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The T-matrix formalism developed by Waterman and extended to clusters by Peterson and Strom
is used to calculate local electric fields for single spherical and spheroidal metallic particles as well
as for two-particle clusters. The calculations are done in the electrodynamic regimes as well as in
the long-wavelength regime. Radial dependence, angular distributions, and multipolar composition
of resonances are analyzed for all cases. Comparison with calculations of local fields by recent elec-
trostatic formulations of the problem are performed. The failure of the multiple-scattering ap-
proach for clusters with scatterers in close proximity in the long wavelength regime is discussed.
The existence of a critical interparticle distance at which occurs a maximum enhancement for clus-
ters of two ellipsoidal particles is obtained. The versatility of the T-matrix method for calculating
the local field in the neighborhood of clusters made up of arbitrary scatterers is demonstrated.

INTRODUCTION

Although the interaction of the electromagnetic radia-
tion with particulate matter has been studied for a long
time,"? clustering effects in the electrodynamic regime
are not yet well understood. New and increased interest
has developed in this subject due to the fact that cluster-
ing is essential to the understanding of many physical
processes of interest, such as surface-enhanced Raman
scattering, as well as light scattering and absorption from
metallic colloids in alkali halide crystals.> ™8

Isolated spheres and spheroids in the long-wavelength
regime, that is, when the incident wavelength is much
larger than the size of the particle, as well as in the elec-
trodynamic regime, where the particle is comparable to
the incident wavelength, have been analyzed in the radia-
tion zone.’”!? Studies restricted to the surface of the
scattering particles have also been done.!* Clusters of
spheres have been analyzed, but mainly in the radiation
zone!* ™17 or using an electrostatic approach.!®

The purpose of this work is to present the results of de-
tailed and comprehensive calculations of the scattered
electric field in the vicinity of isolated and clusters of me-
tallic scatterers. The calculations are done with an elec-
trodynamic approach that considers vectorial multipolar
fields, in contrast to other recent electrostatic ap-
proaches!® that consider scalar multipolar potentials. In
the long-wavelength regime it is verified that both ap-
proaches give similar results. For clusters of spheres and
spheroids the calculations have been done in both the
long-wavelength as well as the electrodynamic regimes as
a function of the separation between the metallic particles
and, in the case of ellipsoidal particles, also as a function
of relative orientations of the ellipsoids. To the best of
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our knowledge, no results have been previously published
on the local field induced around metallic clusters in the
electrodynamic regime.

The method used in this work is the T-matrix formal-
ism developed by Waterman.® With use of vector spheri-
cal partial waves (¥,) as a basis set, a matrix formalism is
derived describing electromagnetic scattering for a gen-
eral wave incident on objects of arbitrary shape. The ex-
tension to two scatterers is taken from Peterson and
Strom,'* who developed an effective 7 matrix for more
than one scatterer, retaining all the advantages of the
Waterman formalism and permitting calculations even
when scatterers in the cluster have arbitrary shapes. Al-
though calculations are limited to spherical and slightly
ellipsoidal particles and two-particle clusters, general
conclusions are given based on the obtained results. Asa
result of this work it is concluded that in the long-
wavelength regime a multiple-scattering expansion for
scatterers in close proximity, like those used in Ref. 19, is
no longer valid when the frequency of the electric field is
near a resonance. Furthermore, it is shown that for clus-
ters a distance greater than the one when the metallic
particulates are in contact will give maximum local-field
intensity.

For all the calculations in this paper, silver was used as
a model metal using the complex frequency-dependent
dielectric-function values reported in the literature for
the bulk material.?°

Section I of this article deals with the T-matrix formal-
ism applied to isolated spherical and ellipsoidal particles.
In the long-wavelength regime previous work using an
electrostatic approach is corroborated, and the formalism
is extended to larger spherical and spheroidal metallic
particles where it is necessary to do the calculations in
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the electrodynamic regime.

The calculations are done as expansions in spherical
harmonics ¥, whose number n corresponds to terms in
the multipolar expansion. Angular distributions and
multipolar composition of the fields in the vicinity of the
particle are studied and the radial dependence of the field
is analyzed. Expanding the T matrix in spheroidal wave
functions would naturally make the T matrix diagonal for
ellipsoids, and then only the dipolar term would be im-
portant in the long-wavelength regime. Since the main
objective of this paper is to study clusters, spherical har-
monics prove to be the most convenient base; thus, all
calculations are done in terms of this base.

