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Using quasielastic neutron scattering, we have studied the self-diffusion of alkali-metal atoms in
stage-1 and stage-2 graphite intercalation compounds. For stage-1 compounds the diffusion
proceeds via jumps to potential wells provided by the graphite substrate potential. The activation
energies for diffusion in LiC4 and KC; are 1.0 and 0.18 eV, respectively, and agree very well with
theoretical values derived by DiVincenzo and Mele [Phys. Rev. B 32, 2538 (1985)] for the saddle-
point energy between C—C bonds. The diffusion of alkali-metal atoms in stage-2 compounds is
qualitatively very different from that in stage-1 compounds. The characteristics of the diffusive
motion appear to be intermediate between those of a free liquid and a lattice liquid. The activation
energies are considerably lower and compare with those of hydrogen in metals: E,=0.126, 0.063,
and 0.077 eV for K, Rb, and Cs, respectively, in stage-2 compounds. Moreover, the stage-2 com-
pounds exhibit a continuous melting transition, which extends over several hundred degrees cen-
tigrade. Over this temperature range, liquidlike diffusive motion and solidlike phonon excitations
coexist. We argue that this behavior is characteristic of the melting of a two-dimensional structure

on a periodic substrate.

I. INTRODUCTION

Graphite intercalation compounds (GIC’s) promise to
reveal an abundance of information on two-dimensional
(2D) liquid dynamics in the presence of a periodic sub-
strate potential. GIC’s are layered materials in which the
graphite and intercalate layers alternate in an ordered
fashion along the normal to the plane (c axis).! The com-
pounds are characterized by their stage index n, which is
the number of graphite basal planes between any two
consecutive intercalate planes. Changing the stage of the
compound also changes the interaction of the intercalate
species with the host substrate, which, in turn, will affect
the 2D diffusion process in a fundamental way. While
stage-1 compounds with strong substrate potentials are
expected to exhibit lattice-liquid-type jump diffusivities,
in higher-stage compounds a more continuous type of
diffusive motion may prevail. Quasielectric neutron
scattering (QENS) is a powerful tool for the study of
atomic or molecular diffusion in solids and liquids.>”*
The wave-vector and temperature dependence of the cen-
tral width of quasielectric spectra contains detailed infor-
mation on the microscopic diffusion mechanism. We
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have applied this method to the investigation of the
liquid dynamics and melting processes in GIC’s.

Graphite intercalation compounds represent a particu-
larly favorable system for the investigation of 2D liquid
dynamics via neutron scattering. First, the large number
of intercalate layers residing in the bulk material render
neutron inelastic-scattering studies from monolayers pos-
sible without applying surface-sensitive scattering tech-
niques. Second, the host graphite layers are atomically
flat, and therefore the interpretation of the results does
not interfere with lattice defects, surface steps, and the
like. Third, intercalate layers are atomically clean be-
cause the intercalation process is highly selective, which
eliminates the need for ultra-high-vacuum systems.

In the following we restrict our discussion to alkali-
metal GIC’s of the stage-1 compounds LiCg, KCg, and
RbC; , and the stage-2 compounds KC,;, RbC,,, and
CsC,,. The structures and phase transitions of these
compounds are rather well described and are reviewed in
several places,>® most recently by Moss and Moret.” In
brief, the intercalates in stage-1 compounds form com-
mensurate superstructures that melt at high temperatures
into lattice liquids. Stage-2 compounds, in contrast, ex-
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hibit discommensuration domain structures at low tem-
peratures which can be described by triple particle-
density waves induced by the competing alkali-
metal-alkali-metal and alkali-metal—graphite interac-
tions. Above the melting transitions, 2D liquidlike struc-
ture factors are observed which continue to reflect the
modulation of the liquid density by the corrugated sub-
strate potential.

Among the GIC’s, those with alkali-metal atoms are
most suitable for QENS studies of the 2D liquid dynam-
ics because the intercalate layers are monatomic and
comparatively simple. This is in contrast to molecular in-
tercalates, which exhibit rotational and librational
motions in addition to the translational diffusion of the
particles, compounding the complexity of the data
analysis. Nevertheless, several studies on the dynamics of
molecules in GIC’s have been reported recently®!° and
are reviewed by Magerl in Ref. 11.

The focus of the present work is on the diffusional
motion of the intercalated alkali-metal atoms in thermal
equilibrium. This must be distinguished from studies of
diffusional processes which occur during intercalation or
deintercalation of the compound,!? during staging trans-
formation,'* ! and during domain formation after rapid
quenching.'® Here we will only consider the equilibrium
situation with a constant number density of intercalate
atoms per intercalate layer.

From the foregoing discussion it is evident that alkali-
metal layers in graphite represent rather ideal realiza-
tions for the investigation of 2D structures and dynamics
in the presence of competing interactions. In a seminal
paper, Frank and van der Merwe!” provided the theoreti-
cal frame for describing competing interactions in 1D
monolayers on periodic substrates. Depending on the ra-
tio of the adsorbate-adsorbate and adsorbate-substrate in-
teraction, the overlayer may assume a commensurate or
an incommensurate solitonlike structures. More recent-
ly, Bunde and Dietrich!'® have analyzed the commensura-
bility effect of 1D liquids in a periodic medium using the
Percus-Yevick approach for describing the static liquid
properties. Plischke!® has extended this treatment to two
dimensions and he applied the liquid model to alkali-
metal GIC’s by treating the long-range metal-metal in-
teraction via a screened Coulomb potential. Although he
does not take the graphite periodic substrate into ac-
count, Plischke obtains a reasonable agreement with
orientationally averaged x-ray structure-factor measure-
ments of the 2D intercalate liquids, but this calculation
clearly lacks the structural details which become more
evident upon comparison with single-crystal measure-
ments of the highly anisotropic liquid structure factor
(LSF).2*2! Subsequently, Reiter and Moss?? developed a
2D liquid theory using the same metal pair potential as
Plischke, but explicitly including the periodic potential of
the host. The effect of this potential on the 2D LSF is to
induce static density modulations of the liquid pair corre-
lation which show up as liquidlike halos around the HKO
reflections of the host substrate as well as extra intensity
contributions to the HKO Bragg reflections. Monte Car-
lo (MC) simulations of the LSF modulated by the sixfold
substrate potential of the graphite plane were provided by
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Plischke and Leckie,?® DiVincenzo,?* and recently by
Chen, Karim, and Pettitt.?> In all these works it is clear-
ly seen that the simple isotropic LSF with central diffuse
rings about the origin of the reciprocal lattice is modified
in the presence of a sixfold potential and replicas of the
LSF surface at all reciprocal-lattice vectors of the sub-
strate. Chen et al.?® also showed that with increasing
temperature the intensity of the noncentral rings dimin-
ishes strongly and the overall structure factor becomes
more isotropic.

Recently, molecular-dynamics (MD) simulations of the
structure and dynamics of the 2D alkali-metal intercalate
liquid became available, which have a direct bearing on
the present QENS results as well as on complementary
measurements of the intercalate in-plane phonon density
of states determined by Kamitakahara and Zabel.?® Ig-
noring the periodic potential of the substrate, White and
Wielopolski?’ obtained from their MD simulation a
dynamical structure factor S(Q,®) which contains a cen-
tral quasielastic component and a broad peak at finite o,
indicative of the existence of propagating density waves.
These phononlike modes are, however, limited to Q
values within the first diffuse liquid ring. This result is
not too surprising and has also been obtained experimen-
tally and theoretically for simple 3D liquids.?®?° In their
recent molecular-dynamics simulation, Fan et al. 30 have
taken the modulation potential explicitly into account.
Their results not only show astounding agreement with
the experimental liquid structure factor in stage-2 com-
pounds, but also a dynamical structure factor which
agrees extremely well with the inelastic-neutron-
scattering data presented later in this paper.

