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Temperature dependence of sound attenuation in impure metals

M. Yu. Reizer
Department ofApplied Physics, Stanford University, Stanford, California 94305-4090

{Received 3 April 1989)

Temperature dependence of the sound-attenuation coefficient in an impure metal arising from in-
elastic electron scattering is investigated. We consider the electron-phonon and electron-electron
interactions, as well as the electron-magnon interaction in a ferromagnetic metal, as processes of in-
elastic electron scattering. The interference effects between inelastic electron scattering and the
elastic electron-impurity scattering, together with the weak-localization effect, are taken into ac-
count.

I. INTRODUCTION

The attenuation of sound in impure metals due to the
electron-phonon interaction was calculated by Pippard'
by means of the quasiclassical Boltzmann equation. The
results obtained there were then confirmed by microscop-
ic calculations by Schmid and by Grunewald and Sharn-
berg. According to Refs. 1—3, the attenuation coefticient
depends essentially on the parameter kl, where k is the
wave vector of the sound phonon and l is the electron
mean free path due to the electron-impurity scattering:
I=V~~, where UF is the Fermi velocity and ~ is the
electron-momentum relaxation time. For kh ))1 the at-
tenuation is proportional to k and does not depend on z
(the collisionless regime). For kl (( 1 (hydrodynamic re-
gime) the attenuation coefficients for longitudinal and
transverse phonons are

4 Zm

where m, M are the electron and ion masses, and Z is the
average charge per unit cell, which is determined from
the equation

ne ion ion +Zimp+imp

Here, Z;,„and Z; are the valences of the host ion and
the impurity ion, respectively; X;,„and X; „are their
concentrations.

The temperature dependence of the attenuation arises
only from inelastic electron scattering. The effect of the
electron —thermal-phonon scattering on the sound at-
tenuation was considered in Ref. 4. The electron-phonon
and electron-impurity scattering processes were treated
independently, that is, equivalent to Matthiessen's rule
for the resistivity. The validity of such an approach for

both the resistivity and the sound attenuation requires
some justification.

Note that even in relatively pure samples under the ex-
perimental conditions of Ref. 5 the electron-impurity
scattering is the main electron-momentum relaxation
process. This dominance of electron-impurity scattering
was exploited in Ref. 6 for obtaining the temperature-
dependent corrections to the conductivity for an impure
metal due to the electron-electron interaction and in Ref.
7 due to the electron-phonon interaction. It was shown
that Matthiessen's rule breaks down at low temperatures
when the interference between the electron-electron
(electron-phonon) and the electron-impurity interactions
becomes essential.

We use the same approach in the present paper to cal-
culate the temperature-dependent corrections Ay to the
attenuation of sound in an impure metal due to different
inelastic-electron-scattering mechanisms and the effects
of weak localization.

The paper is organized as follows. In Sec. II we de-
scribe the electron-phonon interaction in impure metals.
The effective interaction vertices are introduced, which
allow us to treat the screening and impurity renormaliza-
tion effects consistently. We then calculate the correc-
tions to the sound attenuation due to the interaction of
electrons with thermal phonons. The inhuence of the
electron-magnon interaction on the sound attenuation in
an impure ferromagnetic metal is investigated in Sec. III.
In Sec. IV we consider the effects of weak localization
and in Sec. V the effects of the Coulomb electron-
electron interaction and the electron-electron interaction
in the Cooper channel.

The effects of localization and the Coulomb electron-
electron interaction on the sound attenuation were inves-
tigated recently in many papers. " In our approach we
consider some new diagrams, taking into account the
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eA'ect of screening and impurity renormalization, but
after some cancellations the final results coincide with
Refs. 8—10.

II. ELECTRON-PHONON INTERACTION
IN IMPURE METALS

We use the Keldysh-diagrammatic technique for none-
quilibrium processes' in which the electron and phonon
Green's functions, along with the electron and phonon
self-energies, are represented by matrices

V= A/WA = ~~+
Vp

0
GR

L

GAc, D= 0 D'
DR DC

(3)
yC yR

yA 0
II H

rI" 0

k

ij

The electron Green's function averaged over impurity
positions equals

G (p, E)= [G "(p,e)]*=(E—g~+ i/2r),

g = (p —p~ ) /2m (4)

where pF is the Fermi momentum. In a spatially uniform
system

G (p, c)=S(e)[G"(p,E)—G (p, E)],

FIG. 1. F'0 is the bare electron-phonon vertex, Fz is the
screened electron-phonon vertex, Vis the screened Coulomb po-
tential, Vo is the Coulomb potential without screening, vertex A
takes into account the impurity renormalization in the first or-
der of the perturbation theory and vertex I f in all orders, and
triangle 8'represents the scalar vertex renormalized by impuri-
ties in the ladder approximation.