Section II considers the formalism for clusters of two
scatterers in both the long-wavelength as well as the elec-
trodynamic regime for spheres. It is shown that a
multiple-scattering approach is not feasible when the
scatterers are in close proximity, and strongly interact-
ing, explaining divergent results for touching spherical
scatterers found in the literature.!® For these clusters the
interesting feature of a maximum local scattered field
found at critical interparticle distance greater than that
for particles in contact is demonstrated. Furthermore, it
is shown that when the interparticle distance of clusters
exceeds four particle radii the behavior of the local field
at any one of the scatterers is no longer influenced by the
other scatterer, thus establishing a criterion for a decou-
pling distance for cluster effects.

1. SINGLE SCATTERERS

A. The formalism

The T-matrix formalism developed by Waterman’

takes into account multipolar contributions which are
essential for any valid calculation of the local field of
single-particle ellipsoids as well as for all clusters. It also
fully takes into account phase-retardation effects due to
the size of the scatterers which are important for parti-
cles and clusters whose sizes are comparable to the wave-
length of the incident field. For this reason the formalism
has been chosen to calculate local fields near spheres,
spheroids, and clusters of two scatterers both in the
long-wavelength as well as in the electrodynamic regime.

In this method, the scattered field is obtained in terms
of the incident field by expanding the three fields (in-
cident, internal, and scattered) in terms of the corre-
sponding elementary fields that are a basis set of solutions
for the vector Helmholtz equation

VXVXE—Kk2E=0 .

The incident &, and the internal &;,, are expanded in
terms of the regular basis ReW and the scattered & in
terms of the nonregular ¥ one:

GOZ 2 AnRe‘l’,, y
n

63= EFn\Pn ’
n

&= S D,Re¥, .
n
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The elementary wave functions are expressed as
W ()= 52 (k TV X)T[KTY 5 (B, (KP)]
where 7=1,2, o =even (e) or odd (o), n=1,2,..., and
m=0,1,...,n,and
_ 2n+1)(n —m)!
y}‘nn

~Em 4n(n+1)(n+m)! ;
also, '
Y onn(T)=cos(m¢)P(cos6) ,

Y ,pnn (T)=sin(m¢)P"(cosb) .

7=1,2 describes the type of excitation—magnetic or
electric—e¢,, is the Neumann symbol defined as g,=1
(g,, =2 otherwise), n is the order of the multipole, and o
gives the parity of the elementary functions. The regular
forms of the basis functions are obtained by substituting
the Hankel functions by the Bessel functions.

The surface currents on the scatterers are used to ex-
press the expansion coefficients yielding, finally, a relation
between the latter:

F=—iRe(Q')D, (1
A=iQ'D, )

where Q represents the transpose of the Q matrix which
for a particle with complex dielectric function is given by

ko
Q,m,=—ﬂ_—f‘ds-{[VXRe\I/,,(kr)]X\Il,,'(kOr)

+ReV, (kr)X[VXWY,(kor)]} ,

where k3=¢,,,0?/c? and k2=¢, 0> /c?, s is the surface of
the scatterer, and W, (kr) is substituted by Re¥,(kr)
wherever ReQ appears. In our case g,,,=1 (vacuum) and
€;n¢ 18 the corresponding value for silver.

Finally, eliminating D from Egs. (1) and (2), a relation
between the coefficients of the scattered and incident
fields is obtained:

F=T A, (3)
where T is the T matrix of the scatterer defined as
QT=—ReQ .

The scattered field can be expressed in terms of the in-
cident field using the T matrix by the following relation-
ship:

6S=IGO .

Most of the results presented in this paper will be ex-
pressed in terms of the total electric field given by the fol-
lowing:

6,=6,+6,.

It is worth noting that the local fields can only be cal-
culated starting from a minimum circumscribing sphere
from the scatterer to assure convergence of the
spherical-wave expansions.
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B. The sphere

1. Long-wavelength regime

The T matrix for spheres is diagonal and yields the
same result as the Mie theory. For the case of the in-
cident wavelength much larger than the dimension of the
sphere (a /A=0.01, where a is the radius of the sphere
and A is the incident wavelength) a dipolar response is ob-
tained as can be predicted directly from the electrostatic
equation.?! In this long-wavelength regime only a
surface-plasmon mode of dipolar character is excited.
Performed calculations for silver spheres in the range of
the incident wavelength of interest (from 300 to 800 nm)
yield that for radii less than @ <5 nm the dipolar approxi-
mation applies.

