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Partition function and the density of states for an electron in the plane
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The object of the study is the random Landau model, that is, the Schrodinger operator in two di-

mensions with a perpendicular constant magnetic field and a random potential. With the help of
upper and lower bounds the averaged partition function, either unrestricted or restricted to the Hil-

bert space of the nth Landau level, is discussed. Based on the lower bounds, approximations to the
corresponding densities of states are proposed. For Gaussian random potentials the leading low-

energy behavior of the unrestricted density of states is derived.

INTRODUCTION

As discussed in recent publications, ' there are
shortcomings in some previously proposed approxima-
tions to the density of states of an electron in two dimen-
sions subjected to a perpendicular constant magnetic field
and a random potential. These shortcomings are the lack
of uniqueness or positivity of the approximate density of
states, or the nonexistence of the corresponding parti-
tion function, even for non-5-correlated random poten-
tials. These problems are avoided in the self-consistent
Born-approximation (SCBA), however, it is difficult to
get rid of its unphysical sharp cutoffs at the band edges
in the case of 5-correlated random potentials. Therefore,
after years of research on this topic it is still interesting to
propose a new approximation to the density of states
which does not share these shortcomings. This is the
main purpose of the present paper.

Our approach to the density of states is based on upper
and lower bounds to the averaged partition function espe-
cially adapted to nonvanishing magnetic field. This may
be viewed as a first attempt in the direction of works done
for vanishing magnetic field; see, for example, Refs.
10—13. Because of its simple form, the proposed approxi-
mation can, in principle, be calculated for any kind of
homogeneous random potential. However, in this paper
we will mainly concentrate on the most often discussed
case of Gaussian random potentials.

The resulting approximations to the density of states
and to its restriction to the Hilbert space of the nth Lan-
dau level are compared to exact results obtained in some
limiting cases of random potentials or energy range. '

To the best of our knowledge, two of these results are
presented in this paper for the first time. In the case of
Gaussian random potentials, these are the following.

(i) Asymptotic expansions of the partition function and
the density of states restricted to the nth Landau level up
to the order of the squared inverse correlation length of a
Gaussian covariance function.

(ii) The leading behavior of the unrestricted partition
function and density of states in the low-temperature and
the low-energy limits, respectively.

Finally, we give a quantitative argument as to why, for
the partition function, a possible effect of Landau-level
mixing can be neglected for su%ciently high fields. On
the other hand, this argument raises doubts regarding the
physical relevance of the density of states restricted to the
lowest Landau level in the case of 5-correlated random
potentials.

I. THE RANDOM LANDAU MODEL

H:= Ho+ V,
a

Ho:
2 EBxi

a+ +AJAX )2 l BX2

2

for one (spinless) electron in the infinite x:= (xi,x2)
plane subjected to a perpendicular constant magnetic
field of strength co) 0 and a random potential V(x). We
fix units such that Planck's constant A, Boltzmann's con-
stant kii, the elementary charge e, and the (effective) elec-
tron mass m equal 1.

We write the spectral resolution of the unperturbed
Hamiltonian Ho as

Ho=co g (n+ —,')E„,
n=0

where E„ is the projection operator on the Hilbert sub-
space of the nth Landau level (n +—,

' )co. One has

E„E„.=5„„.E„, g E„=1 .
n=0

(1.3)

In the position representation E„ is given by

(x ~E„~y ) = exp[ ,'ico(x2 ——y—2)(x,+y, )]

X exp[ —
—,'co(x y) ]L„(—,'to(x —y) ) . (1—.4)

Choosing an asymmetric gauge, in the Schrodinger
representation the random Landau model is. character-
ized by the Hamiltonian
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V(x) =0 . (1.6)

The overbar denotes the average with respect to the prob-
ability distribution of the potential. For further informa-
tion about the characterization of random potentials see,
for example, Ref. 19.

The problem in view is to estimate the averaged parti-
tion function (per area), (xle ~ lx &, and the averaged
partition function restricted to the Hilbert space of the—PE„HE„
nth Landau level, (xlE„e " "E„lx &, by upper and
lower bounds. Subsequently, approximations to the cor-
responding densities of states (per area), (x l5(e —H)lx &

and (x lE„5(s E„HE„—)E„lx &, are introduced. The ap-
proximations are related to the lower bounds by inverse
Laplace transformation. Of course, here c.ER is an ener-
gy and PE R+ can be interpreted as an inverse tempera-
ture.