(I ),".= i3x g—K" x=
S(e)= —tanh(e/2T) . (5)

For equilibrium thermal phonons,
EFq

3 (2M¹o&)'

(10)

D (q, co)=[D "(q,co)]*=(co—co i+iO)
—(co+co i+ iO)

Dc(q, co) = [2N(co)+1][D (q, co) —D "(q,co)],

K(co)= [exp(co/T) —1] ' (7)

where coq & is the phonon frequency and A, the polariza-
tion index.

The interaction vertices in the Keldysh technique are
represented by objects of the form Q ~, where the upper
index is for bosons, the lower for electrons. The vertex
for elastic electron-impurity scattering corresponds to the
matrix (cr, );~, where c7, is a 2 X 2 Pauli matrix.

To consider the interaction between electrons and both
sound and thermal phonons, we work in the frame of
reference moving together with the lattice (MFR). ' '
In MFR impurities are motionless, which allows us to
neglect inelastic electron-impurity scattering. In describ-
ing the vertices of the electron-phonon interaction, we
follow Ref. 15. Without screening, the electron-phonon
vertex is

(
k . p'q p'ei.

m(2M+~ )'"
qA,

where e& is the polarization vector. The tensor K, . is

1 21 1
K,, -5;, K,, -(cT );, .

v2 v2
For longitudinal phonons,

For thermal phonons it is convenient to introduce the
dimensionless constant PI defined by g~& =Pico~I v
where g~I is given by (10), and

v 1=2
2M'

where we used uI =ZmvF/3M.
Including the screening e6'ects for longitudinal pho-

nons leads to the vertex I „shown in Fig. 1:

i cow(go —3(2 )
(r, )'„=ig„Z,", 1 —3x'+

1 —
go i corgo—

(r, )'„=(r,),', = —[(r, )'„]*,
( I, )', = ( r, )', = —2[2%(co)+1]Re[(r, ), ],

where

Jdp G "(p,E)G (p+q, E+co)x" .1 1

mvr (2~)3

For ql «1 and co~&&1,

(12)

(13)

go= 1+icos Dq r, pi= ———[1—(1—icos)go],
(14)

f2= —(1 i co~)g„D =U~—~/3 .

For q/ « 1 and co~ &&1 the vertex I, should be renor-
malized by the electron-impurity scattering in the ladder
approximation. Because the vertex I, contains both the
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(rf)I2 S(s)I (I f)~, = S—(a+co)r,

(I f )'„=[1—2S(e)S(E+co)]r

(rf )2, = [s(e+~)—s(E)]r,
(rf is= f xi= f 22=

(15)

Note that expressions (15) are correct for arbitrary rela-
tions between co and Dq (see Ref. 15). Note also that the
exact expressions (12) for the vertex (I, ); are very im-
portant for constructing the vertex (I f),.~. In all other
cases for our calculations we will use the following
simplified formula:

(I, ),j=i(1—3x )g &X,.". .

For further calculations, we also need the vertex (A),~
for ql »1. The vertex (A),"" has the same index structure
as (I'f )", . and may be obtained from (15) by substituting I
for A, where

'1T
A =A22=lgqI 3/2, ql )& 1

2 ql
(17)

As was shown in Ref. 7, the screening effects are not
essential for thermal transverse phonons for T & Ti,
where

u,
T, = (EF~u, )', ~ =4nev, Tl &&u,. ,

C
(18)

where c is the velocity of light and u, is the velocity of
transverse sound.

For a metal, T, =0. 1 K. The screening efFects are also
unimportant for the long-wavelength thermal transverse
phonons for which Tl « u, . As for the sound transverse
phonons, the screening effects are essential only for
kl )&1, and as long as the phonon frequency is not too
high. ' Because for sound phonons we assume the condi-
tion kl «1 to be true and for thermal phonons the con-
dition ql ))1 to be true, the interaction between electrons
and both sound and thermal transverse phonons is de-
scribed by the bare vertex I 0.