In the past there have been several attempts to calcu-
late the self-diffusion constant of intercalate atoms in
graphite. DiVincenzo and Mele®' derived from a
Thomas-Fermi density-functional calculation potential
heights for various diffusion paths in stage 1 compounds.
Thompson et al.*? and Moss et al.3® have evaluated the
modulation potentials from a crystallographic analysis of
the alkali-metal contribution to the graphite HKL
reflections in stage-2 KC,, and RbC,, compounds. Both
the calculations of DiVincenzo and Mele’! and the x-ray
determination of the substrate modulation potential®?33
are in close agreement with activation energies evaluated
from the present diffusivity data. The MD simulations of
Fan et al.’® on RbC,, are particularly remarkable be-
cause of their excellent quantitative agreement with the
experimental results.

The QENS studies described below are the first of its
kind on graphite intercalation compounds. Short reports
of this work have been published previously at several
places.>* 3% A complementary investigation of the in-
plane vibrational dynamics of various stage-1 and -2
alkali-metal GIC’s has been reported by Kamitakahara
and Zabel.?® The conclusions of that work will be tied in
with the present QENS studies in Sec. V. In Sec. II we
briefly review the experimental and theoretical method of
QENS, in Sec. III we describe details of the experimental
procedure, and in Sec. IV the experimental results are
presented.
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II. THEORETICAL BACKGROUND

Detailed reviews on the principles of QENS have been
presented in Refs. 2—4 and are summarized by Magerl in
Ref. 11. The purpose of the present section is therefore
to outline only those aspects of the theory of QENS
which are of immediate interest for the understanding
and interpretation of the remainder of this paper.

The double-differential cross section for coherent and
incoherent neutron scattering can be written

d20‘ Ocon k'
T = —NS ’ ’
dQdE | 4 k Noeon(Qe)
X (1)
do _ ainc_k—'_
AQdE’ |, dm k VomlQe).

Here the subscripts coh and inc are abbreviations for

coherent and incoherent, E’ is the final neutron energy, k

and k' are the initial and final neutron wave numbers, re-
spectively, N is the total number of particles in the target,
#Q=7(k’'—k) is the momentum transfer, and
#fio=FE'—E is the energy change of the target. In the
classical approximation the dynamical scattering func-
tion S(Q,®) represents the space and time Fourier trans-
form of the self-correlation and pair correlation func-
tions, G,(r,t) and G,(r,t), respectively,

1
Seon(Q @)= [[G,(r,)+G,(r,1)]
Xexp[(iQr—wt)]drdt , (2)

Snel Q)= [ G,(r,Dexpli(Q-r—wt)ldrdt .

The self-correlation function G(r,t) describes the time
evolution of the spatial trajectory of a particular particle,
while the pair correlation function G, (r,?) represents the
time and space correlation of two distinct particles.

In most QENS experiments reported in the past, only
the incoherent scattering law has been investigated, for
which relatively simple predictions exist for particle
motions in ideal gases, liquids, or on well-defined lattice
sites. This preference is furthermore supported by the
availability of a very large incoherent scattering cross
section for protons which is about 80 b, whereas the larg-
est available coherent scattering cross section is smaller
by roughly an order of magnitude. Thus, the bulk of
QENS studies carried out so far is devoted to the investi-
gation of the diffusivity of hydrogen in metals, of
hydrogen-containing molecules and of hydrogenated
polymers.

Unfortunately, the alkali-metal atoms of interest here
exhibit rather small and almost entirely coherent scatter-
ing cross sections. Only Li offers an appreciable in-
coherent cross section. The coherent and incoherent
cross sections for the four alkali-metal atoms in question
are listed in Table I, and are reproduced from Ref. 40.

The coherent QENS due to the correlated motion of
diffusing particles is by far more complex than the in-
coherent scattering from single-particle motion. There-
fore only approximate expressions for the coherent
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TABLE 1. Coherent and incoherent cross sections for alkali-
metal atoms. From Ref. 40.

Element Oeon (1072 cm?) Oinc (10724 cm?)
Li 0.45 0.91
"Li 0.62 0.78
K 1.73 0.25
Rb 6.30 0.3
Cs 3.69 0.21

dynamical scattering function exist. The most successful
prescription was given by Sko6ld,*! which relates the
coherent scattering function to the incoherent one:

Scon(Q,0)=5(Q)S;,.(Q/V'S(Q), w), (3)
where the zeroth energy moment is the structure factor:
S(Q)= [ Sen(Qo)dw . @)

For reference, in subsequent sections we will give the
scattering functions for continuous liquidlike diffusion
and for a lattice-gas hopping motion. Using a Gaussian
approximation for the spatial part of the self-correlation
function, the incoherent dynamical scattering function
becomes

1 _ Do*
mh (DQ2)2+0)2 4

which has a Lorentzian shape and a full width at half
maximum (FWHM):

I,,.=2#DQ?% . (6)

Sinc(Q @)= (5)

Therefore, the quasielastic linewidth increases quadrati-
cally with the scattering vector Q and is proportional to
the self-diffusion constant D. Using the scaling relation
of Eq. (3), we obtain for the width of the coherent dynam-
ical scattering function

r .= Finc
coh ™ S(Q) *

Thus, for coherently scattering particles the linewidth
scales with the static structure factor and exhibits charac-
teristic de Gennes oscillations according to the oscilla-
tions of S(Q). These de Gennes oscillations are schemat-
ically shown in Fig. 1 for the case of a simple continuous
liquidlike diffusion process. The minima of I' ;, occur at
positions of Q for which S(Q) has maxima, i.e., for wave
vectors which correspond to most probable interatomic
distances in the liquid. These distances are due to highly
correlated atomic configurations and are long lived be-
cause of the cooperative motions necessary to break them
up. This long lifetime is then reflected as a narrowing in
the linewidth T'_; for those wave vectors. For larger Q
values, S(Q) approximates the constant value of 1,
reflecting the loss of correlation over very small dis-
tances. In this approximation, the single-particle picture
is again valid, and I' ., (Q) =T, .(Q).

In high-resolution QENS experiments using long-
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FIG. 1. Schematics of the quasielastic linewidth I" plotted as
a function of the scattering vector Q for simple liquidlike
diffusion. The solid line represents the width for incoherently
scattering particles, I';,,=2#DQ? while the dashed line is the
quasielastic linewidth expected from coherently scattering parti-
cles. The oscillation of the I, is caused by coherency effects of
the liquid structure factor and is often referred to as the de
Gennes oscillation.

In high-resolution QENS experiments using long-
wavelength neutrons, the limit S(Q)—1 usually cannot
be reached. Diffusion constants can, nevertheless, be ex-
tracted from coherent quasielastic neutron scattering
data, most conveniently at positions for which S(Q)
passes through 1. For those Q values, Eq. (6) is again val-
id, and from an Arrhenius plot of the diffusion constant

D=Dge "7, @)
the activation energy E, for the self-diffusivity and the
prefactor D, can be determined.

For jumplike particle motions instead of continuously
moving particles, again, a Lorentzian-shaped incoherent
scattering function is obtained, whose width

I-‘inczz‘ﬁf‘(())/f 9)

depends on the mean residence time 7 between the jumps
and a model-dependent geometric width function:

f(Q)=%§[1—exp(—iQ-zi)1 . (10)

i=1

Here, I; is the jump vector and the sum is taken over all
possible neighbor sites at distance |/;| from the particle.
T, for jump diffusion exhibits an oscillatory Q depen-
dence with nodes at |Q|=2w/|l| in a single-crystal situa-
tion. For powders a proper angular average has to be
carried out, but characteristic dips in I';,.(Q) remain,
from which the jump vectors can be determined. These
oscillations have to be distinguished from the de Gennes
oscillations. The former occur in the incoherent scatter-
ing function due to the presence of discrete jump vectors,
while the latter are present in the coherent scattering
function even for a continuously diffusing particle, be-
cause of the oscillation of the structure factor S(Q).