II. BASIC INEQUALITIES
FOR THE RESTRICTED PARTITION FUNCTION

To begin with, we state the following chain of inequali-
ties,

exp — (x lE„VE„lx &
27T 2' 6)

Here,

L„(K):= e (e K )
1 6"

dK

denotes the Laguerre polynomial of nth order. '
In the following we are only concerned with random

potentials which are homogeneous and have, without loss
of generality, the property

E= E. lx & (xlE„. (2.5)

For the third inequality we first introduce a nonran-
dom confining potential V, := fl x /2 and apply (2.4) to

A = V+ V„E=E„.
Finally, after averaging we take the limit 0$0.

(2.6)

III. APPROXIMATION FOR THE RESTRICTED
DENSITY OF STATES AND COMPARISON

TO EXACT RESULTS

The lower bound Z„(P) to the restricted partition func-
tion can uniquely be represented as the two-sided Laplace
transform

Z„(P)=fdsp„(s)e

of the function

p„(s):=(cv/2ir)5(e —(2m. /cv)(x lE„HE„lx & ) .

(3.1)

(3.2)

The restricted partition function and the restricted densi-
ty of states are connected in the same way. Thus, in view
of inequality (2.3), the approximation

For the second and the third inequalities we need the
following noncommutative version of Jensen's inequali-
ty due to Peierls, Bogoliubov, and Berezin. It may be
written as

Tr(Ee ~ E) ~Tr(Ee ~"E), 3 =At, E=EtE
(2.4)

and is valid for any self-adjoint operator A and any pro-
jection operator E.

The second inequality in (2.1) follows from an applica-
tion of (2.4) to

—pv(o)e
2~

(2.1) &x lE„5(s E„HE„)E,lx—& =p, (e) (3.3)

valid for any nonzero magnetic field. We think that these
inequalities for the first time allow a controlled approxi-
mation to the restricted partition function. They are
essential for the following discussion.

Before giving a proof, we mention as an immediate
consequence of the second inequality in (2.1) that f«p„(s)=, p„(e)2' ' (3.4)

suggests itself. This approximation can also be applied if
the restricted partition function does not exist.

Obviously, p„ is correctly normalized and non-
neg@tive; that is,

Z„(P):= e '"+' '~ exp — (xlE„VE„lx &
277 CO

is a lower bound to the restricted partition function:

Z„(P) ~
& x

1 E„e '""'"E„lx & .

(2.2)

(2 3)

Moreover, it satisfies the consistency requirements
demanded in Ref. 1 and can easily be computed for each
choice of the random potential. In conclusion, (3.2) is a
simple and tractable approximation to the density of
states restricted to the nth Landau level for arbitrary n.

The remainder of this section deals with the compar-
ison of approximation (3.3) to exact results.

(i) We mention the trivial case of a constantly correlat-
ed random potential characterized by

Because of the translational invariance of the random po-
tential, all terms in (2.1)—(2.3) are independent of the site
X.

The first inequality in (2.1) is due to the property (1.6)
and to Jensen's inequality ' applied to the average over
the random potential.

exp i f d'y V—(y)J(y)

= f dv w(v)exp iu fd y —J(y) . (3.5)

Here, w(u) is a probability density on the real line which
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can be interpreted as the single-site density 5(U —V(x))
of the random potential. For these potentials the correla-
tions of their fluctuations at various sites do not depend
on these sites at all. In this case, approximation (3.2)
equals the exact result'

&x IE.5(s E.—HE. )E.IX & =p. (E)= ~(e—(n+-,')~) .

v 2' 217 co

4& v v co

2 1/2

is reproduced by the approximation. For comparison we
have plotted the exact result, Ando's SCBA, '

& x i EO5(E —EOHEO )Eo ix &

(3.6)
I

Therefore, within the approximation (3.3) one might hope
to obtain reasonable results for correlation lengths which
are large compared to the magnetic length I /v'co.

(ii) Next, we consider 5-correlated random (or white-
noise) potentials defined by

r

exp i fd—y V(y)J(y) =exp f d yg(J(y))

(3.7)

where e" "has to be the Fourier transform of a proba-
bility distribution on the real line for all A )0. 5-
correlated random potentials model physical situations in
which all correlation lengths are small on the magnetic
length scale 1/v'cg.