2. Electrodynamic regime

For spheres in the electrodynamic regime, that is,
spheres whose radii are comparable with the incident
wavelength (@ /A=0. 1), multipoles higher than the dipole
are excited (see, for example, Refs. 22 and 23) and be-
come important for the calculation of local field r =a,
where r is the radius distance from the origin to the point
of observation. Calculations using a sphere with a radius
of 50 nm indicates that multipoles up to order n =9 have
to be considered in order to get a good convergence of
the scattered local electric field.

Since for spheres in. the electrodynamic regime higher
multipoles other than the dipole influence the scattered
wave, more than one characteristic peak for the spectrum
should be expected and is observed. Figure 1 shows the
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FIG. 1. Total electric field intensity |&,|2, at an angle of 70°
from the z axis in the x-z plane, as a function of incident wave-
length for an electrodynamic sphere, b=50 nm. Three dis-
tances of observation are presented, » =50 nm (on the surface)
and r =70 and 100 nm.
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intensity of the total scattered field as a function of wave-
length for three distances of observation from the center
of a sphere of radius 50 nm in the x direction. The inten-
sity of the incident wave for all calculations in this paper
are taken to be 1. For this particle size, two resonant
peaks are observed. The variation of field intensity with
observation distance shows that the smaller-wavelength
peak falls faster than the other. This, and the fact that
the longer-wavelength peak red-shifts (resonant energy
for the electrodynamic case E =3.12 eV, A=397 nm,; res-
onant energy for the electrostatic case E=3.5 eV, A=354
nm) yields a lower intensity of the total electric field
(|6|2=62.41 for the electrodynamic case, |&|>=456.7 for
the electrostatic case), and broadens with respect to the
electrostatic case, leads us to assign this peak a dipolar
surface-plasmon character, in accord with previous
works.!>1¢ Martinos,?? using a Mie formalism, generates
high-energy peaks in the absorption cross section for
electrodynamic spheres and similarly identifies these as
belonging to higher multipoles.

To ascertain further the multipolar character of the
peaks, the scattered field is decomposed into its different
multipoles for each of the two resonant energies in Fig. 1.
This is accomplished by taking into account only specific
n’s (order of the multipoles) in the coefficients of the scat-
tered field, Eq. (3). For the resonant energy of the scat-
tered wave, E =3.12 eV (A=397 nm), it is found that in
the relative contributions of the multipoles to the field,
the one with n =1 (the dipole) gives the highest contribu-
tion [Fig. 2(a)]; therefore, that peak is denoted as dipolar
in character. For the resonant energy of the scattered
wave, E =3.5 eV, a similar analysis shows that [Fig. 2(b)]
the n =2 multipole (the quadrupolar) dominates over the
other multipoles, therefore giving that second peak a qua-
drupolar character. It is worth noting that since the T’
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FIG. 2. (a) and (b) Separate multipolar contributions » to the
scattered field &, for the two resonant energies of Fig. 1, for the
sphere b =50 nm. The angle 6 is measured from the z axis in
the x-z plane.
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matrix in Eq. (3) is diagonal, the contributions of each
multipole is pure for each n, a fact that is only true for
isolated spheres and which will get complicated by nondi-
agonal terms in the 7 matrix for ellipsoidal scatterers and
for all clusters.

An interesting feature comes out from the calculation
of the magnitude of the total field (all #’s considered) in
the external region of the sphere as a function of its angu-
lar position. From Fig. 3 it can be observed [both (a) and
(b)] that given a certain angular position on the surface of
the sphere, the high-energy peak [E =3.5 eV, Fig. 3(b)]
has a greater magnitude than the dipolar one [Fig. 3(a)];
therefore, multipolar excitations other than the dipole are
as important as the dipole itself in the calculation of max-
imum intensities of the local fields for spheres of this size.
Therefore, the electrodynamic analysis is fundamental in
the calculation of the scattered electric field around
spheres whose size is comparable with the incident wave-
length.