DIFFUSION AND MELTING IN TWO DIMENSIONS: A ...
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It should be noted that the connection between
diffusion constants and jump vectors in two dimensions is
given by

D=1%/4r, (11)

independent of the number of nearest-neighbor sites in
the plane, whereas in three dimensions the diffusion con-
stant is given by

D=1%/67. (12)

III. EXPERIMENT

In the present experiments on K, Rb, and Cs intercala-
tion compounds, we used pyrolytic graphite with a start-
ing crystal mosaic nature of about 6°~8° . The pristine
graphite material was cut to cylindrically shaped disks of
18-22 mm diameter and stacked together to a height of
40-50 mm. Intercalation was achieved by the usual
two-zone vapor-phase technique and by using natural iso-
tropic mixtures of K, Rb, and Cs from A.D. Mackay"
with a stated purity of 99.9%. After intercalation, the
stage purity was determined by (00!/) x-ray and neutron
scans, and only high-quality samples were used for subse-
quent QENS experiments. The samples were finally tak-
en out of the glass container in which they were inter-
calated and transferred into thin-walled Al sample
chambers inside of a high-purity He glove box. The sam-
ple cans were compression-sealed with a tapered
stainless-steel cap, which provided a good seal at low and
high temperatures. The schematic of the sample
chamber used is shown in Fig. 2. To avoid a possible
leakage of alkali metals through the Al walls at high tem-
peratures, we used thin-walled stainless-steel cans in-
stead, which were sealed by Cu caps for measurements
above 600 K.

The LiC4 sample was prepared in a different way. Py-
rolytic graphite, with a 3° mosaic spread, was sliced into
disks of about 1 mm thickness and 40 mm diameter. The
slices were then completely immersed in liquid lithium
and heated to 300°C for about 4 weeks in an evacuated
stainless-steel crucible. Instead of using a natural isotro-
pic mixture of Li metal, we used 97% enriched "Li from
Oak Ridge National Laboratory. This was done to
reduce the neutron-absorption cross section in the large
sample. After completion of the intercalation process,
which could visually be monitored by a bright and homo-
geneous golden color of the sample, any excess Li on the
surfaces was cleaned off and the disks were placed in a
thin-walled stainless-steel container suitable for neutron
scattering. The sample can was also filled with about 2-3
g of "Li metal at the bottom, separated from the inter-
calated sample by a perforated platform and shielded
from the neutron beam by a Gd foil. This assembly al-
lowed the study of the diffusivity of Li atoms in LiCg4 at
high temperatures without deintercalating the com-
pound.

The LiCg sample had a volume of 31 cm?, whereas all
other stage-1 and -2 compounds had volumes ranging
from 10 to 15 cm®. The LiCq sample was used previously
for the measurement of the phonon dispersion;*? all other
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FIG. 2. Sample chamber for neutron scattering work. (1)
Thin-walled cylindrical aluminum can. (2) Stainless-steel cone.
(3) and (4) Stainless-steel screw and nut for pressing the cone on
the Al inside edge.

samples were prepared specifically for the present
diffusion studies.

The neutron scattering experiments were carried out
using the time-of-flight (TOF) spectrometers INS and
IN6 and the backscattering spectrometer IN10 of the
Institut-Laue-Langevin. All three instruments are locat-
ed at the cold-neutron source within the neutron guide
hall. For general descriptions and specifications of the
spectrometers, we refer to the user manual of the
Institut-Laue-Langevin.*® The specific conditions of our
operation of the spectrometers will be stated later in the
next section. In most of our scattering experiments the ¢
axis was aligned perpendicular to the scattering plane, in
which case the diffusional motion of the alkali-metal
atoms parallel to the intercalate plane is studied. In only
a few cases we have tilted the ¢ axis into the scattering
plane for testing the possibility of diffusion through the
graphite basal planes.

For each experimental configuration we have deter-
mined the instrumental shape function and the back-
ground scattering, and we have used vanadium standards
for converting count rates into absolute dynamical
scattering functions.
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IV. EXPERIMENTAL RESULTS

In this section we will first discuss stage-1 compounds
which exhibit commensurate superstructures in their or-
dered phases. Because of the relatively large metal-
substrate interaction, 2D lattice liquid jump diffusivities
are expected for these compounds. Stage-2 compounds,
to be discussed next, are very different from stage-1 com-
pounds, as detailed in the Introduction. The average in-
plane density of the intercalate layers is lower and the
structure has to be understood in terms of competing
metal-metal and metal-substrate interactions. Accord-
ingly, we expect the diffusional dynamics of the alkali-
metal atoms in stage-2 compounds to be, by far, more
complex than in stage-1 compounds.

A. LiC

The intercalate layers in LiCq form a (V'3 XV'3)R30°
superstructure, which melts at 715 K.*»* The order-
disorder phase transition appears to be almost second or-
der with a small first-order-type jump in the order param-
eter, and the transition temperature was shown to depend
sensitively on the in-plane concentration.*® The
(V'3XV'3)R30° structure has three equivalent sites; how-
ever, only one of them is occupied in the ordered state,
resulting in a stacking sequence AadaAa... of the
graphite and intercalate layers. Therefore, all layers are
aligned on top of each other, and the Li atoms in graphite
may be viewed as forming chains along the ¢ axis. This,
and the small sepagation of the graphite layers in LiCy,
which is only 3.71 A, as compared to 3.35 A for pristine
graphite, may be taken as an indication for the existence
of large-amplitude fluctuations or even diffusion of the Li
atoms through the carbon hexagon rings provided by the
graphite basal-plane structure.

For neutron scattering, 'LiCq is quite unique among
the GIC’s. The isotope 'Li is the only alkali metal that
exhibits an appreciable spin-incoherent cross section of
0.7 b (see Table I) along with a negligible neutron-
absorption cross section. The incoherent cross section
enables the exploration of the Li diffusivity both in the
ordered as well as in the disordered phase, while the
small absorption cross section allows one to compensate
for the small scattering cross section by a large sample
size.

In the ordered phase of LiC4 the coherent scattering
cross section is almost entirely concentrated in the Bragg
peaks of the superstructure, whereas the incoherent con-
tribution forms a featureless background. Above the dis-
ordering temperature the Li intercalate layers presum-
ably exhibit a lattice LSF,*’ consisting of Bragg
reflections at the HKO reciprocal-lattice points of the
graphite basal-plane structure superimposed on short-
range-order diffuse intensity. The incoherent scattering
contribution is unaffected by the phase transition.
Neglecting all pair correlations, we can approximate the
coherent diffuse contribution by the Laue expression
c(1—c)Nb2,, where c¢=1 is the ratio of occupied to
available lattice sites in the disordered state, and the in-
coherent scattering contribution is simply given by Nb?

mnc*
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Therefore, we estimate that the ratio of the incoherent to
the coherent scattering away from Bragg reflections and
above T, is on the order of 7. From this we can conclude
that above as well as below the transition temperature the
QENS signal from diffusion of "Li is dominated by the in-
coherent scattering function.

QENS measurements from below the ordering temper-
ature up to 725 K were carried out at the backscatterin
spectrometer IN10 with a neutron wavelength of 6.28 A
and an energy resolution of 1.0 ueV. The much enhanced
diffusivity of the Li atoms in the disordered state
demanded the use of a lower-resolution instrument. Data
above T, were therefore recorded on the TOF spectrome-
ter INS5 with a resolution of 63 ueV.