For the Cauchy-Lorentz white-noise potential, that is,
g(a) = —v~a~ (0, the approximation p„(c,) coincides with
the exact result' '
& x

l E„5(s E„HE„)E„lx &
—=p„(s)

CO v/m
2~ v +[a (n+—

—,')co]

(3.8)

Xe 4—
V 6)

(3.12)

and our po(s) in Fig. 1. Here, 6 denotes the unit-step
function.

IV. APPLICATION FOR GAUSSIAN
RANDOM POTENTIALS

T

=exp ,' f—d—xf d y J(x)C( ~x —y ~ )J(y) (4.1)

where the covariance

C( ~x —
y~ ) = V(x) V(y)

has the Fourier representation

(4.2)

In the following we calculate the lower bound Z„(P)
and the approximation p„(E) for Gaussian random poten-
tials which are homogeneous and also isotropic and have
zero mean. Hence the characteristic functional of the
random potential is given by

exp i f—d y V(y)J(y)

&x IE05(e—EoHEo)EOIX &

2'
exp

2

Wegner' has obtained the density of states restricted to
the lowest Landau level (see also Refs. 15 and 17),

1,5-

1+ f dp exp
O

2m 2p
V CO

2 (3.9)
1,0-

for the Gaussian white-noise potential, that is,
g(a)= —(v /2)a . In contrast, in this case the approxi-
mation (3.2) gives a simple Gaussian

0.5-

v 2co 217 co
po(e) = exp

2'7TV ' 'p Q7 2
(3.10)

While po(co/2) exceeds the exact value at the band center
by the factor m/2, the leading asymptotic behavior for

2m
7

V CO

(3.11)

lim ln & x
~ E05( s EOHEo )Eo ~

x&—1

(E—co/2)

/2'
,

2n
v2 cd

FIG. 1. Plot of (a) the density of states restricted to the
lowest Landau level, given in (3.9), of (b) the SCB approxima-
tion, given in (3.12), and of (c) our approximation po, given in
(3.10), as a function of the energy c for the Gaussian white-noise
potential. The ordinate is given in units of &2'/~ v, the value
of the density of states at the band center.
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2

C(lxl)= f " ",C(lkl)e'""
(2)r )

(4.3)

with a non-negative function C: R+ —+IR+.
In this case the lower bound (2.2) takes the simple form

Z (p)
c)) —(n+1/2)/3' P rn

2 2 /2
e e2' (4.4)

—[c,—(n+ 1/2)co]2/2@2
p„(E)=

(2 2 )1/2
e (4.5)

Here the widths y„are defined by

and therefore one obtains a Gaussian-shaped approxima-
tion to the restricted density of states,

and (7.414.3 in Ref. 22)

f d)ce [L„()c)]=1 .
0

(4.13)

V. APPLICATION FOR A GAUSSIAN
RANDOM POTENTIAL WITH A GAUSSIAN

CO VARIANCE

We now focus the discussion on a Gaussian random
potential with the Gaussian covariance function

As a consequence of (4.11), the widths y„ for a gaussian
random potential with continuous covariance C( lx

I
) take

their maximum value &C(0) in the constantly correlated
case, that is, C( lxl ) =C(0).

Xn:=
2

f d x f d'y 1&OIE. lx&l'

X C( x —y I ) 1&y IE„ IO& I',
(4.6)

C(lxl )=cT e " C(lkl)=2)ro 1, e (5.1)

Here, 0 is the single-site variance and A, is the correla-
tion length of the fluctuations of the random potential.
Inserting (5.1) into expression (4.7), the widths y„can be
written as

which can be simplified to

)/„= f d)c C(V2co)c)e '[L„()c)]
2& 0

using the identity (7.377 in Ref. 22)

l&xlE. IO&l'= f (2~)'

(4.7)

(4.8)

2= 2 A, co

g2 +2
(5.2)

y„/y()= f d)ce '[L„(ic/(A, co+2))]

In Fig. 2 we give a plot of the ratio y„/y0 as a function
of (A, e)) ' for different values of n.