C. The ellipsoid

1. Long-wavelength regime

When the particle is ellipsoidal rather than spherical,
multipolar contributions become significant in the calcu-
lation of the local field even when the size of the particle
is small compared to the incident wavelength due to the
fact that the expansion of the T matrix is made in terms
of spherical wave functions. These multipolar contribu-
tions are made important by the appearance of off-
diagonal terms in the 7 matrix which mix the different
multipoles of the incident wave. Although these off-
diagonal terms are small (no larger than 10~® when com-
pared with diagonal terms), when calculating the field in
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FIG. 3. (a) and (b) Total electric field &, as a function of an-
gle from the z axis in the x-z plane, for a sphere of b=50 nm.
The energies presented correspond to the two resonances of Fig.
1 for three distances of observation (r =50, 70, and 100 nm).
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the local region r =a these terms are multiplied by the
elementary fields into which the incident plane wave is
decomposed [Eq. (3)], and because of the divergent nature
of the Neumann functions, the product makes contribu-
tions to the scattered field of the same order of magnitude
as those coming from diagonal terms. Then, even if the
incident field would be purely dipolar, the scattered field
would contain elementary fields corresponding to
higher-order multipoles, that is, the coefficient of a given
elementary field in the scattered field can have contribu-
tions from various multipolar terms in the incident wave.

For the specific case of the electric field at the tip of the
ellipsoid, with the incident field parallel to the semimajor
axis, the T matrix calculations yield the value given for
the electrostatic limit found in the literature.?! In this
case, the resonant peak shifts to the red and grows in in-
tensity as the ratio a /b (a is the semiminor axis, b is the
semimajor axis) gets smaller, as is predicted by electro-
static theories.

Convergence of the calculations for the intensity of the
scattered local field becomes computationally difficult
when the ratio a /b is sufficiently different from that of a
sphere. For example, for prolate spheroids of a /6=0.9
and b =5 nm (electrostatic regime), convergence is
achieved for the value of the scattered field when n =7,
while for a /b=0.8 and b =5 nm it is necessary to go up
to n =9 to achieve convergence.

Furthermore, it is found that calculations done at the
resonant energies for the local field need a higher n in or-
der to obtain convergence, compared to the same calcula-
tion done for off-resonant energies. Also, as stated above,
to achieve convergence as the ratio a/b decreases, a
higher n is required. This is shown graphically in Figs.
4(a) and 4(b). The figures show the relative contributions
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FIG. 4. (a) and (b) Relative multipolar contributions, where
&%= 3 N_ 6, is the total electric field considering terms up to
order N, (a) for a /6=0.9, b=5 nm; (b) and a/b=0.8, b=5 nm.
&Y' is normalizd by the total electric field &,. The point P is the
observation point.
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FIG. 5. Total electric field intensity as a function of incident
wavelength at an angle of 10° from the z axis in the x-z plane for
an ellipsoid with @ /b=0.9 and b=50 nm. Three distances of
observation are presented.

of the elementary fields (¥,) as a function of » for the two
eccentricities considered. Figure 4(a) is for a/b=0.9,
and b=5 nm, at E=2.5 eV (A=496 nm), an off-
resonance energy, and at E=3.45 eV the resonant energy.
Calculations at the resonant energies have a slower con-
vergence than those for off-resonant energies. Figure 4(b)
shows the same behavior for a higher eccentricity
a /b =0.8, albeit with a slower convergence.

2. Electrodynamic regime

Few calculations have been done to determine local
fields in the electrodynamic regime for ellipsoidal parti-
cles.!> The T matrix formalism is ideally suited for this
type of calculation and is not restricted to calculation of
the local field at the surface of the scatterer as is the case
in Ref. 13. Figure 5 shows the result of a 7" matrix calcu-
lation for the spectral dependence of the intensity of the
total electric field at the point of highest field intensity for
an ellipsoid with a /b=0.9 and b=50 nm, corresponding
to a scatterer in the electrodynamic regime excited by a
plane wave whose field is parallel to the major symmetry
axis.

A similar analysis to that used for the electrodynamic
sphere applied to the resonant peak for an ellipsoid at the
point where the maximum value of the field intensity is
located permits the identification of the peak as dom-
inantly dipolar in nature, while the other resonant peak
to its left is mainly quadrupolar in character. Figure 6 il-
lustrates the multipolar analysis of the scattered field as a
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FIG. 6. (a) and (b) The separate multipolar contributions n to
the scattered field &, for the two resonant energies of Fig. 5, for
an ellipsoid of a/b=0.9 and b =50 nm. The angle 6 is mea-
sured from the z axis in the x-z plane.

function of angle, which corroborates the above assign-
ment of peaks to specific multipoles.

As it also occurs in the case of spheres, the maximum
intensity in the electrodynamic case (here |&,|>=88.4,
a/b=0.9, and b=>50 nm, Fig. 5) is smaller than the max-
imum intensity for the long-wavelength case (in our cal-
culations Ié’,lz=762 at the tip of an a/6=0.9, b =5 nm
ellipsoid).