Typical quasielastic spectra taken on the TOF spec-
trometers IN5 and IN10 are reproduced in Fig. 3. The
quasielastic Lorentzian component is shown by thin solid
lines, representing only a small fraction of the total
scattering. The dominant contribution to the scattering
is elastic and temperature independent and appears to
originate from the stainless-steel sample container. The
low-temperature IN5 data show no quasielastic broaden-
ing and thus merely reflect the resolution of the spec-
trometer. With the higher resolution IN10 backscatter-
ing spectrometer, the diffusivity becomes noticeable al-
ready at 625 K, or 90 K below the melting temperature.
Above the melting temperature the width increases
dramatically and the Lorentzian peak becomes indistin-
guishable from a background within the dynamical range
of this instrument. At this point a lower-resolution spec-
trometer, the TOF INS, is required to refocus on the qua-
sielastic line shape. In order to avoid the formation of
Li,C,, the sample was not heated above 725 K.

We have also investigated the possibility of an out-of-
plane diffusive motion of the Li ions. In scans up to 675
K we have not noticed any quasielastic broadening of the
dynamical scattering function, setting an upper limit for
the diffusion constant along the channels in the hexago-
nal direction, which, according to the resolution of the
instrument, is D < 10~ % cm?/sec.

All spectra were fitted with a constant background, a 8
function, and one Lorentzian line shape, convoluted with
the instrumental width function. The Q dependence of
I, as determined from the full width at half maximum
(FWHM) of the Lorentzian component is shown in Fig. 4
for two temperatures above and below the melting tem-
perature. At 660 K, 55 K below the melting transmon
I, increases to a maximum of 4 pueV at Q=1.0 A
followed by a decrease for higher Q values. This in con-
trast to the Q dependence of T';,. above T,, where I,
reaches a maximum of 230 ueV at a higher Q value of 1.4
A~'. The oscillatory behavior of TI';, immediately re-
veals a jumplike diffusivity of the Li intercalate ions at
both temperatures. Moreover, the shift of the maximum
from a lower value below the melting temperature to a
higher value above the melting temperature indicates that
the jump vector decreased in magnitude upon crossing
the melting temperature.

The structure of LiCq is suggestive for two possible
jump vectors sketched in the inset of Fig. 4: those may
be either jumps to nearest hexagon centers with a jump
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the scattering vector oriented parallel to the intercalate planes.
(a) S(Q,w) measured with the backscattering spectrometer
IN10 at 0=1.4 A~! and 675 K. The solid line represents a fit
by a & function convoluted with the instrumental resolution
function. The extra scattering in the wings is attributed to qua-
sielastic scattering from planar Li diffusion. (b) S(Q,w) mea-
sured WiEh_l the time-of-flight spectrometer IN5 at
0=1.125 A  and at 725 K. The solid line through the data
points represents a best fit by a & function and a Lorentzian
function both convoluted with the instrumental resolution func-
tion. The lower solid line shows the Lorenztian contribution
alone.

length /,=2.46 A, or jumps to next-nearest hexagon
centers at a distance /,=4.26 A, connecting sites within
the same superstructure. For a single-crystal situation
and for scanning along the [100] direction, one obtains
from Eq. (10) the following Q dependence for the
quasielastic broadening:
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FIG. 4. Linewidth of quasielastic neutron spectra measured
as a function of the scattering vector Q parallel to the inter-
calate layers in LiC4 for temperatures (a) 660 K and (b) 720 K.
The linewidths in (a) are recorded below, and in (b) just above,
the melting temperature of the Li sublattice at the 715 transi-
tion of the Li sublattice.  The inset shows the Li (V3 XV/3)R30°
superstructure in the ordered phase together with possible jump
vectors /; to nearest-neighbor sites and /, to next-nearest-
neighbor sites. The solid lines are best fits of Eq. (14) to the data
points, indicating that below T, a jump vector /, predominates
which connects sites within the same sublattice, while above T,
also jumps to nearest-neighbor sites (/,) become available.

Qo
2

2

sin +2 sin?

ol
2 —

where / may be either /, or /,. In our present situation of
pyrolytic graphite, a proper 2D orientational average has
to be carried out and we obtain

rim:%u—mgn] . (14)

Here, 7 is the mean residence time and J is the zeroth-
order Bessel function.

In Fig. 4 the solid lines are fits of Eq. (14) to the data
points assuming [/ =I, for T<T, and [ =1 for T>T,.
Although the total Q range is limited due to the use of
cold neutrons, the fits are strongly suggestive for a jump-
like diffusion process in the ordered as well as in the
disordered state. In addition, the data suggest a change
in the jump distance upon crossing the melting transition.
In the ordered phase diffusive jumps connect sites within
the same sublattice of the (V3XV'3)R30° structure,
whereas above T, all three sites a, 3, and ¥ become avail-
able as the Li atoms hop on the hexagonal graphite grid.
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FIG. 5. Arrhenius plot for the diffusion constant of planar Li
diffusion in the ordered phase of LiCs. The dashed line is a best
fit to the data points with an activation energy of 1.0 eV. The
single data point above the dashed line indicates the diffusion
constant at 720 K in the disordered phase.

We have calculated diffusion constants from the abso-
lute values of the quasielastic line broadening Iy, via Eq.
(6), and those are shown in an Arrhenius plot in Fig. 5.
For the ordered state we find an activation energy of
E,=(1.0x0.3) eV. The rather large error bar is made up
by the small incoherent signal and the limited number of
temperature points evaluated below 7T,. Above T, a
dramatic enhancement of the diffusivity takes place, indi-
cating a decrease of the activation energy. We have,
however, not extracted an activation energy for the disor-
dered state because of the small temperature range over
which we were able to measure the diffusivity without
deteriorating the sample.

The present data compare favorably with diffusion
measurements via the SNMR (or in-beam NMR) method
applied by Heitjans and co-workers.** For the ordered
phase from 250 to 700 K they have obtained an activa-
tion energy of (0.6+0.2) eV, which is in rough agreement
with our present results. An activation energy of only 0.2
eV was measured by Estrade et al.*® using conventional
NMR techniques, which clearly appears to be too small
in the light of the present data.

DiVincenzo and Mele®! have calculated the potential
barrier for Li diffusion in LiCg4 via a density-functional
approach. Assuming that this barrier height is identical
to the activation energy for a classical jumplike diffusion
process, they obtain an activation energy of 1.3 eV, which
is in rather close agreement with our experimental re-
sults.

The activation energy below 7T, most likely contains
contributions from the enthalpy of vacancy formation as
well as from the potential barrier to the diffusion. If only
the potential height for the diffusion were contributing to
the measured activation energies, it would be difficult to
understand why the diffusion constant suddenly increases
above T.. On the other hand, the agreement with the
density-functional calculation of DiVincenzo and Mele is
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TABLE II. Structural parameters.

Melting temperature

Compound Structure T, (K) Ty (K) Reference
LiCq (V3IXV3)R30 715 44,45
KCy (2X2)RO 657 687 50°

677 682 53
RbCy (2X2)RO 750 785 51¢

736 774 53

721 747 52
KC,, DDL? 123 55,57
RbC,, DDL? 165 28,58
CsC,, DDL? 165 56

*DDL denotes discommensuration domain lattice.
*From phase diagram for the condition that free K metal and intercalate sample are at the same tem-

perature.

°From phase diagram for the condition that free Rb metal and intercalated sample are at the same tem-
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perature.

rather good, and these calculations did not take vacancy-
formation energies into account. This conflict cannot be
resolved here and should be made the subject of future in-
vestigations.

B. KC; and RbC;

Both stage-1 compounds with K and Rb exhibit a
(2X2)RO in-plane structure with a stacking sequence
AaABAy A8 Aa.... The disordering of the alkali-metal
layers occurs in two steps. A stacking disorder takes
place at a lower transition temperature 7; and is fol-
lowed by a disordering of the in-plane structure at higher
temperatures Ty;.%%! These phase transitions have been
studied in detail by a number of workers’®™>* using a
variety of methods, and the transition temperatures from
those investigations are listed in Table II.