For X2c))))1 the widths y„are given by (7.414.2 in
Ref. 22 )

for the squared kernel (1.4) of the projection operator E„.
For Gaussian random potentials the band tails of the

density of states restricted to the lowest Landau level
have been calculated by Apel, ' extending a work of
ANeck. ' In particular, the leading asymptotic behavior
has been found to be

lim ln & x
I E05( E —EDHE0 )Eo I

x &

1

( E —co/2)

1 —22n+1 +0 1

A, co A, co
(5.3)

Upon insertion into (4.4) this leads to an expansion of
Z„(P), in which the term of order 1/A, co exceeds the cor-
responding one in the expansion

1

2/0
(4.9)

which is reproduced by the approximation po(E).
Introducing the abbreviation

0 2 0

n
—f d)c C(&2co)c)e [L„(~)]

27T 0
(4.10) CV O

7

CV C

the widths y„can be estimated to

4

y„(o„(min sup[C()/2colc)], C(0) . .
C(0) " "

2m n&0

(4.11)

l1=2

n=3

e '[L()c)] (1 for )c)0, (4.12)

The first inequality is due to the positive variance of
exp[ )c][L„()c)] with re—spect to the probability density
AC(v'2ct))c)/2mC(0) on )R+. The other inequalities fol-
low from (22.14.12 in Ref. 21)

0
0

FIG. 2. Plot of the ratio y„/yo of the level widths for the
Gaussian covariance function (5.1} as a function of the squared
inverse correlation length 1/k .
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vanishes, too, when the Landau-level index n tends to
infinity; that is,

—(n+1/2)pu p cr /2
2~' rn yn —0 for A, Q) 4 (x) (5.10)

Po 2n+1 1

A, co A, co

Ee " "E=hm(Ee E)—PE VE
(5.5)

by the factor 2.
To derive the relation (5.4) we employ the Lie-Trotter-

Cherno6' decomposition

This can be seen by

+2A, ci)+2 f d «[ ]4
2 0

(5.11)

Eq. (5.7), and the asymptotic formula (5.8). In general,
we have no analytical proof that y„~y0, although there
is numerical evidence that even y„+ &

~ y„.

C( ixi ) =v 5(x)

and the widths y„are simplified to

V CO
2

y0 4'
y„/yo= f da. e '[L„(a./2)]

f d8[P„(cos8)] & 1,1

0

(5.6)

(5.7)

where P„denotes the nth Legendre polynomial. ' The
last equation is due to the convolution theorem for the
Laplace transformation and 7.141.2 in Ref. 22. Of
course, one recovers (3.10).when yo given in (5.7) is in-
serted into (4.5), and analogously (4.9) reduces to (3.11).

In the Gaussian white-noise limit the asymptotic be-
havior of the width y„ for large Landau-level index n can
be written as

2 inn
&v co

n
as n~~ for C(~x~)=v 5(x), (5.8)

with some numerical constant b)0. This can be de-
duced from a work by Salomon. Comparing this to a
result of Benedict for the Gaussian white-noise poten-
tial,

and expand the resulting expression for the restricted
partition function up to the order I/A, co after averaging.
Equation (5.4) extends the result (4.12) in Ref. 28 to
nonzero Landau-level indices. Expression (5.4) takes neg-
ative values for large p, if corrections of order I/A, co are
neglected. Therefore the truncated expansion yields neg-
ative values of the corresponding restricted density of
states for large energies ~s~.

In the limit of Gaussian white noise (A, co~0,
o /co~ ao, v:= 2m.o k =const), the covariance (5.1)
reduces to

VI. IMPLICATIONS FOR THE UNRESTRICTED
PARTITION FUNCTION AND DENSITY OF STATES

In the preceding sections, quantities restricted to the
Hilbert space of the nth Landau level have been dis-
cussed. Next we are concerned with the unrestricted
quantities (x ~e ~ ~x & and (x ~5(e —H)~x &, which
determine the static properties of the unrestricted model
(1.1).

Again we start with. a chain of inequalities,

CO

4n. sinh(Pco/2)

«x~e ~H~x&

S —PV(0)
4m sinh(Pco/2) (6.1)

&x~E„e " "E„~x&&(x~E„e f'H~x&, (6.2)

and the fact (1.3) that the projectors [E„J are resolving
the identity operator.