The sound attenuation is obtained from the corre-
sponding phonon self-energy

y= —2IrnII (k, Q)~
qA,

Diagrams contributing to H for longitudinal and to II'
for transverse sound phonons without inelastic electron
processes are shown in Fig. 2 and lead to expressions (1).

Being interested in the temperature-dependent correc-
tions to the sound attenuation hy' and hy', we should
consider the phonon self-energy diagrams containing the

scalar and the vector ( —3x ) parts, the renormalization
is performed by introducing the auxiliary vertex A;. ,
shown in Fig. 1. The vertex A," is scalar and may be re-
normalized in the usual manner, which leads to the ver-
tex I f

gql 00 k2 ~gq/

1 —
$0 icos—go 5v 2

HC

gpC B + 8 + 8 + '8 '

FIG. 2. H' and H' are the longitudinal- and transverse-
phonon self-energies, and AII' and AH' are the phonon self-
energies, which defined the temperature dependence of the
sound attenuation; block 8 contains some inelastic electron
scattering.

[co coth(co/2T)],
Bco

as(. )
,' f dE —(2N+1)=—coth(co/2T) .

(20)

(21)

Note that the first combination depends only on the elec-
tron temperature and the second on the temperature of
the heat bath.

The essential diagrams for bII,' h determined by the
electron —thermal-phonon interaction under the condi-
tions kl ((1 and qTl )) 1 (qT= T/u ) are shown in Fig. 3.

For the first two diagrams, we define the functions 4&
and 'P2, which contain the angular dependence, originat-
ing from the vertices I, :

%, =(1—3x )(1—3y ) (1—3z ),
q12=(1 —3x ) (1 —3y )

p lt p.q p+q k
pk

' y
pq

' '
ip+q~k

(22)

insertion 8 due to some inelastic electron processes, as
shown in Fig. 2. Note that in the diagrams for hH' both
sound-phonon vertices are screened.

Before carrying out the calculation, we identify the
essential diagrams for AH' and AII'. If the sound-phonon
vertex I, for longitudinal phonons or the vertex I 0 for
transverse phonons are separated from another part of
the diagram by an impurity line, such a diagram vanishes
in the lowest order in kl due to the electron angular in-
tegration.

The temperature dependence in AI is encountered
only in the case where hH contains the products G G
or G D . It can be shown that in the first case only the
combinations G (E)G (e+co+0) and G (E+Q)G (s
+co) give nonzero contributions, where ca is the frequen-
cy of the boson excitation included in the block 8.

After expanding in the small frequency range Q «co, c
and integrating over c, we find that the temperature
dependence of hy is determined by the functions

f(co/T)= ' fds S(a+co—)
as(. )

2 BE

S( )
Bs(E+co)

2
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R
AH~ ph—

10 12

13 ~ 14 ~ 15

17

CO

t
AH~ h-

3

FICx. 3. hII,'» and AII,'» are corrections to the phonon
self-energies due to the interaction of electrons with thermal
phonons under the conditions kl «1 and ql &)1. For asym-
metric graphs, only one diagram is shown.

which holds for k « q.
If we neglect small terms of order A:/pF and q/pF, we

get 'P1=1I12=(l—3x ) (1—3y ) . Within this approxi-
mation, the temperature dependence of the sound at-
tenuation originates from the interference of the
electron-phonon and electron-impurity interactions. The
contributions of diagrams with all possible orderings of
the indices leading to the combination 6 D mutually
cancel for each diagram of Fig. 3. Only the contributions
from diagrams containing the combination 6 6
remain.

Taking into consideration one longitudinal and two
transverse modes of thermal phonons, we have, for the
diagrams of Fig. 3,

( ~Ye-ph-imp )1—3
=~'Y

F-FPF ul

I 4 I(~Y, ,h;, 4 6=,~Y

FIG. 4. A. ~~ and A, ~t are the bare vertices of the electron-
magnon interaction; A~ ~ contains the impurity renormalization
in the first order of the perturbation theory. b, II' and hII' are
corrections to the sound attenuation due to the electron-
magnon interaction.

