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The Monte Carlo technique of Ferrenberg and Swendsen [Phys. Rev. Lett. 61, 2635 (1988)] is

improved by efficiently determining the tails of the Boltzmann distribution at the appropriate tem-
perature. This is achieved by combining several distributions generated at different temperatures
to form a composite distribution. The composite distribution leads to values of the specific heat
and energy which are accurate over the entire temperature range of interest. Results illustrating
these improvements are reported for the square two-dimensional Ising model.

INTRODUCTION

A recent Letter by Ferrenberg and Swendsen ' (FS) re-
ported a sophisticated method of extracting information
over a wide range of temperature from the Monte Carlo
data obtained at a single temperature (the critical temper-
ature of the infinite Ising model). This method promises
to significantly reduce the computational eA'ort required
to determine thermodynamic properties over a wide range
of temperature. We were intrigued by the results report-
ed. Figure 1 of Ref. I shows excellent agreement of the
extrapolated specific heat with the exact results in the vi-
cinity of the critical temperature [T, =2/ln(1+ J2)] but
deviates somewhat at lower (-1.2) and higher tempera-
tures (-2.8).

We review the essential elements of the method below
and point out that inadequate sampling of the tails of the
Boltzmann distribution is responsible for systematic devi-
ations as the temperature is varied. Simulations of the or-
der of 109 configurations would be necessary to obtain any
data in these energy ranges. This error, or noise due to
insufficient sampling in the extremities, can be reduced
with modest computing eAorts.

THE FS METHOD

A canonical system is described by

P (S)
e" N(S)

K Z
where

—PH Kga a~ KS. (2)
(ij )

K is the reduced coupling constant (J/kT), cr; ~ 1 is the
spin value of the ith spin, Z is the partition function, N(S)
is the number of configurations with energy S, and Px(S)
is the Boltzmann distribution giving the probability of
finding the system with energy S.

FS focused on the histogram N(S) produced during a
Monte Carlo run at a specific temperature. They noted

that since the configurations are generated with probabili-
ty e, N(S) is therefore proportional to Px (S)

Plr(S) can be used to determine the distribution at any
other temperature EC' by

P (S)e (K' —K)s

(x -x)s (3)P, Se'' ""
S

These equations are exact and errors, if any, are due to
the determination of the histogram N(S) by the Monte
Carlo method. Figure 1 shows the energy and specific
heat versus temperature for a two-dimensional system of
linear length L 16, determined from 100 K configura-
tions generated by the standard Monte Carlo method.
Note that there are substantial deviations from the exact
results as we move away from the temperature at which
the histogram is generated. Figure 2 shows the histogram
N(S) generated at T, (0) and also the histogram at a
nearby higher temperature T 2.5 (0) obtained from the
T, distribution and Eq. (3). The peak of this new distri-
bution, which occurs at S/2 135, relies heavily on values
of S which occur in the tail of the original distribution.
These values in the tail of the T, distribution are more
prone to noise, as N(S) in these tails are small. While a
small ffuctuation caused by the Monte Carlo simulations
would appear as an insignificant quantity in the regions
near the peak of the histogram, these fluctuations repre-
sent large percentage errors in the extremities of the dis-
tribution. These errors would be magnified and
transferred to the new distribution formed at T 2.5.
Thus the specific heat and average energy calculated at
T 2.5 from this error-ridden distribution would be less
accurate than the corresponding values obtained at the
temperature of the original distribution. Of course, these
error effects would increase as one moved away from the
temperature of the original Monte Carlo simulation.

A simple means of increasing the accuracy of the tails
of the distribution is by generating more configurations.
In fact, FS generated 4000 K configurations by the highly
e%cient Swendsen-Wang algorithm and their results for
the specific heat, although better than Fig. 1, still suffer
somewhat from the same defect.
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FIG. 5. The distribution generated at T 2.50 by Monte

Carlo sampling (solid circle) and from the composite distribu-
tion and Eq. (3) (open circle).
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FIG. 4. Energy and specific heat vs temperature. The solid
line is the computed results while the dashed line is the exact
values from Ref. 2.

done in the following manner: Equation (3) is used to
predict values in the energy range of the tail of the pri-
mary distribution (Fig. 3). The shaded regions in the tails
of the primary distribution are replaced by equivalent
areas constructed from the secondary distributions. The

concept of equal areas is necessary because of the inaccu-
racy also present in the tails of the secondary distribution.
The inaccurate areas of the secondary distrib'ution con-
tribute significantly to Z when one makes use of Eq. (3),
making the rescaling method necessary. In this manner
we were able to correctly determine events which occur
with a probability of 10: insignificant for the deter-
mination of any thermodynamic property at T, but whose
contribution becomes more important as the temperature
is varied. This method is similar in spirit to the "multi-
stage sampling" technique of Valleau and Card, who
considered overlapping energy density distributions in the
calculation of the free energy of a system of hard spheres
with Coulombic forces.

The energy and specific heat are shown in Fig. 4 togeth-
er with the exact values for finite systems. There is no
systematic deviations of these qualities with tempera-
ture —the diA'erence observable at high temperatures is
due to the periodic boundary conditions and this effect is
observable elsewhere in the comparison of Monte Carlo
results with the exact results of Onsager. The histogram
Pz(S) obtained from the composite distribution and Eq.
(3) is shown at T 2.5 (Fig. 5). The actual distribution
obtained from a Monte Carlo simulation at T=2.5 is su-
perimposed. The agreement is excellent. The direct
Monte Carlo simulation leads to an energy of —1.122 and
a specific heat of 1.134, while the composite distribution
predicts —1.132 and 1.181. The corresponding exact
values are —1.131 and 1.065.
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CONCLUSION

The powerful technique introduced by Ferrenberg and
Swendsen, whereby thermodynamic properties for a wide
range of temperatures are determined from Monte Carlo
data at a specific temperature, is analyzed in detail. Er-
rors are due to insufficient occurrence of events in the tails
of the original distribution, which were generated in the
first place by "important sainpling. " We have used the
FS algorithm to reconstruct the tails of the primary distri-
bution from two secondary distributions at diA'erent
temperatures —thus reducing the noise and improving the
accuracy of the extremities. The composite distribution
leads to improved results for the energy and specific heat
over the complete temperature range by providing infor-
mation on events as rare as 10 . We have obtained ac-

curate results with a total of 300 EC configurations, a fac-
tor of 10 less than FS. We refer interested readers to FS
for the advantages and Aexibility of this approach for the
calculation of thermodynamic properties of systems. Note
that the method in the present form will be extremely
efficient for determining crossover and other subtle effects
from nearby critical points and multicritical points.
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