As mentioned before, the exploration of the diffusion
mechanism in the ordered phases of KC; and Rbg is ham-
pered by the fact that both alkali-metal atoms exhibit al-
most completely coherent scattering cross sections.
QENS experiments of these compounds can therefore be
carried out only in their disordered states. The experi-
ments were performed with the TOF spectrometer IN6
and with a wavelength of 5.1 A, yielding a resolution of
about 70 peV.

The Q dependence of the quasielastic linewidth ', for
KC; is shown in Fig. 6 for the temperatures 623 and 698
K. Both temperatures appear to be above the melting
temperature. This conclusion follows from the structure
factor S(Q), which is reproduced for 623 K in the bottom
panel of Fig. 6. S(Q) has been obtained by energy in-
tegration of the Lorentzian part of the energy spectrum.
The first maximum in the structure factor occurs at 1.4
A~! and has a width of AQ=0.4 A~!. The position as
well as the width of this peak are clear signatures of a
“liquidlike” state of the intercalate layers, and are in ex-
cellent agreement with the x-ray work of Minemoto and
Suematsu.’® Considering that any excess alkali metal in
the sample container produces an alkali-metal vapor
pressure corresponding to the sample temperature, an
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FIG. 6. Quasielastic width as a function of the scattering vec-
tor O for K diffusion in KC; (a) at 698 K and (b) at 623 K. (c)
Structure factor S(Q) for the disordered alkali-metal layer ob-
tained from integrating the Lorentzian line shape at 623 K.
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order-disorder transition of about 650 K can be inferred
from the phase diagram of Minemoto and Suematsu,
which is somewhat higher than the transition tempera-
ture observed here.

For both temperatures shown in Fig. 6 the quasielastic
linewidths exhibit a pronounced structure. I, exhibits
a maximum at about 1.15 A~! and a minimum at 1.5
A~!. The minimum coincides with the first maximum of
the alkali-metal intercalate LSF shown in the bottom
panel, confirming that the dip in the quasielastic width at
0=1.5 A" is due to a de Gennes narrowing effect rath-
er than discrete jump vectors. Although we believe that
the diffusion motion in KC; is almost certainly of the
jump type, as in LiCg, it is very difficult to obtain a pre-
cise microscopic picture because of the interfering
coherency effects.

The spectra reveal, nevertheless, important informa-
tion on the diffusion constant. At positions where S(Q)
is approximately 1, the coherent and incoherent
linewidths are identical and the diffusion constant can be
evaluated at those point. Although an evaluation of S(Q)
in absolute units could not be achieved because of the
lack of high-Q data, a reasonable guess can be made to-
ward the Q value at which S(Q) passes through 1. Refer-
ring to oFig. 6, we argue that S(Q)=1 at about
@=1.1 A" . Using the values for I' ., at this Q point,
we obtain the diffusion constants D=5.6X10"> and
8.1X107° cm?/sec for the temperatures 623 and 698 K,
respectively, which, in turn, yields an activation energy of
E,=0.18¢V.

The activation energy for K diffusion in KCj is consid-
erably smaller than for the diffusion of Li ions in LiCq.
This is not unexpected, since both the larger separation
of graphite planes and the lower melting temperature
point to a weaker interaction of the potassium ions with
the graphite substrate. According to DiVincenzo and
Mele,’! the activation energy is again given by the classi-
cal potential barrier which stretches between the C—C
bonds, and for which they obtain a value in exact agree-
ment with our experimental data (see Table III).

We now turn to a discussion of RbCq. In order to
monitor the order parameter of RbC;, we measured
S(Q, w=0) at Q=1.5 A~ ! using the TOF spectrometer

TABLE III. Diffusion constants and activation energies for
intercalate alkali-metal atoms in graphite.

Barrier
D, E, height
Compound (cm?/sec) (eV) (eV)
Lic, 51 1.0 1.3°
KCy 16.0X107* 0.18 0.18°
RbC 0.14?
CsCq 0.18*
KC,, 1.2%x10°* 0.126
RbCyy 2.5%1074 0.063 0.092°
CsCyy 43%x107* 0.077

2From DiVincenzo and Mele, Ref. 31.
®From Moss et al. Ref. 33.
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IN6. The sample chamber contained some excess Rb
metal at the bottom separated from the sample by a per-
forated platform. This extra metal fulfilled the purpose
of keeping the free and intercalated alkali metal in ther-
modynamic equilibrium while being at the same tempera-
ture. The temperature dependence of S(1.5, 0) measured
under those conditions is shown in Fig. 7. Here, =0
refers to an energy window of Aw=70 ueV given by the
instrumental resolution. S(1.5, 0) exhibits a first dip at
650 K, reaches a plateau between 670 and 740 K, and
drops to a background level at 780 K. The phase dia-
gram of RbCy (Ref. 51) indicates for the conditions real-
ized here a stacking transition affyd—af3 at T, =750 K
and an order-disorder transition at 7T,=785 K. The
S(Q,0) data compare well with the upper phase transi-
tion, while the reason for the intensity drop at 650 K is
not obvious from the phase diagram.

Quasielastic broadening of the scattering function is
clearly observable between 700 and 780 K with an onset
at 750 K. This corresponds to a temperature below T,
where the order parameter of the ordered (2X2)RO
structure is reduced but not vanished (compare Fig. 7).
A quantitative analysis for these spectra has not been car-
ried out. The spectra demonstrate, however, that the on-
set of the alkali-metal intercalate diffusion can be ob-
served before the structural order parameter reaches
zero, which again is a clear sign for a vacancy-controlled
diffusion mechanism, much like in LiC4 below the order-
disorder transition.

C. KC24, RbCz4, and CSC24

1. Structure

A comprehensive review of the structural studies of
stage-2 alkali-metal compounds has recently been provid-
ed by Moss and Moret” and shall briefly be summarized
here. There is general agreement that above the inter-
calate ordering transitions the intercalate “liquidlike”
structure factor exhibits pure 2D correlations and is an-
isotropic within the plane due to the modulation effect of
the sixfold graphite substrate potential. Quotation marks
are used around the term ‘“liquidlike” because, from a
structural point of view, a liquid and an amorphous state
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FIG. 7. Temperature dependence of the e£a§t1ic structure fac-
tor of RbC; at the scattering vector Q=1.5 A~ pointing paral-
lel to the intercalate layers.
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FIG. 8. Density-contour map for alkali-metal atoms in
stage-2 CsC,4, obtained from Fourier backtransformation of
low-order intercalate superstructure reflection intensities. The
solid lines are idealized domain walls and serve as a guide to the
eye. At the center of the domains the alkali-metal atoms as-
sume registered positions with the graphite honeycomb struc-
ture forming (V'7XV'7)R 19.1° structures whereas closer to the
domain walls deviations from commensurate sites occur.

cannot be distinguished, the main difference between
them being their varying dynamical response. At the in-
plane ordering temperatures T, which are listed in Table
IT for the three stage-2 compounds, a 2D-3D crossover
effect of the intercalate correlation takes place. Below T,
the diffraction pattern is that of two incommensurate and
modulated lattices, the host and the guest lattice. The in-
terpretation of the diffraction pattern has seen many
stages. A highly plausible model, which successfully de-
scribes the most important features of the diffraction pat-
tern, is the discommensuration domain model.”® %! Ac-
cording to this model, the alkali-metal atoms order in an
array of large domains, which are slightly rotated against
the graphite symmetry axis. Near the domain centers the
intercalate atoms are well registered in a
(VIXV7)R19.1° lattice, while the atoms near the
domain walls show deviations from registry with the
graphite hexagon centers and are more spread out. A
real-space density-contour map of the atoms in the
discommensurate domain lattice is reproduced in Fig. 8.
The rotation angle and the domain size are intimately re-
lated to each other and are shown in Fig. 8 for the case of
CsC,,. The structural inequivalency of atoms sitting
close to the centers as compared to those situated near
domain walls has important implications for the dynam-
ics of the alkali-metal atoms, as we will discuss further
below.