The inequality (6.2), in its turn, follows from an appli-
cation of (2.4) to

A =H+ V„E=E„, (6.3)

by removing the confining potential V, after averaging,
and by noting that the commutativity

~
—PHE E e

—PH
n n (6.4)

valid for homogeneous and isotropic random potentials
with zero mean and intended to control the unrestricted
partition function.

The first inequality follows from the corresponding one
in the chain (2.1) by multiplying with exp[ —(n+ —,

' )pro]
and summing over n.

The second inequality is a consequence of (2.3), of the
inequality

is valid for homogeneous and isotropic random poten-
tials. "' '

The third inequality in (6.1) is proven with the help of
the Golden-Thompson inequality, '2nv'n m.

V CO

as n~~, (5.9)

lim
2

ln (x
~ E„5(e E„HE„)E„~x &—1

[s—(n +—,
' )co]

one recognizes that the approximation (4.5) agrees with
the Gaussian decay, but the width is decreasing faster
with increasing n.

Finally, we remark that for all X ~( (x& the width y„

—P(H+ V ) PHO —PV —PV
Tr(e '

) &Tr(e 'e e '), (6.5)

and the subsequent removal of the confining potential
after averaging.
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As the approximation (3.3) has been encouraged by the
inequality (2.3), the second inequality in (6.1) supports the
approximation

& x ~5(s H—) ~x & =p(s) (6.6)

to the unrestricted density of states, where we have
defined

p(s):= g p„(s) .
n=0

(6.7)

By construction, effects of level mixing are neglected
within this approximation. For all constantly correlated
random potentials and the Cauchy-Lorentz white-noise
potential, level mixing does not occur, ' ' because in
these cases E„5(cH)=,E—„5(s E„HE—„)E„.In view of
Eqs. (3.6) and (3.8) the approximation (6.6) is therefore
exact in these cases.

For Gaussian random potentials one explicitly gets

1 —[c—(n+1/2'] /2y„

2' „=o (2m y „)'/
(6.8)

&x ~5(s —H) x &

—[g —(n+1/2)co] /2'

(2~o.„)'/
(6.9)

Here each width o.„, given in (4.10), is larger than the
corresponding y„[see (4.11)]. Gerhardts has obtained
(6.9) within his first-order cumulant approximation by an
additional long-time approximation. For a critical dis-
cussion of the derivation and the interpretation of (6.9),
see Ref. 2.

Eventually we state that for Gaussian random poten-
tials the low-energy behavior of p is governed by

1
lim —1np( s )

g~ —oo

1

270
(6.10)

under the assumption y„~yo, refer to the end of Sec. V.
This will be compared to the asymptotics of
& x

~
5(e —H ) ~x & derived in the next section.

with the widths y„defined in (4.6). This approximation
to the density of states is plotted in Fig. 3 for the Gauss-
ian covariance (S.1). The plot should be compared with a
corresponding one in Ref. 2 coming from a first-order cu-
mulant approximation proposed in Ref. 6.

A long time ago Gerhardts also proposed a series of
Gaussians to approximate the unrestricted density of
states for Gaussian random potentials:

2-
l
f
I

I
I

I
I
I
I
I
I

I
I
I

I
I
I
I
I
I
I
I

I

I
I
I
I

I

I

VII. LOW-ENERGY BEHAVIOR
OF THE UNRESTRICTED DENSITY OF STATES

FOR GAUSSIAN RANDOM POTENTIALS

In this section we are concerned with the exact asyrnp-
totic behavior of the unrestricted density of states for low
energies. At this we will only consider Gaussian random
potentials as characterized in (4.1).

In contrast to the result (4.9) for the density of states
restricted to the lowest Landau level, we assert that the
leading low-energy behavior of the unrestricted one is
given by

lim —,ln&x ~5(s —H) ~x &

1 1

g~ —oo 2C(0)
independent of the field strength ~. For co=a the result
(7.1) is well known. "

Due to a saddle-point argument an equivalent state-
ment to (7.1) is

lim ln
1 &x~e ~ ~x& C(0)

&xie 'ix &

for the large-P limit of the averaged partition function.
Since the upper bound in (6.1) has the same limit, there

remains only the construction of a suitable lower bound.
To this end we employ the bound

(7.1)

FICx. 3. Plot of the approximate density of states p given in
(6.8) for the Cxaussian covariance function (5.1) as a function of
the energy c for three different values of the correlation length A,

and a fixed variance o =0.15' . Numbers attached to the
curves are values of 1/A, co.

