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Excitation spectrum of a spin- 2 chain with competing interactions
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The excitation spectrum is studied around the degenerate point at the Ising limit in the one-
dimensional anisotropic Heisenberg antiferromagnets with next-nearest-neighbor interactions.
Solitons are found as propagation modes in the Neel state and in the (2,2) antiphase state, while

triplet-dimer excitations are found propagating in the dimer state. These excitations determine
the shape of dynamical spin-correlation functions, which are calculated -by an exact diagonaliza-
tion for finite chains. The phase diagram is determined from the condition that the energy gap
vanishes in the excitation spectrum.

Hzz = Z (J&S;Sf+i +JzSjSf+2),i=l
jv

H~y = g jJ 1 (S; S; ~1+SfSr+ ) )

(2)

+J, (S,"S;+,+SrSr+, )], (3)

with Jl, J2, Ji, J2 )0. S (a=x,y, z) is the spin- —,
'

operator at the ith site. Within the nearest-neighbor in-
teraction, the ground state is the "spin fluid" state or the
Neel state. The next-nearest-neighbor interaction compli-
cates the situation, giving rise to the "dimer" state where
neighboring spins are forming singlet pairs. This state,
which is known to be the exact ground state under the
condition J2 /Ji =J2/J|=0.5, ' results apparently from
the effect of the combination of the frustration and the
quantum fluctuation. The renormalization-group tech-
nique has been successfully applied to this model, leading
to the determination of the phase diagram among the spin
fluid state, the dimer state, and the Neel state.

At a glance, one may think that the quantum fluctua-
tion in an Ising-like region would merely be suppressed
and nothing interesting would happen. This observation,
however, is not true in the presence of frustration; the de-
generate point (J 1 =2Jz, Jl =J2 =0) appears where the
ground state is infinitely degenerate due to frustration,
and quantum fluctuation could be important around this
point. Figure 1 shows the ground-state phase diagram in
the Ising-like region near the degenerate point, whose
determination will be discussed later, under the condition
Jz /J| J2/J~. On the other hand, Emery and Noguera

Recently, one-dimensional quantum spin systems with
competing interactions have attracted much attention as a
model of statistical mechanics and the many-body prob-
lem, since they include two phenomena of current interest,
frustration and quantum fluctuation. A typical example
of such systems is the antiferromagnetic Heisenberg mod-
el with the next-nearest-neighbor interaction:

H =Hzz+ Hgy .
where

have recently studied the corresponding phase diagram
under the condition J2 =0, which is very similar to our
phase diagram in the region near the degenerate point.
We emphasize that, as seen from the appearance of the di-
mer state as the ground state, the effect of frustration and
quantum fluctuation play an important role even in this
rather limited region.

As a first step to attack the dynamical properties of the
present system, we explore in this paper an Ising-like re-
gion near the degenerate point, expecting that the com-
bination of frustration and quantum fluctuation may give
rise to interesting effects; we study what low-lying excita-
tions are and how they manifest in dynamical spin-
correlation functions.

The situation near the degenerate point enables us to
use a perturbation theory with respect to J~ /~ Jl —2J2 ~

[in the Neel and (2,2) antiphase states] and to
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FIG. 1. The ground-state phase diagram on the Jl /Jl vs

J2/J] plane under the condition J2 /Ji =J2/J~. The solid lines
denote the phase boundaries determined by the condition that
the minimum in the energy band of solitons touches on zero.
The dashed line with error bars is the phase boundary deter-
mined from an exact diagonalization of finite chains, where
higher-order effects are taken into account.
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l JI —2J2l/JI (in the dimer state), thereby leading to a
clear picture of excited states. The perturbational
analysis explains well the behavior of the dynamical corre-
lation function, which we numerically calculate in a finite
chain of N =12, following Ishimura and Shiba's idea

S„(Q,co) (I/2')J dte ' '(S' t7(0)Sg(t)),

with

S~ =N 'j +exp(iQj)Sj .
J

We also study higher-order effects on the energy gap in
the excitation spectrum, using an exact numerical diago-
nalization method on finite chains (up to N 20) under
periodic boundary conditions to extrapolate the results to+~ oo ~0

In the following, we discuss excited states separately in
three typical cases. In our units, 0 =kz =1.