The overall correction to the longitudinal sound at-
tenuation due to the electron-phonon —impurity interfer-
ence according to (23) is

3

Ay . = 12—m —6m —18
3 ul

e-ph —imp (24)
u,

goal

=3
7 e-ph —imp 4

3
3
2 u,

goal (25)

Considering the next term in the expansion of 41 in the
powers of q /pF, we find

For transverse sound we take into account the diagrams
of Fig. 3 and get

I
Ye-ph-imp~7 —9

3
ul I

ut

I7 e-ph —imp ~13—14

I(~Y,-,h;, )1S
=o

I 3 lT
2

( ~Y.-ph- p )16-17= 20

3

I 6
Y e-ph —imp ) 10-12

u,

9~4
10

(23)

q.kz=x+ q =x+[xy+(I —x')'~ (1—y')' 'cosy]

(26)

where cp is the angle between the projections of vectors p
and k on the plane perpendicular to q. The angular in-
tegration Axes the magnitude y = —

q /2pF « 1. For
transverse sound phonons we take into account the term
of order q/p from the vertex I 0. It may be shown that
the contribution of thermal transverse phonons is negligi-
ble. Note also that now both combinations D 6 and
6 6 are important, and finally we get
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T5
by,' „h= —36m g(5) (vFkr)M (ppggi )

~r! ph -36~V ph-

III. IMPURE FERROMAGNETIC METAL

In a ferromagnetic metal the electron-magnon interac-
tion has an effect on the temperature dependence of
sound attenuation. The electron-magnon interaction is
defined by the s-d exchange Hamiltonian. ' Taking into
account only one-magnon processes, we have

1/2
2S

H, d= —J (bqcp+qpcpt +6 qcptcp+qt )

pv

(28)

where g(5)=1.03. Comparison of expressions (24), (25),
and (27) with the related results for conductivity shows
that the corresponding corrections are proportional:

ye-ph —imp b~ e-ph-imp «ye-ph b}oe-ph' The correc-
tion hy, ph p occurs only in an impure metal, while the
correction by, ph is similar to results of Ref. 4 for pure
metals.

The above calculations refer to the case qTl & 1. For
lower temperatures, when qz-I &1, the interaction be-
tween electrons and thermal longitudinal phonons is de-
scribed by vertices I, and I f and for transverse phonons
by vertex I o. These do not contain the singular diffusion
denominator, unlike the vertex of the electron-electron
interaction (see Sec. V). Therefore the corrections to the
sound attenuation from the interaction of electrons with
thermal phonons for qTI & 1 are negligible in comparison
with the corresponding correction from the effects of
weak localization (see Sec. IV). A straightforward calcu-
lation shows that T terms in Ay, ph imp cancel. After
expanding the electron Green's functions in powers of
qTI «1, we have the final result Ay, ph p

T

FIG. 5. Graphical equation for the cooperon and diagrams
of EII&„that take into account the e6'ects of weak localization.

At(= —(Apt)

S= —J
iV

1/2
i

1
q/+ co~+ 2JS~+i

ln
2ql —ql +co~+2JS~+i (30)

When qr)&qo and qzl )&1, where qo=2JS/UF and
BqT= T, the subband splitting may be neglected and we
have

1/2

A =A = —J S
T4 4T 2ql

(31)

The diagrams for the phonon self-energy are shown in
Fig. 5. Similar to the case of the electron-thermal pho-
non interaction, we have two contributions to the sound
attenuation due to the electron-magnon interaction:
JeelLy p

and Ay For longitudinal phonons it is
convenient to express the result through the contribution
from the fifth diagram,

( ~Y e-m —imp )5 =~ Y m

' 2 3/2
C~2SZpyg J

40M eF 0,
where b and c t are the magnon and electron creation
operators. The arrows in the electron operator stands for
the electron spin. J is the exchange integral, and X is the
number of magnetic atoms with spin S.

The magnon Green's function and the magnon spec-
trum are

C — — co 2. 5
dco

(&y,'„, „), ,=—,ay, (a),'4 1
(32)

D (q, co)=(co—0 +iO) ', 0 =Bq (29)
=-!~Ye-m-imp 6—l0 5 ( t e m —imp)l —5-

where B=8, /pp, and the Curie temperature
O, =aJ /cF, a —1.