—P(H+ v, ) eTr e

—0& gl», lg&

d2z exp — d y y p &+y +p &+y (7.3)

which is true for any
~ g & with
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The inequality (7.3) follows from an application26 33'o of (2.4) to

A =H+ V„E=fd'x f d'y e'i'" &'~x ) (x —
q ~ y) ( y~y

—
q ) (y ~

and integrating over p and q.
After averaging and removal of the confining potential V„ the inequality (7.3) transforins into

(7.5)

(x ~e ~~~x ) &
-n&yl~, lq& 2

exp f d'y fd'zl &ply &I'«ly —zl) l&zl@&l' (7.6)

and therefore one has

xe ~Hx
lim inf ln ~ ,' f d—yf d z((q~y)(2C(~y —z~) ((z~y)(2.

(x)e '(x &

(7.7)

Choosing (x~g)=(2ma )
'~ exp( —x /4a2), the right-

hand side of (7.7) tends to C(0)/2 as a lO. This proves
the assertion.

In addition, the limits (7.1) and (7.2) are true for gen-
eral homogeneous Gaussian random potentials, since the
assumption of isotropy has not been used in the above
derivation. As an aside we remark that for the proof of
Eq. (7.2) the usual large-deviation methods for Wiener
path integrals do not apply in the presence of a magnet-
ic field.

The low-energy limit (6.10) of the approximate density
of states does not coincide with the result (7.1) except for
the constantly correlated case C(~x~)=C(0). This fact is
mainly due to the neglect of level mixing.

More seriously, in the case of the Gaussian white-noise
potential, the decay of the density of states for low ener-
gies must be weaker than that of its Gaussian-shaped ap-
proximation (6.8). In fact, for vanishing magnetic field it
has been calculated that

Of course, Eqs. (8.2) and (8.3) refiect the fact that in the
high-field limit all correlation lengths of the random po-
tential are infinite compared to the magnetic length
1/&co.

An immediate consequence of Eqs. (8.2) and (8.3) is

&x~e
lcm" g &x~Ze

PHi )—
"Z ix&

(8.4)

CONCLUDING REMARKS

which means that, at least for the partition function, level
mixing can be neglected for suSciently high fields. For
high fields and random potentials with short correlation
lengths it is inconsistent to restrict the model (1.1) to the
Hilbert space of the lowest Landau level as follows from
Eqs. (8.2) and (8.4).

lim ln(x~5(e —H)~x)1 C
ci)=0,V2' (7.8)

with a numerical constant c )0. In analogy to (7.1), this
is presumably true for co%0, too.

VIII. HIGH-FIELD BEHAVIOR
OF THE PARTITION FUNCTION

lim y„=C(0) (8.1)

imply

PE„HE„
i

)—&x lE„e
lim

(x iZ„e 'E„ ix )
~P C(0)/2 (8.2)

p'c(o)y2-"&x/e '[x &

(8.3)

In this section we are concerned with the exact asymp-
totic behavior of the partition function for high magnetic
fields. Again we only will consider homogeneous Gauss-
ian random potentials.

The inequalities (2.1) and (6.1) combined with

In the present work we have introduced a new and sim-
ple approximation to the averaged partition function and
density of states for an electron in the plane subjected to
a perpendicular magnetic field and a random potential.

There are two drawbacks of the approximation. First,
by the application of the Jensen-Peierls inequality, the
quantum Auctuations, and therefore probably the
broadenings of the Landau levels, are, in general, un-
derestimated. Second, for the unrestricted quantities, a
possible inAuence of level mixing is neglected from the
outset. For example, this is crucial for the Gaussian
white-noise potential.

On. the other hand, among the benefits of the present
approximation we list the following. First, it contains
nonperturbative corrections to the solvable case of con-
stantly correlated random potentials. These corrections
are physically relevant for very high fields and do not
lead to the shortcomings of other approaches discussed in
Refs. 1 and 2. Second, for general G-aussian random po-
tentials the approximation reproduces the leading behav-
ior in the tail region of the density of states restricted to
the lowest Landau level.

In summary, the present approximation yields a rough
overall picture of the averaged density of states and pro-
vides a controlled estimate for the averaged partition
function.
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