2. Temperature dependence of quasielastic spectra

Quasielastic spectra for the three stage-2 compounds
MC,, (M=K, Rb, and Cs) have been recorded using the
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TOF spectrometer IN6 with a neutron wavelength of 5.1
A and an energy resolution of 100 ueV.

With the present instrumental resolution, the Lorentzi-
an broadening of the scattering function first becomes no-
ticeable above the ordering temperatures of the stage-2
compounds. Most importantly, this Lorentzian broaden-
ing does not immediately affect the total scattering func-
tion, but only part of it. A typical example is reproduced
in Fig. 9, which shows the dynamical scattering function
for RbCyy at 236 and 343 K and at scattering vector
Q0=1.25 A, The solid line represents a fit with a &
function and a Lorentzian line shape both convoluted
with the instrumental width function. The dashed line
indicates only the Lorentzian contribution. Note that the
Lorentzian part broadens as well as increases in intensity
with increasing temperature. This behavior reveals clear
signs, first for a speeding up of the particles with increas-
ing temperature, and second for an increase of the num-
ber of particles taking part in the diffusion process.
While the first behavior is normal, the second represents
a novel feature of this two-dimensional melting transi-
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FIG. 9. Dynamical scatﬂtgrling function S(Q,w) of RbC,4 as a
function of w at Q=1.25 A measured at (a) 236 K and (b) 343
K. The solid lines represent fits of a 8 function and a Lorentzi-
an line shape, both convoluted with the instrumental width
function to the data points (solid dots). The dashed line shows
only the Lorentzian part of the total scattering function. Note
that this Lorentzian contribution increases with increasing tem-
perature.
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tion. Therefore, we have to conclude that there are two
types of alkali-metal atoms within the same intercalate
gallery. Those which exhibit diffusive motion are
represented by a Lorentzian line shape, while the more
rigid atoms are represented by the §-function.

We have calculated the partial structure factors S5(Q)
and S; (Q) by integrating independently over the & and
the Lorentzian components:

S5(Q)= [ S2u(Q,0)dw ,
5.(Q)= [SL,(0,0)dw .

The integration was carried out within the limits
—1Zw=1 meV and for Q values between 0.75 and 2.2
A~!. The partial structure factors for RbC,, are shown
in Fig. 10 at two different temperatures above the order-
ing transition. The startling result of this figure is that
both partial structure factors are topologically similar
and that they conform to the total “liquidlike” structure
factor S(Q)=S5,(Q)+SL,(Q) as measured by x-ray
scattering.®? Therefore both scattering components origi-
nate from the 2D alkali-metal layers and reflect the disor-
der of the intercalate structure at these temperatures.
Furthermore, Fig. 10 reveals a tradeoff between the § and
the Lorentzian part of the structure factors. Therefore,
above T, the solid and liquidlike dynamical behaviors
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FIG. 10. Partial structure factors S5(Q) and S; (Q) of RbC,,
from independent energy integrations of the & part and the
Lorentzian (L) part of the dynamical structure factor, and for
two temperatures: (a) 236 K and (b) 343 K. The solid line
marked L +38 represents the sum of both components and is
identical to the total structure factor usually measured in x-ray
scattering experiments.

H. ZABEL, A. MAGERL, J. J. RUSH, AND M. E. MISENHEIMER 40

2.0 e T T T T
\
—_ \
& 1.5 \ —
= \ A _
3 T
£ 10l N AT~
£ \R
— N\
=] 7o\
m0.5—- T l‘ \. —
c / »
/ N
i 4 Tt ——.
pa 1 1 I -
100 200 300 400 500 600
Temperature (K)

FIG. 11. Temperature dependence ofo tllle structure factors
S5(Q) and S, (Q) of RbCy, at Q=1.20 A . The arrow indi-
cates the critical temperature for the melting transition in
RbC,, at 165 K.

coexist and their relative weights gradually exchange
with increasing temperature. This is shown clearly in
Fig. 11, where the values of S%,(Q) and S&;(Q) at
Q=1.2 A7! are plotted as a function of temperature.
The Lorentzian contribution to the intensity smoothly in-
creases from T, =165-350 K, or about 200 K above the
melting transition, and then levels off. The slight de-
crease of the intensity is likely due to Debye-
Waller—factor effects. Simultaneously, the 6 component
decreases slowly over the same temperature range.

The coexistence of a solidlike elastic and liquidlike
diffusive dynamical structure factor S(Q,w) in thermal
equilibrium and over a wide temperature range above the
structural melting transition is an entirely new
phenomenon not known for simple 3D systems. In 3D
monatomic liquids, a 8-like component in S(Q,®») does
not exist for any temperature above the melting tempera-
ture. We believe that the dynamical behavior observed
here is characteristic for the melting of a 2D monatomic
layer on a periodic substrate. In our view the melting
starts first at the domain walls, effectively unpinning the
discommensuration domain boundaries. The domains
are then free to float, and it has been shown that this
causes the layer shear elastic constant to become ex-
tremely soft.’” The meandering of the domain walls and
the oscillation of the domain sizes may then be the source
for the quasielastic broadening of the structure factor.
However, at the center of the freely floating domains the
effect of the substrate potential is still strong enough to
produce an elastic component in the dynamical structure
factor S(Q,w).

3. Qdependence of T,

The Q dependence of the quasielastic linewidths for
RbC,, and for several temperatures is reproduced in Fig.
12. The salient features of this figure are (i) the width of
the spectra increases with increasing temperature, (ii) the
Q dependence of I'., exhibits de Gennes narrowing
effects, and (iii) this narrowing coincides with the max-
imum in the intercalate liquid structure factor, which
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FIG. 12. Energy widths of the Lorentzian component of the
dynamical scattering function S(Q,w) with dependence on the
scattering vector Q and for several temperatures, measured for
the in-plane diffusivity of Rb in stage-2 RbC,,. Solid lines are
guides to the eye.

occurs at 1.2 A™'. The last fact is demonstrated in Fig.
13, where SL,(Q) and T, are superimposed on the
same graph. The structure factor S£; (Q) was again de-
rived from integrating the Lorentzian part of the scatter-
ing function over all energies in the limits of

—1.0E <1.0 meV, and concurs very well with x-ray
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FIG. 13. Lorentzian linewidths for Cs and Rb diffusion in
stage-2 graphite intercalation compounds at 523 K. The trian-
gles indicate the structure S(Q) for RbC,, at 523 K as obtained
by integrating S(Q,w) with respect to w. The solid and dashed
lines are guides to the eye.
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data of the intercalate liquid structure factor. Figure 13
also shows the Q dependence of the Lorentzian linewidth
of CsC,, at the same temperature of 523 K. While the O
dependence of the Lorentzian linewidths are similar for
both compounds, the Cs values are systematically shifted
to higher energies, demonstrating that Cs diffuses faster
than Rb at the same temperature.