The electron spectrum for each of the spin-split sub-
bands is st &=p /2m+ JS. The vertices A, tt and A, tt re-
lated to absorption and emission of magnons according to
(25) equal A, ~t =A, t&

=J(2S/N)'~ . The effective vertices
(At t ) I and (A& t ),". , which take into account the impurity
renormalization in the first order, are similar to the ver-
tices A; for the electron-phonon interaction and may be
obtained from (16) by substituting for ig i the quantities
A&& and A~& given by

Combining all contributions mentioned above and per-
forming a similar calculation for the transverse phonons,
we get

9 3
~yern imp=

5
1

2 ~ym

(33)
3 4

~ye-m —imp 4
1

2 ~y
7T

Retaining terms of order q/p in the sound-phonon ver-
tices, of the first diagram, we get the correction Ay,
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10CO,M

(34)

For lower temperatures, qT « qo, and 2JS~ && 1,
1/2

i SAt)=(Ait)*=
2S&

(35)

err~ =
e-e

The straightforward calculation shows that all dia-
grams of Fig. 4 now mutually cancel. The finite result
appears only after an expansion of the electron Green's
function in powers of q Tq o

' « 1, and we have

imp T ) and this may be neglected . This is
similar to the cancellation in Ay, ph p

for qTl «1 de-
scribed in Sec. III. The same cancellation also takes
place for Ao. , „h;m~ and Ao, ; ~.

' A typical value of
J is =0. 1E.F, and hence the inequality qT &qo in a fer-
romagnetic metal is valid for temperatures T & 10 K.

IV. EFFECT OF WEAK LOCALIZATION

(12 (( 21 )s 1 1
21 12

mvw 1— )

Cii (Cii )* 1 S(e+~)0
12 21

'7TVV 1
)

(C2i ), 1 S(e)g*
11 11

(36)

S(c,)S(8+co)
irvs 1 —g

where

When calculating the corrections to the sound attenua-
tion due to the effect of weak localization, we need to
know the expression for the cooperon Crp (Fig. 5) in the
Keldysh-diagrammatic technique:

C12 —( 21 — ( (s —( 22 —()
1

2 aP

FIG. 6. Block T, which defines the impurity renormalization
in the particle-hole channel. AII', , describes the eftects of the
electron-electron interaction.

goal
2&HZ k'

5ir M(EFr)

' 1/2
1

~'Floe =
4 ~'Vloc

(38)

The electron system may be considered two dimension-
al for films with thickness d ((Dr%)i/2. For phonons the
situation is more complicated. The experimental feasibil-
ity of two-dimensional phonons is very questionable. In-
vestigation of the attenuation of three-dimensional pho-
n ons on two-dimensional electrons in metal-oxide-
semiconductor field-effect transistor structures' reveals
many peculiarities of boundary effects that may obscure
the localization and interaction efFects. Layer com-
pounds may be more appropriate for studying the effect
of the low-dimensional electron system on the sound at-
tenuation, but they demand special consideration. For
this reason, we write the expressions for the attenuation
of two-dimensional phonons on two-dimensional elec-
trons, considering this case only as a model. As may be
shown, the coefficient —,

' in g~i given by (10) becomes 1,
the factor 1 —3x in (12) is replaced by 1 —2x, and the
coefficient —', in (15) is replaced by —,'. As a result, we find

g=g(q, A)=

(37)

1
J dp, G "(p,E)G (p —q, v+0)1

(2~)'
=1+iQ~ —Dq z .

Z kbyi„=b.yI„= ln(r /rj, d=2 .
4m M

(39)

For low frequency, 0(1/r, where ~ is the electron
phase relaxation time, Q in g should be substituted for
1/~ . In further calculations, 0 represents the frequency
of sound, mA. &, and the temperature dependence of the
sound attenuation appears when &ok~~ & &. Here, v~ is
defined by some inelastic electron scattering —for exam-
ple, the electron-phonon or electron-electron interac-
tions. When ~„ is defined by the spin-spin or spin-orbit
interactions, the temperature dependence of the sound at-
tenuation is absent.

The essential diagrams for the longitudinal-phonon
self-energy are shown in Fig. 6. The last three diagrams
containing vertices I f mutually cancel. For transverse
phonons we consider only the first diagram with vertices
I o, and as a result obtain

V. ELECTRON-ELECTRON INTERACTION

In the Keldysh-diagrammatic technique the screened
Coulomb potential has the same matrix structure as the
6 function. Below we write expressions for V, , and V, „
which we need for further calculations:

Vo(q )
V, , (q, co) = [ V,",(q, co)]*=

E' ) CO

Vo(q)=, e (q, co)=1—Vo(q)P (q, co), (40)
q

P (q, co)= —v 1+ 1—

where g is defined in (14). As a result, in the three- and
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two-dimensional cases we have

V (q, co)=4m.e q + Drc q

k co+De

]c3=4me v3, v3=mp~l~, d=3;
(41)