II. CLUSTERS

A. The formalism

The T-matrix formalism has been extended to systems
with more than one scatterer by Peterson and Strom!# us-
ing the translation theorems for the vector spherical func-
tions.?* The translation properties of ¥, and Re¥, are
summarized by Ref. 25:

ReV,  (r+a)= ¥ R, ., (a)ReW¥ (1),

,n'
v, (r+a)= 3 o, ., (a)Re¥, (1), |a|>]r|
T,n'
= z R‘rn,‘r’n'(a)w‘r'n'(r) > la' < Il‘i
,n'

where 0, -, and R, . are the elements of the transla-
tion matrices as defined in Ref. 14.

Peterson and Strom obtained a T matrix for the cluster
of two particles in terms of the T matrices of each single
scatterer:

I(1,2)=R(a){T(D[1—g(—a;+a,)T(2)a(—a,+a,;)T(1)] " [1+ag(—a,+a,)T(2)R(a;—a,)]}R(—a,)
+R(a,)){T(2)[1—g(—a,+a,)T(1)ag(—a,;+a,)T(2)] [1+a(—a,+a,)T(1)R(ay—a,)]}R(—a,),
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where a; and a, are the distances from the origin to the
center of each scatterer. As is the case for single scatter-
ers, the calculation of the local fields for clusters are re-
stricted to the exterior of a minimum circumscribing
sphere that contains both particles in order to assure con-
vergence of the field expansions. ’

The above expression for the T matrix of the two-
scatterer cluster was obtained by generalizing the formal-
ism from the continuous surface of a single scatterer to
the discontinuous surface represented by two distinct
scattering sources. This approach can be reduced to a
multiple-scattering formulation of the problem by ex-
panding the inverse matrix into a series expansion of the
form

[l—cToT] '=1+[cTaT]+[eTa TP+ -,

where the terms of the expansion correspond to different
multiple-scattering processes.'* However, even when the
inverse matrix exists, this expansion is not valid when the
scatterers are too close to each other, as the authors have
verified through several computer calculations, thus mak-
ing the multiple-scattering representation invalid in this
case.

The intensity of the local field in all clusters in this arti-
cle are calculated at the point where the metallic scatter-
ers touch the minimum circumscribing sphere, a point
where the largest enhancement of the local scattered field
is usually found.

The method requires the use of computers with large
memory capacity and fast processing of data. For this ar-
ticle a ‘“‘minisupercomputer” with vectorization and
parallel-processing capabilities was used.

B. Cluster of two spheres

1. Long-wavelength regime

Recent works about light dispersion by clusters of
spheres only take into account particles in the long-
wavelength regime using an electrostatic approach,!®26
and for those done in the electrodynamic regime the scat-
tered field is calculated in the radiation zone.'*

In contrast to the isolated sphere, it is found that as
two spheres approach each other multipolar terms have
to be considered even in the long-wavelength regime
where the wavelength is much bigger than the size of the
scattering cluster. This behavior is explained by the fact
that each sphere is immersed in the distorted incident
field produced by the other sphere, thus making them
respond to other multipoles higher than the dipolar term
in the incident field.

Calculations of the intensity of the total field as a func-
tion of interparticle distance give the maximum when the
spheres are slightly separated from each other. The dis-
tance at which the maximum intensity is found will be re-
ferred to from here on as the critical distance A. Figure 7
shows the intensity of the total field at the trip of the
cluster as a function of incident wavelength for various
separation distances between the spheres of 5-nm radii
(long-wavelength regime). As above, all calculations are
performed taking the intensity of the incident electric
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FIG. 7. Total electric field intensity at the point P for a clus-
ter of electrostatic spheres, a /b =1 and b =5 nm, as a function
of incident wavelength. Four distances between the spheres are
presented (d =5, 5.3, 5.5, and 5.7 nm; 2d is the distance between
the centers of the particles).

field vector as 1. The maximum intensity enhancement
for this specific case is 1.14 times the intensity of the elec-
tric field of the single sphere, or 592 times the intensity of
the incident wave. Two more peaks are observed due to
the clustering process when the spheres touch each other.
For all other cases, only two peaks are observed, in accor-
dance with other recent works.?®

In general, the behavior of the resonant peaks as the
distance between spheres increases is to move towards
higher energies (smaller wavelengths), in accordance with
previous works,!’ reaching the single-sphere resonant en-
ergy for distances between the centers of the particles
greater than four radii.