In the following we compare the Q dependence of Iy,
with simple predictions for continuous and discrete parti-
cle motions in order to shed some light on the microscop-
ic diffusion mechanism in the stage-2 compounds. In Fig.
14, experimental points of I, for RbC,, (+ symbols)
are compared with the quasielastic linewidth that one
would expect for a continuously diffusing particle. The
initial slopes are matched to yield the same diffusion con-
stant, corresponding to RbC,, at a temperature of 523 K.
The dashed line represents the calculated incoherent
scattering law T, < Q? while the dashed-dotted line
reproduces the coherent counterpart I'.,; assuming a
liquid structure factor in accord with the alkali-metal in-
tercalate layer. Clearly, the coherent quasielastic
linewidth oscillates with decreasing amplitude about the
incoherent linewidth, which is expected from theo de
Gennes effect. While the first minimum at 1.2 A™!
agrees well with the experimental data points, the
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FIG. 14.. The measured Lorentzian linewidth as a function of
the scattering vector Q for Rb diffusion in RbC,, at 523 K (+
symbols) is compared with the linewidth expected for a simple
fluid having an incoherent scattering cross section (dashed line)
and a coherent scattering cross section (dashed-dotted line).
The size of the + symbols corresponds to the experimental er-
ror bar. Comparison is also made with a lattice liquid perform-
ing jumplike motion to nearest-neighbor sites at a distance of
246 A, again assuming an incoherent scattering function (solid)
and a coherent scattering function (dotted). In all cases the
diffusion constant which determines the initial slope at small Q
was adjusted to the diffusion constant of Rb in RbC,, at 523 K.
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mismatch between the predictions for a continuous
motion and our actual 2D 1ntercalate liquid becomes un-
tolerable beyond Q =1.5 A~

The other extreme is 111ustrated by a simple jump-type
diffusion process, as is most likely realized in stage-1
compounds. Assuming random jumps between nearest-
nelghbor hexagon centers at a distance of 2.46 A, adjust-
ing the diffusion constant, and taking an appropriate
powder average [see Eq. (14)], we obtain an incoherent
quasielastic linewidth, which is represented by the solid
line in Fig. 14. The coherent linewidth is calculated
again by normalizing with the liquid structure factor and
is shown as a dotted line in the same figure. We find good
agreement between the model calculation and the expen-
mental linewidth in the region from 0.8 to 1.5 A
However, clear discrepancies occur at 2.0 and 2.4 A~
where the calculated linewidths exhibit a minimum and a
maximum, respectively, while the experimental values
show just the opposite behavior. The overall discrepancy
is however not as large as that for the continuous-
diffusion model. A simple adjustment of the jump
lengths would not improve the comparison drastically,
since the second minimum in the experimental data at 2.0
A7 is too narrow to be caused by diffusive jumps.
Coherency effects cannot be made responsible for this
minimum either, since S(Q) is about 1 at this point.
Most likely, there exists a mixture of continuouslike and
jumplike diffusive motion within the 2D alkali-metal lay-
er, and the latter may show a distribution of jump
lengths, depending on whether the diffusing atoms are
closer to the walls or closer to the center of the domains.
We also noticed a dxstmct temperature dependence of the
minimum at 2.0 A™!, which appears to become more
pronounced with increasing temperature, as can be in-
ferred from Fig. 12.

Further detailed studies are required to elucidate the
diffusion mechanism in the stage-2 compound and for
testing more sophisticated diffusion models. In particu-
lar, more data are needed at higher Q values, and also for
lower temperatures with increased energy resolution.

4. Pressure dependence

It is well known from the work of Clarke et al.% and
Wada® that applying uniaxial pressure along the ¢ axis
transforms a stage-2 compound into a stage-3 compound
with a (2X2)RO intercalate in-plane structure. The stage
transformation starts at about 250 MPa and is completed
at about 700 MPa for the KC,,—KC;4 transformation.

We have studied the quasielastic scattering of RbC,,
under uniaxial pressure between O and 30 MPa, which is
far below any pressure-induced staging transformation.
The Q dependence of the linewidths at 293 K and for the
pressures 0, 3.2, 24, and 30 MPa is shown in Fig. 15. Be-
sides the expected overall decrease of I' ; with increas-
ing pressure, we also noticed a marked change in the Q
dependence of the spectrum. In particular, the maximum
at 2.35 A™! flattens out at higher pressures, the most
dramatic change taking place between ambient pressures
and 3 MPa.

The inset of Fig. 15 shows I',;(Q) at =2.35 A~

H. ZABEL, A. MAGERL, J. J. RUSH, AND M. E. MISENHEIMER 40

616 20 30
Pressure (MPa)

O MPa 4

3.2 MPa

Ot 24 MPg

30MPa |

05 1.0 15 2.0 2.5
Q (&M

FIG. 15. Lorentzian linewidths for RbC,, at 298 K and for
several pressures applied uniaxial along the ¢ axis. The inset
shows the _pressure dependence of Lorentzian spectra at
0=2.35 A~ and at 298 K. All lines are guides to the eye.

a function of pressure. As mentioned before, the most
drastic change occurs at small pressures, while the width
remains constant from 3 to 30 MPa. From this we can
conclude that at low pressures an important contribution
to the diffusivity becomes blocked almost immediately.
Naively one would expect that any continuouslike
diffusivity is affected most strongly by the application of
pressure, and that the jumplike motion survives until
much higher pressures are applied. However, neither the
oscillation of the quasielastic linewidth nor the structure
factor S(Q) conform to such a simple notion. It appears
that the diffusive paths of the alkali-metal atoms on the
hexagonal graphite substrate are much more complex
and far from being solved.

5. Diffusion constants

In spite of coherency effects, the diffusion constant for
the intercalate layers can be determined via procedures
discussed previously. In the case of stage- 2 compounds,
we estimate that S(Q)=1.0 at about 1.1 A~ !for all three
stage-1 compounds. Using the intrinsic width I' at this
point, we can calculate the diffusion constant using Eq.
(6). Figure 16 shows Arrhenius plots of the diffusion con-
stants for K, Rb, and Cs. It should be noted that in all
three cases the diffusion can be well described by a single
activation energies, listed in Table III together with their
prefactors D,. The description of the diffusion process
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FIG. 16. Arrhenius plots of the diffusion constants for the
three stage-2 compounds KC,,, RbC,,, and CsC,,. The linear
slopes are least-squares fits to the data points yielding activation
energies for the alkali-metal in-plane diffusivity listed in Table
II1.

by a single-valued activation energy is a bit surprising in
view of the complexity of the intercalate motion.
DiVincenzo and Mele3! argue that the potential barrier
to the diffusion should be about the same in stage-1 and
-2 compounds, whereas we observe a rather drastic
reduction. For instance, the activation energy for KC; is
0.18 eV and drops to 0.126 eV in KC,,. Because of miss-
ing data, similar comparisons cannot be made for the Rb
and Cs intercalation compounds. We believe, however,
that the structural differences between stage-1 and -2
compounds hints at a reduced alkali-metal-graphite in-
teraction in the stage-2 compounds, and that the activa-
tion energies listed in Table III reflect this trend. Moss
et al.*® find from an x-ray analysis of the graphite sub-
strate potential in RbC,, an energy difference of 0.092 eV
between the potential minimum in the center of the
graphite hexagon and the saddle point between two car-
bon atoms along their bond. This value has to be com-
pared with the activation energy of 0.063 eV, which we
have obtained from the present quasielastic data. If the
Rb atoms in the stage-2 compounds were performing
jumps from hexagon to hexagon site, the barrier energy
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of 0.092 eV would apply. However, because of the ine-
quivalency of the lattice sites and the smearing out of the
positions, some atoms experience much smaller potential
barriers. The trend to a lower averaged barrier height
seems to be reflected by the activation energy obtained
from the diffusion data.

It is also interesting to note that the prefactor D, in-
creases systematically with increasing alkali-metal mass.
While the activation energy is slightly higher for Cs than
for Rb, it is the prefactor which causes Cs to diffuse fas-
ter than Rb in the stage-2 compounds and in the temper-
ature range considered here. For a lattice-liquid-type
diffusion the prefactor can be written in simplified nota-
tion:*> Dy =wl?%exp(—AS /kp), where w is the particle
frequency or attempt frequency, / is the jump distance,
and AS is the change of the entropy between the saddle
point and the potential minimum. Assuming that / is the
same for all three stage-2 compounds, the changes of D,
must either be caused by w or by AS. Since the frequen-
cies of the intercalate in-plane modes decrease with in-
creasing alkali-metal mass,?® the present behavior can
only be explained by a decreasing entropy change in the
sequence from K to Cs. This could be seen as an indica-
tion for Cs having a smaller available number of diffusion
paths starting from the saddle point than the light alkali-
metal atoms, possibly due to size effects.