(1) Neel state with smal/ JI and J2 . We consider a
soliton excitation (domain wall), which connects two de-
generate ground states"

least four Ijr'-type solitons or two y -type solitons should
be excited to avoid the misfit under periodic boundary
conditions. The operation of the JI term of H~i on
tI14j+3 creates only a state like

i &] i. i & 1 il I i la4 +7il
which has an excitation energy ( —,

' ) l JI —2J2 l. Thus, the
Iif4j +3 is localized within the first order of JI . The opera-
tion of the JI term on @A~4. Ij2 makes it connected to
y2j —2+ Ij2 and @A~4.2~ I j2 with the amplitude JI /2, there-
by making the excitation propagate in a chain. The wave
function and the energy are given by

y"(k) = (2/N) ' g y2~j. + I j2exp[ik (2j+ 1/2) ], (10)
J

e"(k) eo+ JI cos(2k) .

The J2 term in H~y changes the situation, making the
localized excitation propagate by connecting y4j+3 to
ljf4j +7 and y4j I with the amplitude J2 /2. The wave
function and the energy are thus given within the first or-
der of J2 by

P2j + I i ]". i ] i ] a2j+I (P2j+I) i & i ]" (5) y'(k) (4/N) I j2+ y4j+3exp[ik(4j +3)l,
J

(i2)
where a2j+I and p2j+I denote u~-spin and down-spin
states at the 2j+1th site. The y2J. ~+] has an excitation en-
ergy e13= ( —,

' ) l JI —2J2 l with respect to Hzz, if we
neglect an extra energy due to a misfit at the boundary of
the chain. For avoiding the misfit and being compatible
with periodic boundary conditions, an even number of sol-
itons should be excited. The spin-wave excitations, having
high excitation energy of an order JI, are irrelevant to the
present case. The Haiti makes the soliton propagate in a
chain; the JI term connects y2j~+I to y2j —I and y2j+3
with the amplitude JI /2, while the J2 term connects it
only to the states with high excitation energy of order JI

and J2. Neglecting such high-energy states, we get the
wave function and the energy as

y(k)' ~ (2/N) ' g y2jg. Iexp[ik(2j+I)], (6)
J

e(k)'I" =eII+ JI~ cos(2k) . (7)

The propagation of solitons can be seen in S„(Q,co). Fig-
ure 2(a) shows S„(Q,to) of an N=12 chain; the width
and the intensity of the central peak increase with increas-
ing Q, and a squarelike shoulder develops, just like
Villain's prediction in the model with only the nearest-
neighbor interaction, " ' owing to propagation of soli-
tons.

(2) (2,2) antiphase state with small JI and J2 . We
consider two kinds of soliton excitations,

Ã4j+3 i l l i" . i la4j+3i l l i" . ,

Y2j+I/2 ill i".il I ill ii l.", (9)

where y2J+~y2 has a domain wall between the 2jth and
2j+ Ith spin. [The l is inserted in Eq. (9) to show the
presence of the domain wall. ] The y4j+3 and y2j+Ij2
have excitation energies eII—:( —,

' ) l JI
—2J2 l and eII

= ( ~ ) l J I
—2J2 l with respect to Hzz, if we neglect extra

energies due to a misfit at the boundary of the chain. At

e'(k) =eI'I+ J2 cos(4k) . (i3)

y2j+ I
= [1,2] [3,4].. .T2, 4-1[2j+3,2j +4].. . ,

with

T2j+ I (I/~2) (a2j + I p2j +2+P2j + I a2j +2) ~

The operation of the Hamiltonian on this state gives

(H Eg ) Itf(j+ I J I I//2~J y I

(i4)

+ ( 4 ) ( JI +2J2) (y2j —I + y2j+3) ~

(is)

The operation of the J2 term on y2J+]y2 creates the state,

o'= i l l i".t l I 1 i l l I i l l i". ,

and a further operation on p' creates

~"= i l l i. . . i l I i i l l i i l l I i l l i. . . ,

where p' and p" have the excitation energy e13(—:2eII).
These modes are interpreted as two y'-type solitons prop-
agating.

These excitations may dominate the behavior of
S„(Q,to). The central components of to-0 are strong
for J2 0 [Fig. 2(b)]. This may be due to a large contri-
bution of the localized y'-type solitons. In the presence of
J2, however, we can clearly see a squarelike shoulder de-
velop due to the propagation of solitons, in agreement with
the above analysis.