Computationally, as the distance between scatterers is
increased, more terms have to be considered when the
scattered local field is calculated due to the nature of the
translation matrices; therefore a bigger matrix has to be
taken into account to achieve good results. Nevertheless,
the computational capacity available to the authors per-
mitted the obtention of good results up to the decoupling
distance mentioned above; for greater distances, the re-
sults for the single spheres can be used to calculate local
scattered fields. In this article the decoupling distance &
is defined as the distance between the centers of the
spheres where the resonant energy, as well as the intensi-
ty of the local scattered field coincides with that of the
single sphere; that is, if a sphere is separated farther than
the decoupling distance 8, the contribution to the local
scattered field near one sphere due to the other sphere is
negligible. Also, the existence of a decoupling distance
permits the considerations of clusters with more than two
particles if the higher cluster can be grouped into systems
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of two interacting particle clusters.

While for local fields the sizes of the matrices to be
considered have to be rather large, for calculations of the
scattered field in the radiation zone higher multipolar
contributions to the scattered field are no longer impor-
tant and calculations converge quickly for a large range
of interparticle distances within a cluster,'* as is also the
case for single scatterers.

For the case of a single scatterer in the long-
wavelength regime the T-matrix formalism can be made
to correspond exactly to Claro’s!® electrostatic multipolar
expansion. Since his formalism for two-particle clusters
is an expansion in multipolar interaction terms that is
essentially equivalent to a multiple-scattering formalism,
the inverse matrix [1—ao T o I]_l in the theory used by
the authors was expanded in a multiple-scattering repre-
sentation and compared with Claro’s result. This
multiple-scattering expansion was applied to cluster of
spheres in the long-wavelength regime (radius ¢ =5 nm)
as a function of interparticle distance, obtaining the same
divergences observed by Claro for close proximity of the
spheres. Thus, it is apparent that the divergences of
Claro are due to the multiple-scattering nature of his cal-
culation, an expansion that is not used in this paper.
Other electrostatic calculations for clusters of spheres,
like those from Ref. 27, do not report divergences when
the spheres are in contact, and they coincide with those
of the present authors in calculating the inverses of their
matrices numerically and not by using the formal expan-
sion of the inverse. Also, the highest-order multipoles n
at which the infinite matrices are truncated to obtain ade-
quate results in Ref. 27 coincide with those of the authors
in the long-wavelength regime.

Thus, it can be concluded that in the long-wavelength
regime, for clusters of two spheres in close proximity
(d/a <1.1), the multiple-scattering interpretation is no
longer valid. This is due to the fact that in these systems
the scatterers become strongly coupled when in close
proximity, and therefore cannot be thought of as a two-
distinct-component system, but as a single more complex
scatterer.

Also, the T matrix calculations have been compared
with experimental data for clusters of spheres in the elec-
trostatic regime: the real part of the calculated dielectric
function corresponding to the resonant energy of a clus-
ter of touching spheres gives a value of —8.23 (using the
data from Ref. 20) compared with the experimental value
of —3.73 given in Ref. 28. The calculations done by
Claro yield an infinite value for the same calculation.!®

2. Electrodynamic regime

As expected, an increase in the size of the spheres will
result in a more significant contribution from multipolar
terms, reflected in the more intense peaks in the higher-
energy part of the spectrum. Figure 8 shows the calculat-
ed total electric field intensity as a function of wavelength
for the case of a cluster of touching electrodynamic
spheres (radius 50 nm) for various distances of observa-
tion. In this case three peaks are observed, in contrast
with only two for the isolated sphere. Also, comparing
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FIG. 8. Total electric field intensity as a function of incident
wavelength for a cluster of electrodynamic spheres, a /b=1 and
b =50 nm, with d =50 nm. Three distances of observation are
presented (r =100, 120, and 140 nm). The observation point is
on the x axis.

this figure with Fig. 7, d =5 nm, the highest-energy peak
of the electrodynamic cluster is of comparable intensity
to the maximum peak, while for the long-wavelength
cluster the highest-energy peak is of negligible size com-
pared to the maximum peak. The maximum intensity of
the electric field is 1.01 times the intensity of the electric
field around the single sphere and 64 times the intensity
of the electric field of the incident wave. As with the case
of single spheres, an increase in the size of the scatterers
results in a decrease in the enhancement of the field.
Convergence to within 5% of the asymptotic value of the
field is achieved between n =10 and n =11 for spheres of
this radius.