V (q, co)=2me ~q~+
DK2

l co+De

]c2=2n.e v2, v2=mln, d=2 .2

We also write the expression for the vertex of the
electron-electron interaction, renormalized by impurities,
as shown in Fig. 1:

w'= ' w =
V 2(1 —g) +2(1—g)

W2 =O rV' =W' = '
2(1 g)

~ 22 ~ 12 21

(42)

1
21

$VI] = — —2S(s)S(E+co)Re1

2 1 —g*

[S(a+co)—S(e)]g*
11 )fc

For the block of impurity ladders in the diffusion chan-
nel, we have

T 12 T21 T(s T22 ()
1

21 12 ~ 2 aP

T]2 (T21)e 1 1
12 21

(T]] )y S(K+CO)
12 21 (43)

T 12
( T21 )j] S(s)

mvs 1 —g

S(E)S(a+re))
11 ''1-

Expressions (42) and (43), together with the rules de-
scribed in Sec. II, allow one to calculate easily all ex-
change diagrams of the electron-electron interaction
EII, „shown in Fig. 6. The contributions of the first
three diagrams add up to zero. A similar cancellation
also occurs in the corresponding diagrams for the con-
ductivity. For the conductivity, when the contribution of
the fifth and sixth diagrams are calculated, the electron
Green's functions to the left and right of the block T~&
should be expanded to first order in q.v. For the longitu-
dinal phonons a nonzero result for the fifth and sixth dia-
grams arises only when we expand 6 functions to second
order in the parameters q v or k-v, and so the result is
very small. Now we consider the diagrams containing
the vertices I f, which were omitted in Refs. 8—10. The
tensor-index structure of the vertex I"f leads to only the
last three diagrams of Fig. 6. It may be shown that they
mutually cancel.

For the transverse sound we substitute vertices I 0 for

FIG. 7. Phonon self-energies which describe the effect of the
electron-electron interaction in the Cooper channel on the
sound attenuation. The wavy line is the fluctuation propagator.

I, in the first five diagrams of Fig. 6. The first three dia-
grams mutually cancel in the same way as for the longitu-
dinal sound. The fourth and fifth diagrams vanish after
the angular integration, and the expansion of electron
Green's functions over q.v and k.v cannot change this
result, so hy,', =0.

Now we consider the interaction effect in the Cooper
channel on the sound attenuation. We start with the
Aslamazov-Larkin diagram for the longitudinal sound.
The requirement of the impurity renormalization of the
interaction vertices for the fluctuation propagator leads
to the diagram CHAL with the sound vertices I, shown
in Fig. 7. Thus we have to expand the electron Green's
function in each block of three electron Green's function
to second order in the parameters q.v or k v. As a result,
the Aslamazov-Larkin correction to the sound attenua-
tion occurs 1ess than the corresponding correction to the
conductivity Ao AL.

~PAL ~~ALI

~FAL=0y' 0
(44)

~ VMT ~~MT
~VMT0

(45)

where Ao. MT is the corresponding correction to the con-
ductivity. Equation (45) is valid for any dimensions and
also in the presence of magnetic field.

VI. SUMMARY

The effective vertices I, and I f that take into account
the screening effects and the impurity renormalization al-
lowed us to calculate the effect of different kinds of elec-

where o is the dc conductivity. We can construct the
Aslamazov-Larkin diagram with the scalar vertices I f if
we do not renormalize the interaction vertices for one of
the fluctuation propagators, but the result is also small.

The analyses shows that the anomalous contribution
from the Maki-Thompson diagram appears only for the
diagrams with the sound vertices I f, as shown in Fig. 7.
However, all these diagrams mutually cancel. This result
coincides with Ref. 19. However, for the transverse
sound we have only one Maki-Thompson diagram, EHMT
(see Fig. 7), and, as a result,
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tron interactions on the sound attenuation. Note that for
the electron-phonon and electron-magnon interactions
the correction to the sound attenuation is proportional to
the corresponding corection to the conductivity,
Ay-ho. . For the localization effects, Ay&„- —b, o.&„,
and there is no effect of the Coulomb electron-electron in-
teraction on the sound attenuation. The effect of the in-
teraction in the Cooper channel on the longitudinal
sound is very weak, but there is a correction to the trans-
verse sound attenuation proportional to the Maki-
Thompson correction to the conductivity. %'e point out

that all corrections to the sound attenuations are propor-
tional to k (not to cok), and in this form are also applic-
able to optical phonons.
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