(3) Dimer state. Under the condition that J2 /JI
=J2/JI 0.5, the ground state is exactly expressed as

yg
= [1,2] [3,4] [5,6]. . ., where

[2j+1,2j+2] =(1/~2)(a2j+Ip2j+2 p2j+la2j+2),

with the ground-state energy Eg/(N/2) = —JI/4 —JI /2.
Now we consider a low-lying excited state near this

condition,
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FIG. 2. S„(g,m) for an N 12 chain with T (temperature) 0.04J~. (a) Neel state; (b) and (c) (2,2) antiphase state; (d)-(f) di-
mer state. Except for (b) and (c), J2 /J

~ J2/J&. The temperature is sufficiently high for solitons and triplet-dimer excitations to be
thermally excited in (a)-(d), while it is low in comparison with the excitation energy of the triplet-dimer excitations in (e) and (f).
The arrows in (a) represent the position of the Villain mode given by Qg 2J&

~
sing [. Broken lines in (f) represent the energy of

the triplet-dimer excitation given by Eq. (17).

where neglected is the state

[1,2][3,4].. . t t ) J [2j+3,2j+4].. .

because of its high excitation energy. The diagonalization
of Eq. (15) yields the wave function and the energy of the
triplet-dimer excitation,

y'(k) (2//V) '/'gyp, + ( exp [ik(2j+1)],
J

e'(k) -Jj~+ ( —,
' )(—J)+2Jp)cos(2k) .

A soliton excitation

[1,2]. . . [2j—1,2jla2J+& [2j+2,2j+3].. .

is irrelevant to the present case because of its high excita-
tion energy of an order J~.

As for S„(Q,co), strong peaks appear at co= ~ J~,
and the intensity increases with increasing Q [Fig. 2(d)].
The peaks are interpreted as a result of the transition
caused by Sg from a singlet dimer [2j+ 1,2j+2] to
T2J+~ (and vice versa at high temperatures). The disper-
sion relation of the triplet-dimer excitations is clearly seen
in the shift of the peak position with changing Q, for

~ J~ —2J2 ( AO [Figs. 2(e) and 2(f)].
The phase boundary may be determined by the condi-

tion that the minimum in the energy band of solitons
touches on zero: so J~ for J2/J~ (0.5, and cp-J~
( J2 ) for J2/J ~

& 0.5. This condition may be modified
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by higher-order effects. To study these effects, first we
numerically calculate the energy gap d,z between the
lowest energy in triplet states (M=(P;S;) 1) and the
ground-state (M 0) energy for finite chains of up to
N 20, and then estimate its limiting (N ~) value 5
by making a least-squares fit of the results for N 14, 16,
18, and 20 to a quadratic function of 1/N, that is,

/3. +c/N+c /N with numerical constants c and c'.
We determine the phase boundary from the condition that

vanishes. Figure 3 shows 6 as well as A~ for
Jz/J~ (0.5 under the condition Jq /Ji Jz/Ji, as a func-
tion of J~ . The nonlinear correction to d works in the
direction of maintaining 6, thereby leading to stabilizing
the Neel state. (See also Fig. 1.) For Jz/Ji )0.5, howev-
er, we have not been able to estimate reliable values of 4
not only because finite-size results only for W 8, 12, 16,
and 20 are available for extrapolations but because the N
dependence of these results is not monotonic. '

In summary, we have studied low-lying excitations near
the degenerate point, and have found that the soliton exci-
tations [in the Neel and (2,2) antiphase states] and the
triplet-dimer excitations (in the dimer state) could propa-
gate in the chain, dominating the behavior of S„(Q,ro).
The ground-state phase diagram is determined by the con-
dition that the energy gap vanishes in the excitation spec-
trum. We have imposed the condition Jz /Ji Jz/Ji to
stabilize the dimer state; the amplitude coming from the
Jz term has an effect to cancel the amplitude of breaking
the singlet dimer associated with the J~ term. (The can-
cellation is perfect at Jz /Ji 0.5.) As concerns the
comparison of our present predictions with experimental
results, there is, unfortunately, no actual Ising-like spin- —,

'

system with considerable next-nearest-neighbor interac-
tions. We hope that a new material can be synthesized for
experiments in the near future; a zigzag chain of
FeMgBO4 has already been synthesized with considerable
next-nearest-neighbor interactions, although the relevant
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FIG. 3. The energy gap 6& as a function of J& for
Jq/J~( Jq /J~ ) 0.4. The solid lines show the finite-size re-
sults for N 6, 8, . . ., 20, and the dashed line represents the lim-
iting result h. . The dotted line is the lowest bound of the con-
tinuum of two solitons, on the basis of the linear theory [Eq.
(7)l.

spin is —,
' and the interactions between Fe + ions are cut

off randomly by Mg + ions. '"
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