As argued before in the case of a single ellipsoid, the
nonsphericity of the cluster of the two spheres gives rise
to nondiagonal terms in the 7 matrix. As a result, an
analysis similar to that followed for single spheres and el-
lipsoids indicate that it is not possible to assign a specific
multipolar nature to each peak, since each is composed of
several multipoles that contribute about equally to the
local-field strength. Figures 9(a), 9(b), and 9(c) show the
magnitude of the total field (all #’s considered) as a func-
tion of angular position for the resonant energies of the
peaks of the cluster of touching electrodynamic spheres.
In the three resonant energies considered, the focusing
point of energy is mainly in the x axis.

C. Cluster of two prolate spheroids

1. Long-wavelength regime

The calculations for clusters of prolate spheroids yield
spectral behavior similar to that found for clusters of
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FIG. 9. (a)-(c) Magnitudes of the total electric field &, for a
cluster of electrodynamic spheres, a /b =1 and b =50 nm, with
d =50 nm, as a function of the angle measured from the z axis
on the x-z plane. The three energies correspond to the reso-
nances of Fig. 8. Labels 1, 2, and 3 correspond to r =100, 120,
140 nm, respectively.

spheres as a function of distance between scatterers. Fig-
ures 10(a) and 10(b) show the intensities of the total field
around two clusters of prolate spheroids as a function of
distance between the particles. Due to computer-time
and memory-space limitations, only two cases in the
long-wavelength regime are presented, a/b=0.9 and
a/b=0.8, b =5 nm. As the distance between the parti-
cles is increased in Fig. 10(a), the maximum intensity of
the field is found when the spheroids are at a distance of
A=5 nm [|6,/1>=408, d =4.5 nm, touching -case;
|6,1>=483, d =5 nm (both with a/b =0.9, b =5 nm)].
Figure 10(b) shows an overall decrease in the field intensi-
ty compared with Fig. 10(a). The maximum intensity is
found at a distance A=4.75 nm [|6,|>=196, d =4 nm,
touching case; |6,|2=271, d =4.75 nm (both with
a/b=0.8, b =5 nm)]. Other calculations done by the au-
thors?® for ratios a /b =0.5 and b =10 nm, although ap-
proximate because computer power did not permit an ex-
act calculation, also give evidence of the existence of a
critical distance A greater than the touching distance.

In contrast with the previous behavior shown by the
sphere cluster as well as the ellipsoidal clusters, a change
of configuration can eliminate the critical distance. Fig-
ure 11 shows the intensity of the total field of a cluster of
prolate spheroids with their semimajor axis aligned with
the x axis, a /b=0.9 and » =5 nm. The maximum inten-
sity is found when the ellipsoids are touching
(16,1*=1407, d =5 nm; a /b =0.9, b =5 nm). Its inten-
sity is higher than the intensity found in the cluster of the

- same a /b ratio but with the semimajor axis aligned paral-
lel to the z axis (from Fig. 10(a) |6,|*=483). This is an
expected result since the cluster of spheroids aligned
along the x axis forms a system more elongated than the
cluster of spheroids aligned along the z axis.
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FIG. 10. (a) and (b) Total electric field intensity |&,|* as a
function of incident wavelength for four separation distances.
Two a/b ratios are presented, (a) a/b=0.9, b =5 nm; (b)
a/b=0.8, b =35 nm. Point P is the observation point.

2. Electrodynamic regime

Calculations for an electrodynamic cluster of spheroids
with @ /b=0.9 and =50 nm are presented in Fig. 12.
The following points can be concluded by comparing this
figure with the electrodynamic cluster of spheres with
a/b=1 and b =50 nm (Fig. 8): the higher-energy peak
is comparable to the lower-energy peak for the cluster of
electrodynamic spheres, while for the cluster of electro-
dynamic ellipsoids it is of less importance; the intensity of
the lower-energy peak is higher for the case of the ellip-
soids than for the case of the spheres.

The fact that the higher-energy peak is of less impor-
tance, compared to the lower-energy one, indicates that
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FIG. 11. Total electric field intensity |&,|? as a function of
incident wavelength for a cluster of ellipsoids that are aligned
along the x axis; a/b =0.9 and b =5 nm for four distances of
separation. Point P is the observation point.

the geometrical configuration of the two ellipsoids inhibit
multipoles with high-energy resonances, while for the
case of the spheres (Fig. 8) the configuration favors high-
energy multipoles. The fact that the intensity of the peak
increases (|6|*=63 for electrodynamic spheres, |&§|>=82
for electrodynamic ellipsoids) can be explained consider-
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FIG. 12. Total electric field intensity |&,|? as a function of
incident wavelength for an electrodynamic cluster, a /b =0.9
and b =50 nm. Three distances of observation are presented
(r =90, 100, and 110 nm). The observation point P is shown in
the diagram.
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ing that more eccentric scatterers tend to concentrate the
scattered local field in a particular direction because of
the antenna effect.

