & 0, one soliton is in the region x & 0 and moving for-
ward (u & 0), and the other soliton is in the region x & 0
and moving backward (u & 0), and for t & 0, one soliton
is moving backward (u & 0) and still in the region x & 0,
while the other is moving forward (u & 0) and still in the
region x & 0, as a result of bouncing off each other after
the collision of their centers at t 0.

In this case, tanh in Eq. (22) is replaced by coth, and
coth in Eq. (23) by tanh. ' Thus, d(d'/d't)/dt is written
as

d'

dt d't
=+ uap[tanh(apx/u)/cosh (apt)+tanh (apt)sinh(apx/u)/cosh (apx/u)] . (26)

In Eq. (26), the plus sign is applied for either x & 0 and
t &0, or x &0 and t &0, so that u &0, and the minus
sign is applied for either x & 0 and t & 0, or x & 0 and
t & 0, so that u & 0.

As t~ —~, d(d'x/d't)/dt approaches zero from Eq.
(26). In t & 0, d(d'x/d't)/dt is negative for either x (0
or x & 0. From Eqs. (24) and (19), this means that both
solitons are decelerated as they approach each other, pro-
ducing the repulsive force. At x=0, (d(d'x/d't)/dt

~

again becomes zero. Thus, the repulsive force becomes
zero in that instance. When t & 0, d'x/d't is positive for
either x & 0 or x & 0. This means that the force between

e=h'v, (27)

~here v corresponds to the number of vibrations of elec-

I

the two solitons is still a repulsive force.
Consider a nonlinear Klein-Gordon system. The net en-

ergy of the field e m' is given by Eq. (17). We set
A, =(1 —u )'t . It is known from such well-known sys-
tems as the p system, the pure sine-Gordon system, dou-
ble sine-Gordon system, and so on, that X represents the
width of the field. ' Thus, Eq. (17) is rewritten as a-mph. .
If we set mp Ii' and v I/X for convenience, then
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p ' =h'/X (28)

It is noted that p is different from the momentum de-
duced from Eq. (18) on the kinetic energy density. It is
suspected that h' in Eqs. (27) and (28) corresponds to
Plank's constant. Since the values of mo are adjusted by
changing the functional form of F(p), it is possible to find

the form of F(p) to deduce Plank's constant. Suppose
that the fields without real charges are radiated from the
system into a vacuum. The fields then have no mass, since
they follow exactly the equations of electromagnetic fields
in vacuum, where u =1.

The properties of the magnetic flux @ in a long Joseph-
son junction are well known. @ is specified by the 2n
kink solution in the sine-Gordon system, i.e., F(p) sing,
not depending upon the magnitude of the energy of the
field, and constructing a quantum denoted by @=h/2e,
where h is Plank's constant and e is the magnitude of the

tromagnetic fields in vacuum if we suppose a train of
waves with the wavelength k. The field that has a mass of
mo has a momentum of p . Since we are using the unit
where the velocity of light is equal to unity, p should be
equal to a Thus, we can also set

electronic charge. @ is permitted to take two states, re-
ferred to as the fiuxon and the antifiuxon, respectively,
produced by a vortex of currents. This property is associ-
ated with the spin in our subject, specified by Eqs. (27)
and (28). From the above facts, the electromagnetic
fields without real charges radiated from our system are
associated with a photon.

In summary, the electromagnetic fields in nonlinear
Klein-Gordon systems are expressed by the equations of
motion by introducing a distributed mass corresponding to
the energy of the electromagnetic field. Then, the force on
the field interactions is produced by the distortion of the
space-time coordinates according to the principle of
equivalence on an equivalent gravitational system. The
detailed dynamics in the field interactions are described
by the equations of motion for the soliton-antisoliton and
the soliton-soliton interactions. Finally, it is shown that
the radiation without real charges from the nonlinear
Klein-Gordon systems into vacuum is associated with a
photon.

The author is grateful to K. Ohta for helpful discus-
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