On an absolute scale the diffusion constants which we
find for the alkali-metal atoms in graphite are much
smaller than those of the free 3D liquids,?® but they are of
the same order of magnitude as those measured for hy-
drogen in metals® and for superionic conductors.®’

V. DISCUSSION AND SUMMARY

The present QENS studies indicate that in stage-1
alkali-metal graphite intercalation compounds the
diffusive motion of the intercalate atoms proceeds via
jumps on lattice sites provided by the graphite substrate.
This has been clearly demonstrated for LiCy, but is also
expected for the other heavy alkali-metal stage-1 com-
pounds. Here, coherency effects have prevented us from
extracting jump vectors. The self-diffusion constants and
activation energies for the stage-1 compounds are in line
with the general notion that the intercalate-graphite in-
teraction is rather strong in these systems. This is partic-
ularly true for LiC¢, which exhibits the highest activation
energy of about 1 eV. Phonon dispersion measurements
have also demonstrated that LiCg is the least anisotropic
compound among the alkali-metal GIC’s.*?

The stage-2 alkali-metal GIC’s represent systems of far
greater complexity. At the same time they offer a perfect
laboratory for investigating the intriguing problem of the
dynamics of a 2D melting process on a corrugated sub-
strate. One of the most important results of our QENS
experiments is the observation that the 2D melting pro-
cess on periodic substrates is very smooth, stretching
over a wide temperature range. During this transforma-
tion, a solidlike 8 component and a liquidlike Lorentzian
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component in the dynamical structure factor coexist and
exchange intensity with increasing temperature. This be-
havior could not have been conjectured by merely
measuring the structure factor, which shows a normal,
second-order-type phase transition and a liquidlike state
above the structural transition temperatures. Only a full
Q and w analysis of the structure factor reveals the rich
facets of this melting transition.

We believe that the L component originates from
diffusing particles within disordered regions, whereas the
8 component is due to atoms residing more rigidly within
the substrate potential wells. The coexistence of these
two parts in thermal equilibrium above the structural
melting transition is an entirely new phenomenon not
known for simple 3D systems. In 3D monatomic liquids
such as the free alkali metals, a § component does not ex-
ist for any temperature in the liquid phase.’®?° The
present results on the 2D melting process must also be
distinguished from a heterogeneous liquid-solid phase
coexistence along a liquidus-solidus line, in which case
one would expect the coexistence of a solidlike and
liquidlike structure factor. The new phenomenon dis-
cussed here is the coexistence of two different dynamic
structure factors for one and the same static structure
factor. We argue that this dynamical behavior is unique
to the melting process of a 2D discommensurate domain
lattice on a periodic substrate.
quivalency of the lattice sites, the melting transition is
characteristically slow, starting first at the domain walls
and then proceeding further into the centers of the more
ordered domains. The continuous nature of the melting
process is also expressed by the small specific-heat anom-
aly at 7,.°® With increasing temperature the diffusive
motion of the alkali-metal atoms becomes more dominant
and the alkali-metal layers transform into rotationally
isotropic 2D liquids. This process is profoundly different
from the melting in three dimensions. A similar behavior
has recently also been observed for the melting of a two-
dimensional molecular layer in graphite.'°

In an independent inelastic-neutron-scattering work,
Kamitakahara and Zabel?® have shown that, above the
disordering temperature, transverse and longitudinal
phononlike in-plane modes from the intercalate layers ex-
ist, and that those modes persist to high temperatures
above the melting temperatures. The phononlike modes
are intimately related to the presence of §-like component
in the dynamical structure factor, because only atoms
which reside for a certain amount of time in a potential
well are able to perform harmonic oscillations. The pho-
nonlike character of these modes requires that the “rig-
id” atoms cluster together in patches in order to support
transverse as well as longitudinal excitations.

Melting in 2D incommensurate solids by domain-wall
oscillations and formation of free dislocations has been
predicted by Coppersmith et al.% and has also been seen
in molecular-dynamics simulations by Abraham et al.”°
A molecular-dynamics simulation with the proper pair
potentials and intercalate densities for Rb in stage-2
graphite has recently been provided by Fan, Reiter, and
Moss.3® Their simulation not only reproduces the static
structure factor S(Q) in very good agreement with exper-

Because of the ine- .
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iments, but also a dynamical structure factor composed
of a §-function part and a Lorentzian part. They could
show that in the presence of the substrate potential
indeed a 6 and a Lorentzian part coexist in the disordered

'phase and the solidlike part is long-lived enough to give

rise to transverse and longitudinal phononlike excita-
tions.

The most important effect of the incommensurate sub-
strate potential is the tendency to cluster atoms into
domains of approximate registry with the underlying
periodicity. These patches of atoms are separated by
domain walls in which structural phase slips occur. In
the ordered state those domains arrange in a periodic
fashion and the resulting structure is referred to as a
discommensuration structure (see Fig. 8). In the liquid
state these domains continue to exist, but now with a
much reduced coherence length and in a more dynamical
sense. That is, atoms which are at one time within one
domain taking part in the lattice vibration may at anoth-
er time be outside and performing diffusive motion. The
existence of domains induced by the substrate potential
provides the most important distinction between a simple
liquid and a modulated liquid. In a modulated liquid, as
long as the temperature is not too high to destroy the
domains, solidlike phonon excitations exist for all Q
values and have longitudinal as well as transverse com-
ponents, while in simple liquids only longitudinal density
fluctuations exist and their wave vectors are limited to a
small region up to the maximum of the LSF, at which
point a distinction between vibrational and diffusive exci-
tation starts to fail.

Phase coexistence of solidlike and liquidlike patches
has also been observed in constant-density Lennard-Jones
MC simulations of the 2D melting transition without a
substrate potential. The interpretation of these patches,
however, remains controversial and could either be taken
as artifacts of the computer simulation or as signatures of
critical fluctuations expected in hexatic phases. In an ex-
cellent review paper on this subject, Strandburg’' sug-
gests that one should apply in the simulation a sixfold po-
tential, which is then removed to test the stability of the
coexisting phases. In the present case of intercalates in
graphite this potential is provided by the host substrate,
and the coexistence of liquidlike and solidlike domains is
clearly induced by the corrugated substrate. The MD
simulation of Fan et al.* indicates that the 8 or solidlike
part disappears together with the phononlike excitations
when the graphite host corrugation potential is de-
creased.

In summary, through quasielastic-neutron-scattering
experiments we have observed that alkali-metal atoms
perform lattice liquidlike hopping motions in stage-1 in-
tercalation compounds, where the alkali-metal—layer
structure is commensurate with the substrate and the
graphite—alkali-metal interaction relatively strong. For
stage-2 compounds, which display discommensuration
domain lattices, we have analyzed for the first time the
dynamics of the melting of two-dimensional layers on a
periodic substrate. We have noticed that the melting
transition in the presence of a corrugated host potential is
characteristically slow, extending over several hundreds
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of degrees centigrade with solidlike and liquidlike excita-
tions coexisting. With increasing temperature, the liquid-
like diffusional mobility gains over phononlike excita-
tions, and the two-dimensional static liquid structure fac-
tor gradually becomes in-plane isotropic. This melting
process is distinctively different from the melting in three
dimensions. We have also obtained diffusion constants
and activation energies for most of the stage-1 and -2
compounds.
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