In similitude to the case of the cluster of electrodynam-
ic spheres, the resonant peaks of the cluster of electro-
dynamic ellipsoids cannot be characterized by a dom-
inant multipolar contribution since the strongly nondiag-
onal nature of the 7" matrix tends to mix many multipoles
into the composition of each resonant peak.

CONCLUSIONS

The T matrix formalism of Waterman was applied to
the calculation of the local electric fields near a single me-
tallic scatterer as well as clusters of two scatterers, both
in the long-wavelength and the electrodynamic regimes.

For the case of single spheres, the formalism becomes
equivalent to the Mie theory and calculations in the elec-
trodynamic regime for a single spherical scatterer agree
with work done by other authors. The scattered-field be-
havior as a function of observation distance r reduces to
pure dipolar behavior for r =2a. A procedure for charac-
terizing the multipolar nature of the resonance peaks for
ellipsoids as well as for clusters in the long-wavelengths
regime was established.

Increase in size, as well as decrease in a /b ratio of el-
lipsoids and proximity to a resonance, requires the con-
sideration of higher multipoles to obtain local fields, thus
making the dipolar approximations invalid. The rates of
decay of these fields as a function of the distances from
the scatterers are easily calculated with the T matrix ap-
proach and it is possible to assign the multipolar charac-
ter of all resonances. Furthermore, the enhancement
effect of the local electric field diminishes with increasing
size of the single scatterers. More specifically, we find
that in ellipsoids, for A >>b and r=b, higher multipolar
contributions must be included: therefore, in order to get
a good convergence, more terms have to be considered as
the eccentricities increase, while for A>>b and r>>b
higher multipoles contribute marginally and the dipolar
approximation becomes valid.

The study of clusters with the 7-matrix method has
made possible comparison of results with recent electro-
static approaches as well as the calculation of local elec-
tric fields for clusters in the electrodynamic regime. The
analysis of a multiple-scattering expansions in the long-
wavelength regime and comparison with published re-
sults!® indicates that for clusters in close proximity
(d /a <1.1) this type of expansion is no longer valid due
to the strong interaction between the two scattering
sources in the cluster.

Electric field intensities around clusters are greater in
magnitude compared to the intensities for the corre-
sponding isolated particles, indicating the capacity of the
clusters to localize spatially the field intensity, which sug-
gests that for any calculation of enhanced Raman scatter-
ing, it is necessary to consider clustering effects.

For the cases of electric field intensity as a function of
separation between particles, a critical distance A greater
than the one corresponding to touching scatterers is
found for most of the cases studied. The existence of this
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critical distance is probably due to the complex angular
dependence of higher multipoles. The fact that higher
multipoles have a greater degree of anisotropy affords the
possibility that the field generated by each of the individi-
ual scatterers will result in a net field that has a max-
imum for interparticle distances larger than when the
scatterers touch each other.

Therefore, we conclude that to obtain the greatest
enhancement of the intensity of the scattered electric field
in granular materials, two fundamental lengths have to be
considered. One due to long-range correlation length
that is important in predicting the effective optical dielec-
tric function of the material as a whole, as shown by the
authors elsewhere.’® The other, short range in nature,
corresponding to the mean distance between nearest-
neighbor granules, which is related to the contribution of
clustering effects to the local-field enhancement. The
long-range-order correlation length describes the statisti-
cal correlation between the position of the particles that
is determined by the formation process of the granular
material. The short-range-order length is related to the
average distance between islands and is dependent on the
concentration of the constituent materials.
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For clusters, accuracy is harder to obtain, computa-
tional time increases, and more memory space is needed,
but good results are still obtained with available compu-
tational resources up to the decoupling distance §>4a
for spherical and ellipsoidal scatterers in both long-
wavelength and electrodynamic regimes. This will per-
mit the use of simplifying assumptions in the calculation
of local-field clusters of more than two scattering sources.

In conclusion, the T-matrix formalism has proven to be
a strong calculational technique for studying the local
field near clusters of metallic particles and arbitrary
shaped scatterers taking into account multipolar as well
as retardation effects. The authors are in the process of
extending the calculation to three-scatterer clusters, and
arbitrarily oriented ellipsoids within a cluster, and the ap-
plication of this result to the study of enhanced Raman
scattering.
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